

1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

Description

ACE518C series are a group of positive voltage output, high precise, and low power consumption voltage regulator. Voltages are selectable in 100Mv steps within a range of 1.2V to 5.0V. It also can be customized on command.

ACE518C series have excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within ±2%.

Features

Low Quiescent Current: 100uA at 5VHigh PSRR: 65dB range to 1KHz

Low Output Noise: 44uVRMS

• Low Dropout: 200mV at 0.8A load, Vout=3.3V

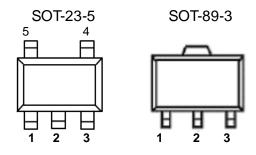
Maximum output current: 1A

• Highly Accurate: ±2%

Low ESR Ceramic Capacitor Compatible

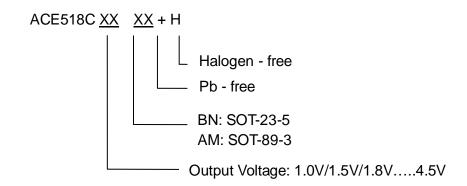
Application

- Reference Voltage Source
- Battery Powered Equipment
- PC Peripherals
- Wireless Devices
- Instrumentation



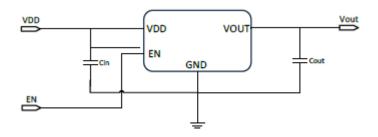
1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

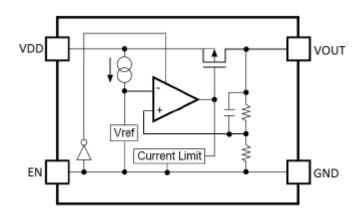
Absolute Maximum Ratings


Parameter	Max	Unit		
Max Input voltage		8	V	
Operating Junction Temperature(T _J)		145	°C	
Output Current		300	mA	
Ambient Temperature(T _A)		-40~85	°С	
Power Dissipation	SOT-23-5	250	mW	
	SOT-89-3	500		
Storage temperature (T _S)		- 45 to 150	°C	
Lead Temperature & Time		260°C,10S	°С	

Packaging Type

SOT-23-5	SOT-89-3	Description
1	2	VDD
2	1	GND
3		EN
4		NC
5	3	VOUT


Ordering information



1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

TYPICAL APPLICATION

Block Diagram

Recommended Work Conditions

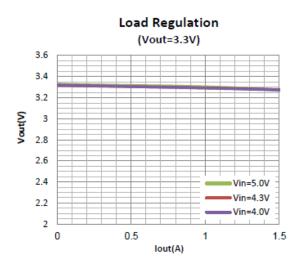
Item		Max	Unit
Input Voltage Range	1.5	6	V
Ambient Temperature		85	$^{\circ}\mathbb{C}$
Operating Junction Temperature (TJ) 125		$^{\circ}\!\mathbb{C}$	

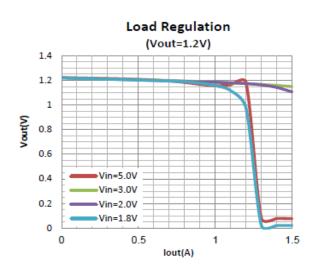
1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

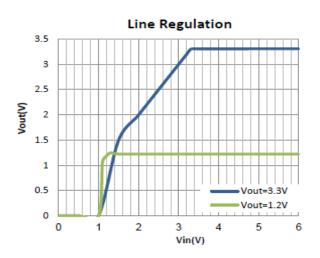
Electrical Characteristics

Test Conditions: C_{IN} =4.7uF, C_{OUT} =4.7uF, T_A =25 $^{\circ}$ C, unless otherwise specified

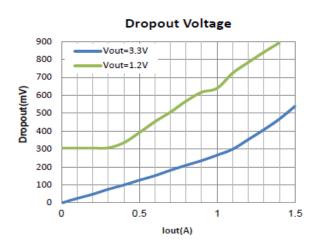
Symbol	Parameter		Conditions	Min	Тур	Max	Units
V_{DD}	Input Voltage			1.5*		6	V
I Volt	Output Voltage VouT<=1.5		V _{OUT}		V _{out}		
		V001>1.0	VDD=Set VOUT+1V	X0.98	V _{out}	X1.02	V
		1mA≤IOUT≤10mA	V _{OUT}	V 001	V _{out}		
		V001<=1.5		-0.03		+0.03	
I _{OUT} (Max.) **	Maximum Output Current		V _{DD} -V _{OUT} =1V	1			А
V_{DROP}	Dropout Voltage		VOUT=3.3V, IOUT=1A		300	500	mV
△Vout	Line Regulation		IOUT=10mA, 4V≤VDD≤6V		0.05	0.2	%/V
△Vin-Vout	Lead Deciden		V 0-4V -4V/4mA -10 5A				.,
∆Vout □	Load Regulation		V _{DD} =Set V _{OUT} +1V 1mA≤I _{OUT} ≤2.5A		30	60	mV
Is	Supply Current		V _{DD} =Set V _{OUT} +1V,V _{OUT} Floating		100	150	uA
△Vout	Output Voltage		I _{OUT} =10mA				10
	Temperature Coefficient			±100	±100		ppm/°C
PSRR	Ripple Rejection		f=100Hz,Ripple=0.5Vp-p,		GE.		dB
			V _{PP} =Set V _{OUT} +1V		65		
en	Output Noise		BW=10Hz~100kHz		44		uVrms

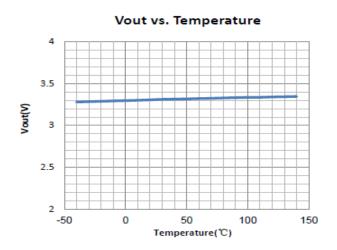

Note: *Iout=500mA@Vout=1.2V

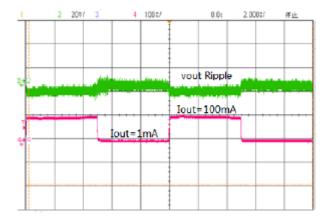

^{**}The maximum power rating of each package is a constant, so along with the change of I_{LOAD} , the V_{DD} - V_{OUT} should be controlled to a certain range to ensure the normal operation.

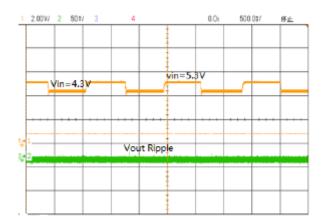


1A Ultra-Low Vin Low Dropout Voltage Linear Regulator


Typical Performance Characteristics



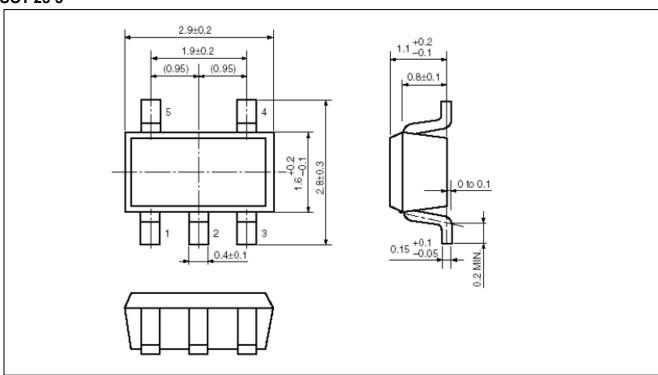


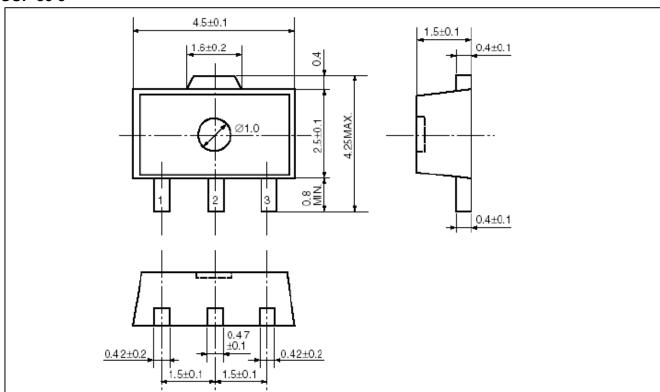

1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

Typical Performance Characteristics

Load Transient Response(Vin=5V,Vout=3.3V) Cin=1uF,Cout=1uf,lout=1mA-100mA

Line Transient Response(Vin=5V,Vout=3.3V) Cin=1uF,Cout=1uf,lout=10mAVin=4.3V-5.3V




1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

Packing Information

SOT-23-5

SOP-89-3

1A Ultra-Low Vin Low Dropout Voltage Linear Regulator

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/