

Description

The ACE500C are a group of positive voltage regulators manufactured by CMOS technologies with high ripple rejection, ultra low noise, low power consumption and low dropout voltage, which can prolong battery life in portable electronics. The ACE500C work with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications. The ACE500C series consume less than 0.1uA in shutdown mode and have fast turn-on time less than 50us. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

Features

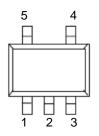
- 300mA RF Low-Dropout Regulator With Enable
- Ultralow-Noise : 40Mvrms (10Hz~100kHz)
- High PSRR : 70dB@10kHz
- Fast Start-Up Time (20µs)
- Excellent Load/Line Transient Response
- Low Dropout Voltage : 120mV@100mA
- Stable With a 1µF Ceramic Capacitor
- Available in Adjustable Voltage Version (1.0V to 5.5V)
- Built-in Current Limiter, Short-Circuit Protection

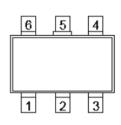
Application

- RF: VCOs, Receivers, ADCs
- Cellular and Cordless Telephones
- Handheld Organizers
- Audio
- Bluetooth, Wireless LAN
- Tablet, MID

Absolute Maximum Ratings

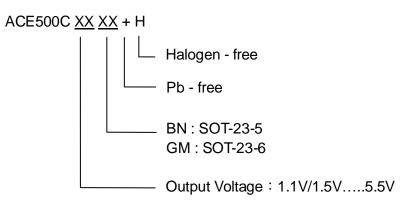
Parameter	Symbol	Мах	Unit
Input Voltage	Vin	V _{SS} -0.3~V _{SS} +8	V
Output Current	I _{OUT}	350	mA
Output Voltage	V _{OUT}	V _{SS} -0.3~V _{IN} +0.3	V
Power Dissipation SOT-23-5 SOT-23-6	Pd	400	mW
Operating Temperature	T _{opr}	- 40 to + 85	°C
Storage Temperature	T _{stg}	- 40 to + 125	°C
Soldering Temperature & Time	T _{solder}	260°C,10s	

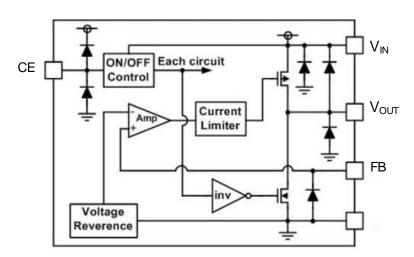

Note: Exceed these limits to damage to the device.


Exposure to absolute maximum rating conditions may affect device reliability.

Packaging Type

SOT-23-5/SOT-353(SC-70-5)




SOT-23-6

SOT-23-5	SOT-23-6	Description	Function	
1	1	V _{IN}	Power input Pin	
2	2	V _{SS}	Ground	
3	3	CE	Chip Enable Pin	
4	5	FB	Feedback Pin: Used to Set Output Voltage	
5	6	V _{OUT}	Output Pin	
	4	NC	Not Connection	

Ordering information

Block Diagram

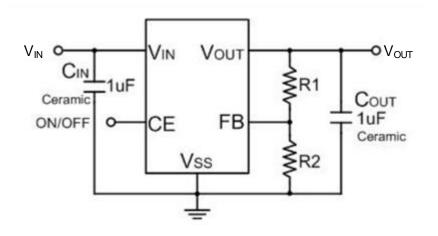
Electrical Characteristics

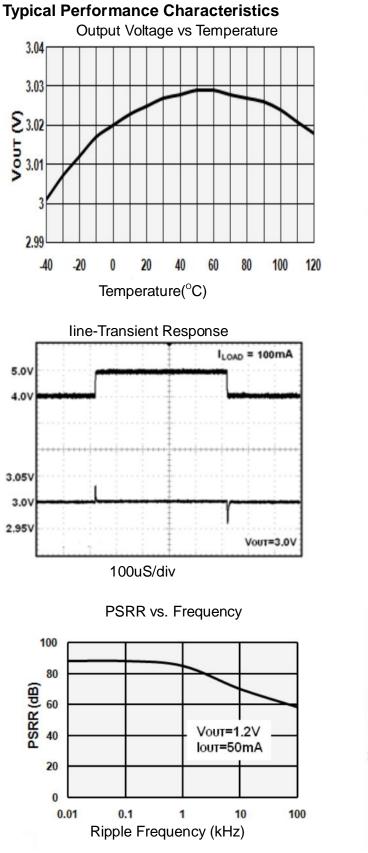
(V_{IN}=V_{OUT}+1V, C_{IN}=C_{OUT}=1 μ F,T_A=25 °C, unless otherwise specified)

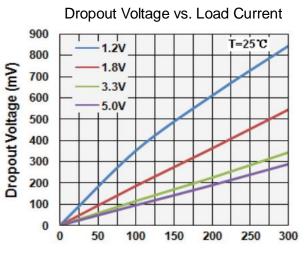
Paramete	er	Symbol	Conditions	Min	Тур	Max	Units
Input Volta	ge	V _{IN}		1 .8 ⁽¹⁾		7.0	V
Output Curr	ent	Ι _{ουτ}		300			mA
Supply Curr	ent	I _{SS}	V _{OUT} =0mA		45	80	uA
Standby Cur	rent	I _{STBY}	V _{CE} =0V			0.1	uA
CE "High" Vo	ltage	V _{CEH}		1.2		V _{IN}	V
CE "Low" Vo	ltage	V _{CEL}				0.3	V
CE pin curr	ent		V _{CE} =0V	-1		1	V
FB Voltag	е	V _{FB}	Ι _{ουτ} =1mA	0.588	0.600	0.612	V
FB pin curre	ent		V _{FB} =1.8V			1	uA
Output voltage	range			1.0		$5.5-V_{DO}$	V
Line Regula	tion	$\Delta V_{OUT} / V_{OUT} \cdot V_{IN}$	I _{OUT} =10mA V _{OUT} +1V≦V _{IN} ≦7V		0.01	0.2	%/V
Load Regula	ation	ΔV _{OUT}	$V_{IN}=V_{OUT}+1V$ 1mA $\leq I_{OUT} \leq$ 100mA		10		mV
Dropout Volta	age ⁽²⁾	V _{dif}	I _{OUT} =100mA V _{OUT} ≧3.0V		120		mV
Output Volta Temperatu Characteris	re	ΔV _{ΟυΤ} / ΔΤ•V _{ΟυΤ}	I _{OUT} =10mA - 40≦T≦+85		50		ppm
Current Lir	nit	I _{LIM}		310	350		mA
Short Curre	ent	I _{SHORT}	V _{OUT} =V _{SS}		50		mA
			f=100Hz I _{о∪т} =50mA		80		
Power Supply Ripple Rejection	V _{OUT} = 1.2V	PSRR	f=1kHz, I _{out} =50mA		75		dB
		f=10kHz, I _{out} =50mA		70			
Output noise v	oltage		BW=10Hz to 100kHz, I _{OUT} =10mA		40		uV _{RMS}
Time, start-	up		I _{OUT} =10mA C _{OUT} =1uF		20		uS

NOTE:

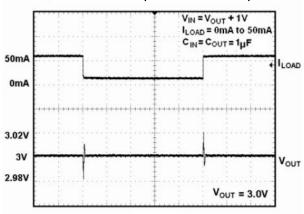
(1) Minimum V_{IN} is 1.8V or V_{OUT} + V_{DO} , whichever is greater.

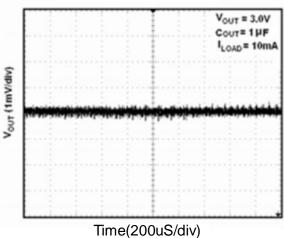

(2) V_{dif} : The difference of output voltage and input voltage when input voltage is decreased gradually till output voltage equals to 98% of VOUT (E).

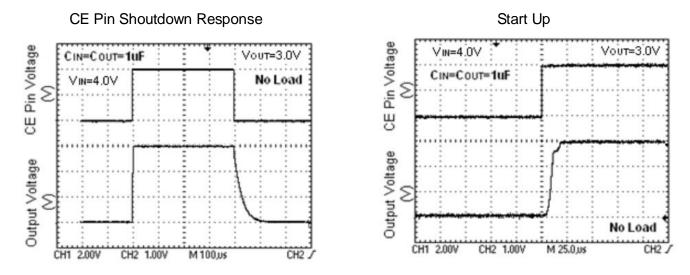

Setting Output Voltage Dropout Voltage(mV)@ I_{OUT}=100mA $V_{OUT}(V)$ Max. Тур 1.2 450 300 240 400 1.5 1.8 185 300 2.5 135 280 125 250 2.8 3.0 120 240 3.3 220 110 5.0 180 90


DROPOUT VOLTAGE CHART

Typical Application Circuit




Load Current (mA)


load-Transient Response Near Dropout

100uS/div

APPLICATION INFORMATION

Setting The Output Voltage

Figure 1 shows the typical application circuit with ACE500C. The external resistor sets the output voltage according to the following equation:

$$V_{OUT} = 0.6V \times \left(1 + \frac{R1}{R2}\right)$$

V _{OUT}	R1	R2
1.2V	30.1K	30.1K
1.5V	45.3K	30.1K
1.8V	60.4K	30.1K
2.5V	95.3K	30.1k
2.8V	110K	30.1k
3.0V	120K	30.1K
3.3V	137K	30.1K
5.0V	221K	30.1k

Table 1.Resistor select for output voltage setting

Packing Information

Е

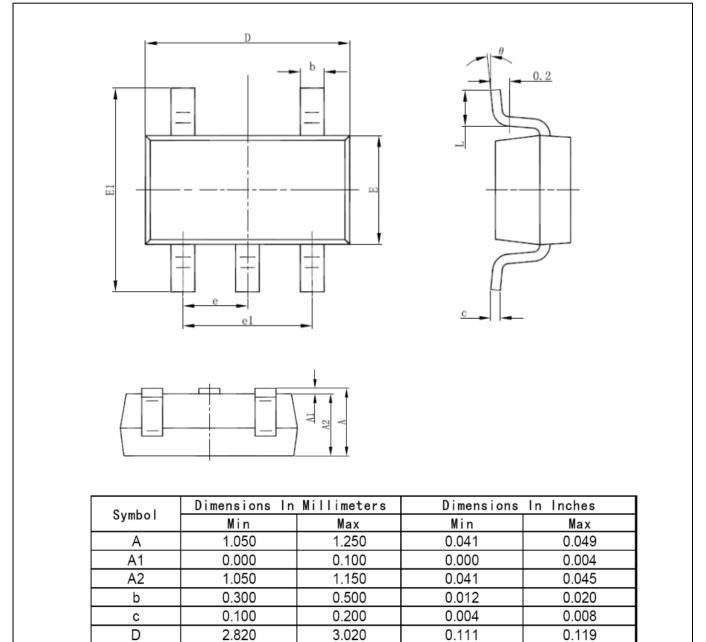
E1

е

e1

L θ 1.500

2.650


1.800

0.300

0°

0.950(BSC)

SOT-23-5

1.700

2.950

2.000

0.600

8°

0.059

0.104

0.071

0.012

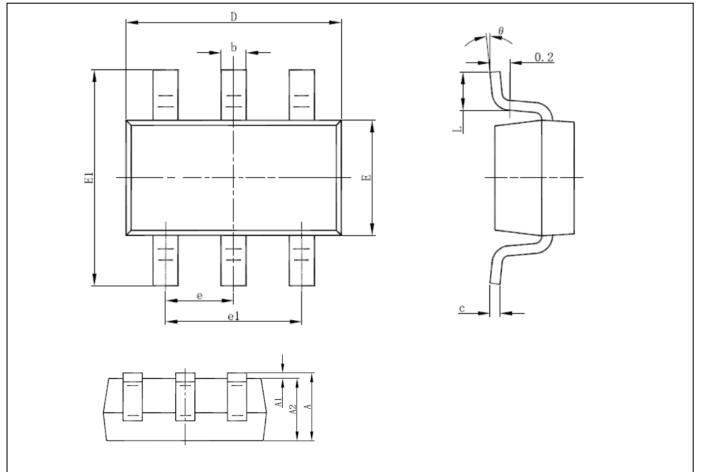
0°

0.037(BSC)

0.067

0.116

0.079


0.024

8°

Packing Information

SOT-23-6

Sumbal	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/