

Description

ACE715C is a step-up converter designed for driving up to 7 series white LED's from a single cell Lithium Ion battery. Its low 250mV feedback voltage reduces power loss and improves efficiency.

Optimized operation frequency can meet the requirement of small LC filters value and low operation current with high efficiency. Internal soft start function can reduce the inrush current. Tiny package type provides the best solution for PCB space saving and total BOM cost.

ACE715C is available in SOT23-6 package that is PB free.

Features

- 2.5V to 5.5V Input Voltage
- Drivers up to 8 Series WLEDs
- Low 250mV Feedback Voltage
- 1.2MHz Fixed Switching Frequency
- Internal 1.6A Switch Current Limit
- **Internal Compensation**
- Thermal Shutdown
- **Over Voltage Protection**
- Dimming with wide Frequency Range
- Available in SOT23-6 Package

Application

- Camera Flash White LED
- PDA LED back light
- **Digital still cameras**

Typical Application

Absolute Maximum Ratings

Parameter		Max		
IN, EN Pin Voltage		-0.3V to 6V		
SW Pin Voltage		-0.3V to 30V		
All Other Pin Voltage		-0.3V to 6V		
Junction Temperature (TJ)		150°C		
Ambient Temperature (TA)		-40°C to 85°C		
Power Dissipation		600mW		
Thermal Resistance (θ_{JA})	SOT23-6	250°C /W		
Thermal Resistance (θ_{JC})		130°C /W		
Storage Temperature (Ts)		-65°C to 150°C		
Lead Temperature & Time		260°C, 10Sec		

Packaging Type

Pin No.	Symbol	Description			
1	LX	Power Switch Output. LX is the drain of the internal MOSFET switch. Connect the			
		power inductor and output rectifier to LX. LX can swing between GND and 30V.			
2	GND	Ground.			
3	FB	Feedback Input. The FB voltage is 0.25V. Connect a resistor divider to FB.			
4 E	EN	Chip enable, but a PWM signal with various duty cycle can directly sent to EN pin			
	EIN	to achieve the backlight dimming.			
5		Over Voltage Input. OV measures the output voltage for open circuit protection.			
	OVP	Connect OV to the output at the top of the LED string.			
6	IN	Power Supply. Must be locally bypassed.			

Ordering Information

Halogen - free Pb - free

GM : SOT-23-6

Recommended Work Conditions

Parameter	Value		
Input Voltage Range	2.5V to 5.5V		
Output Voltage Range	VIN to 30V		
Operating Junction Temperature(Tj)	-40°C –125°C		

Electrical Characteristics

(T_A=25 $^{\circ}$ C, V_{IN}=3V, V_{CE}=3V, unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
V _{IN}	Operating Input Voltage		2.5		5.5	V
V _{FB}	Feedback Voltage		237	250	263	mV
I _{FB}	FB input Bias Current		-50	-10		nA
	SW Leakage	V _{SW} =20V			1	uA
۱ _Q	Quiescent Current	V _{FB} =0.2V, Switch		0.15	0.3	mA
		V _{EN} =0V		0.1	1	uA
F _{sw}	Oscillator Frequency			1.2		MHz
D _{MAX}	Maximum Duty Cycle			90		%
V _{EN}	EN Threshold			1		V
V _{OVP}	OVP Threshold			28		V
	SW On-Resistance			400	650	mΩ
I _{LIMIT}	Current Limit	V_{IN} =4V, Duty Cycle = 50%		1.6		А
	Thermal Shutdown			160		°C

0

4

10

16

Output Voltage(V)

22

28

ACE715C High Efficiency 1.2MHz 30V Boost LED Driver

CE pin Bias Current VS. EN pin Voltage+ (Vin=VCE)+ 0.030₽ 0.025+ CE Pin Bias Current (uA) 0.020₽ 0.015₽ 0.010↔ 0.005↔ 0.000↔ 0 4 5 1 2 3 **6**₽ CE Pin Voltage (V)↔ FB Pin Voltage VS. Supply Voltage 250 245 240 FB Pin Voltage (mV) 235 230 225 220 215 210 Vout=18V 205 Vout=15V 200 2 3 4 6 5 Supply Voltage (V) Max. Output Current VS. Output Voltage 1000 Vin=2.5V 900 Vin=3.0V Vin=5.0V Maximum Output Current(mA) 800 Vin=3.5V Vin=4.2V 700 600 500 400 300 200 100

Typical Performance Characteristics

FB Pin Voltage VS. Supply Voltage+

Efficiency VS. Output Current (4LEDS)+

Packing Information

SOT-23-6

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/