

ACE6428D N-Channel Enhancement Mode Field Effect Transistor

Description

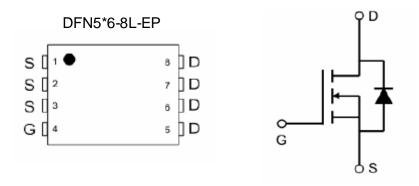
The ACE6428D uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. This device is suitable for use as a high side switch in SMPS and general purpose applications.

Features

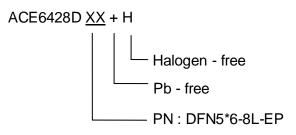
- V_{DS}(V)=30V
- I_D=43A (V_{GS}=10V)
- R_{DS(ON)} < 5.5mΩ (V_{GS}=10V)
- R_{DS(ON)} < 9.5mΩ (V_{GS}=4.5V)
- 100% Delta Vsd Tested
- 100% Rg Tested

Absolute Maximum Ratings

Parameter		Symbol	Max	Unit	
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current (Continuous)	T _A =25 °C		43	A	
	$T_A=100$ °C	I _D	27		
Drain Current (Pulse)	С	I _{DM}	100		
Drain Current (Continuous)	T _A =25 °C	1	11	А	
	T _A =70 °C	I _{DSM}	8		
Power Dissipation ^B	T _A =25 °C	PD	30	W	
	$T_A=100$ °C	ГD	12		
Power Dissipation ^A	T _A =25 °C	D	2	W	
	T _A =70 °C	P _{DSM}	1.3		
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	°C	



ACE6428D


N-Channel Enhancement Mode Field Effect Transistor

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient ^A	t≦10s	$R_{ extsf{ heta}JA}$	21	25	°C/W			
Maximum Junction-to-Ambient AD	Steady-State		50	60	°C/W			
Maximum Junction-to-Case	Steady-State	$R_{ extsf{ heta}JC}$	3.5	4.2	°C/W			

Packaging Type

Ordering information

ACE6428D N-Channel Enhancement Mode Field Effect Transistor

Parameter Symbol Conditions Min. Max. Unit Тур. Static $V_{GS}=0V$, $I_{D}=250uA$ Drain-Source Breakdown Voltage 30 V V_{(BR)DSS} Zero Gate Voltage Drain Current $V_{DS}=30V, V_{GS}=0V$ 1 uA **I**_{DSS} V_{GS}=±20V, V_{DS}=0V Gate Leakage Current 1 1.6 3 nA I_{GSS} V_{GS}=10V, I_D=20A 100 Static Drain-Source On-Resistance R_{DS(ON)} mΩ V_{GS}=4.5V, I_D=20A 4.8 5.5 V_{DS}=V_{GS}, I_{DS}=250uA V Gate Threshold Voltage V_{GS(th)} 8.2 9.5 $V_{DS}=5V$, $I_{D}=15A$ Forward Transconductance 30 S **g**_{FS} I_{SD}=2A, V_{GS}=0V V **Diode Forward Voltage** 0.71 10 V_{SD} Maximum Body-Diode Continuous 2 I_S А Current Switching **Total Gate Charge** Q_{g} 19 V_{DS}=15V, I_D=20A Gate-Source Charge 2.7 nC Q_{qs} $V_{GS}=5V$ 2.5 Gate-Drain Charge Q_{gd} 17 Turn-On Delay Time T_{d(on)} V_{DS}=15V, V_{GS}=10V Turn-On Rise Time 10 tf ns **Turn-Off Delay Time** $R_{GEN}=6\Omega, R_{L}=15\Omega$ 64 t_{d(off)} Turn-Off Fall Time tf 10 Dynamic Input Capacitance Ciss 1255 V_{DS}=15V, V_{GS}=0V pF **Output Capacitance** Coss 605 f=1MHz **Reverse Transfer Capacitance** 132 Crss

Electrical CharacteristicsTA=25 °C unless otherwise noted

Note:

A. The value of $R_{\theta,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{0JA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial $T_J = 25^{\circ}C$.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C

ACE6428D N-Channel Enhancement Mode Field Effect Transistor

80 60 10V 70 V_{DS}=5V 4.5V 50 60 4V 40 50 **|**₀ (**>**) **(8** 30 40 3.5V 30 20 20 125℃ 25°C V_{GS}=3V 10 10 0 0 2 3 5 0 1 4 3 0 1 2 4 5 V_{DS} (Volts) V_{GS}(Volts) Fig 1: On-Region Characteristics (Note E) Figure 2: Transfer Characteristics (Note E) 16 1.8 14 Normalized On-Resistance 1.6 V_{GS}=10V 12 I_D=20A R_{DS(ON)} (mD) 1.4 10 V_{GS}=4.5V 8 1.2 6 V_{GS}=4.5V 1 I_D=20A 4 V_{GS}=10V 2 0.8 5 15 I₀ **(A)** 0 25 75 100 125 150 175 0 10 20 25 30 50 Temperature (°C) Figure 3: On-Resistance vs. Drain Current and Figure 4: On-Resistance vs. Junction Temperature Gate Voltage (Note E) (Note E) 35 1.0E+02 30 1.0E+01 I_D=20A 1.0E+00 25 $R_{DS(ON)}$ (m Ω) 125°C 20 Is (A) 1.0E-01 1.0E-02 15 125℃ 25°C 10 1.0E-03 1.0E-04 5 25℃ 1.0E-05 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2 4 6 8 10 V_{GS} (Volts) V_{SD} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage Figure 6: Body-Diode Characteristics (Note E) (Note E)

Typical Performance Characteristics

VER 1.2 4

ACE6428D

N-Channel Enhancement Mode Field Effect Transistor

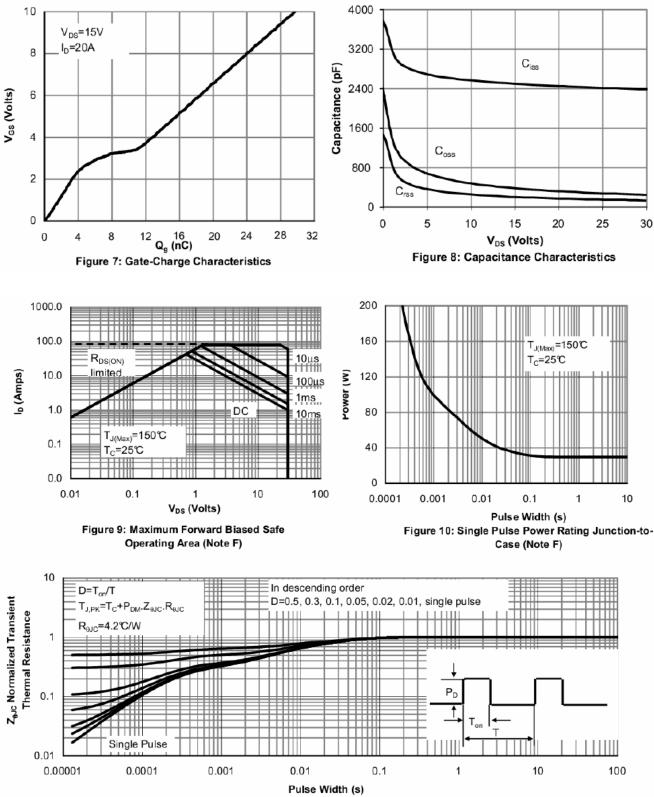
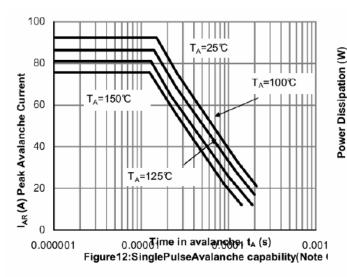
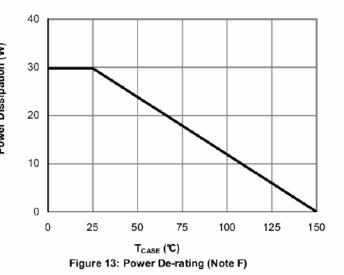
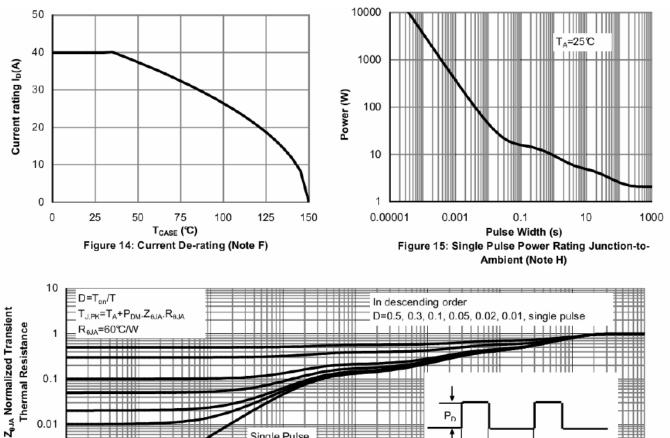
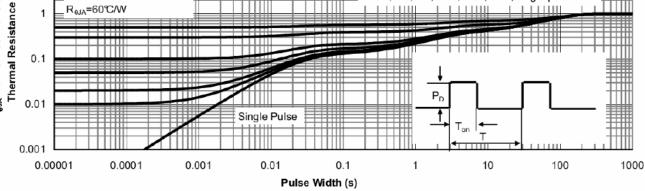
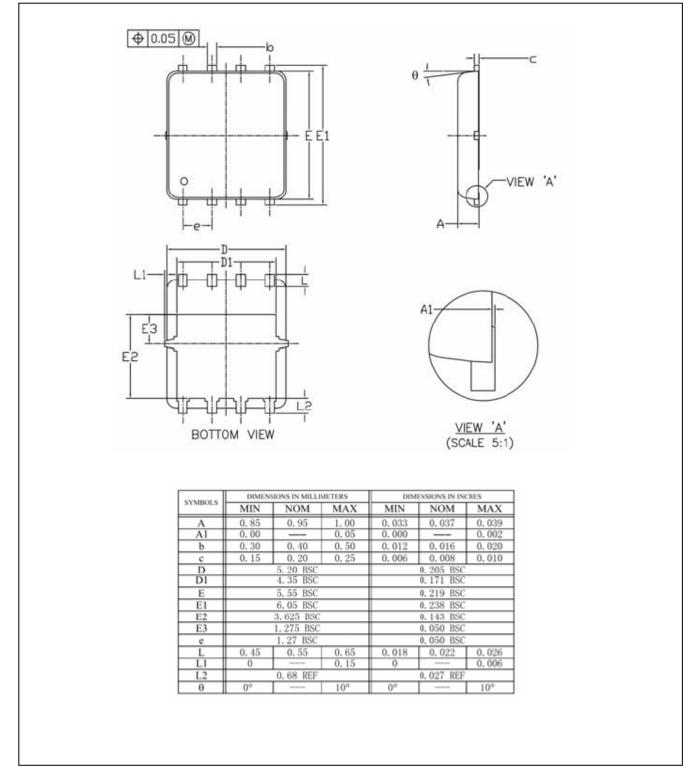




Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)




ACE6428D N-Channel Enhancement Mode Field Effect Transistor



ACE6428D N-Channel Enhancement Mode Field Effect Transistor

Packing Information

DFN5*6-8L-EP

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/