

Description

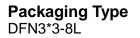
The ACE7331M utilize a high cell density trench process to provide low r_{DS}(on) and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

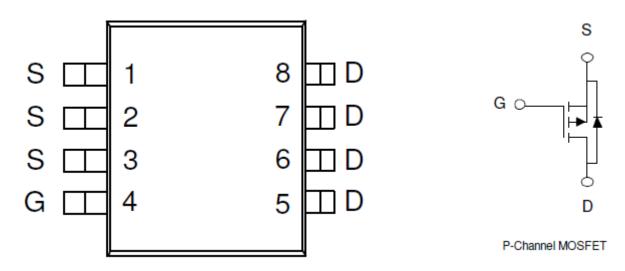
Features

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper lead frame DFN3x3-8L saves board space
- Fast switching speed
- High performance trench technology

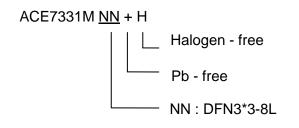
Absolute Maximum Ratings

Parameter		Symbol	Limit	Units	
Drain-Source Voltage		V _{DS}	-30	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current ^a	T _A =25°C	- I _D	-13.4	A	
	T _A =70°C		-11.0		
Pulsed Drain Current ^b		I _{DM}	±50	А	
Continuous Source Current (Diode Conduction) ^a		I _S	-2.1	А	
Power Dissipation ^a	T _A =25°C	Б	3.5	W	
Fower Dissipation	T _A =70 °C	- P _D	2.0		
Operating temperature / storage temperature		T _J /T _{STG}	-55~150	°C	


THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Maximum	Units				
Maximum Junction-to-Ambient ^a	t <= 10 sec	Р	35	°C 11/				
	Steady State	R _{θJA}	81	°C/W				


Notes

a. Surface Mounted on 1" x 1" FR4 Board.

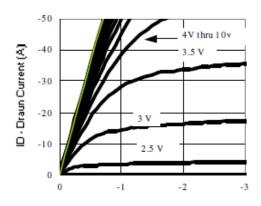

b. Pulse width limited by maximum junction temperature

Ordering information

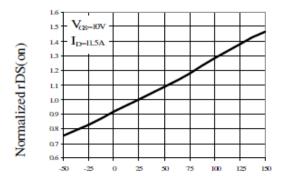
Electrical Characteristics

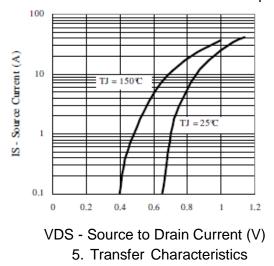
 $T_A=25^{\circ}C$, unless otherwise specified.

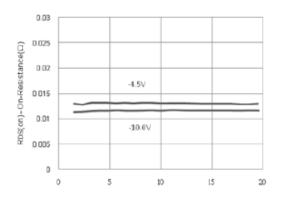
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
Static									
Gate-Source Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS} = V_{GS}$, $I_D = -250 \text{ uA}$	-1			V			
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±100	nA			
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1				
		V_{DS} = -24 V, V_{GS} = 0 V, T_{J} = 55°C			-5	uA			
On-State Drain Current ^A	I _{D(on)}	V_{DS} = -5 V, V_{GS} = -10 V	-50			А			
Drain-Source On-Resistance ^A	R _{DS(ON)}	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -11.5 \text{ A}$			19	mΩ			
		V_{GS} = -4.5 V, I _D =-9.3 A			30				
Forward Transconductance ^A	g fs	V_{DS} =-15 V, I_{D} = -11.5 A		29		S			
Diode Forward Voltage	V_{SD}	$I_{\rm S} = 2.5 {\rm A}, {\rm V}_{\rm GS} = 0 {\rm V}$		-0.8		V			
Dynamic ^b									
Total Gate Charge	Q_g	V _{DS} = -15 V, V _{GS} = -5 V, I _D =- 11.5 A		25		nC			
Gate-Source Charge	Q_gs			11					
Gate-Drain Charge	Q_gd			17					
Turn-On Delay Time	t _{d(on)}	V _{DS} = -15 V, R _L = 6 Ω, I _D = -1 A, V _{GEN} = -10 V		15		ns			
Rise Time	t _r			13					
Turn-Off Delay Time	t _{d(off)}			100					
Fall Time	t _f			54					


Note :

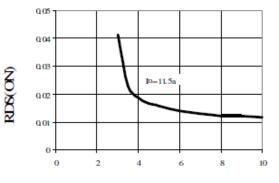
a. Pulse test: PW <= 300us duty cycle <= 2%.


b. Guaranteed by design, not subject to production testing

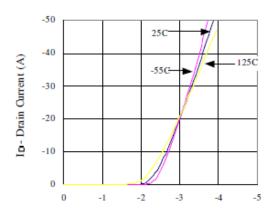

Typical Performance Characteristics



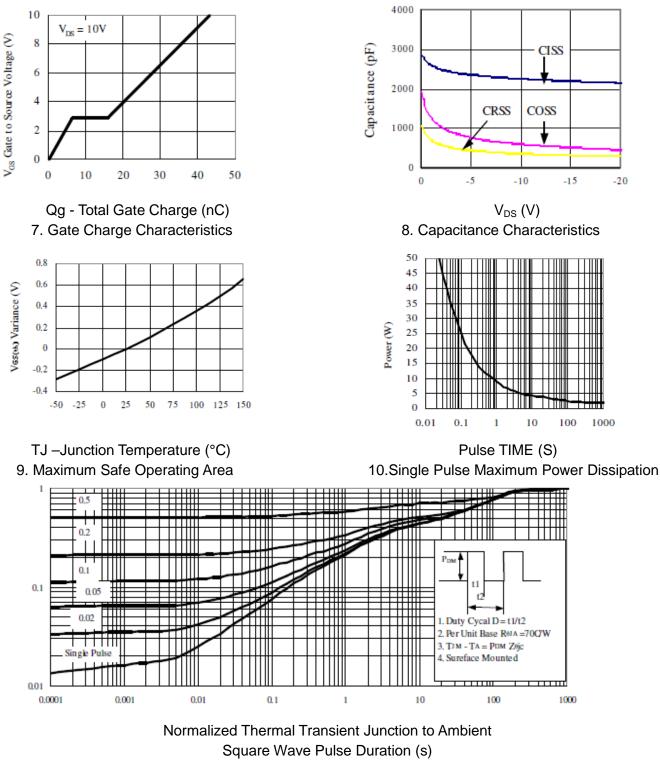
VDS - Gate-to-Source Voltage (V) 1.On-Resistance Characteristics



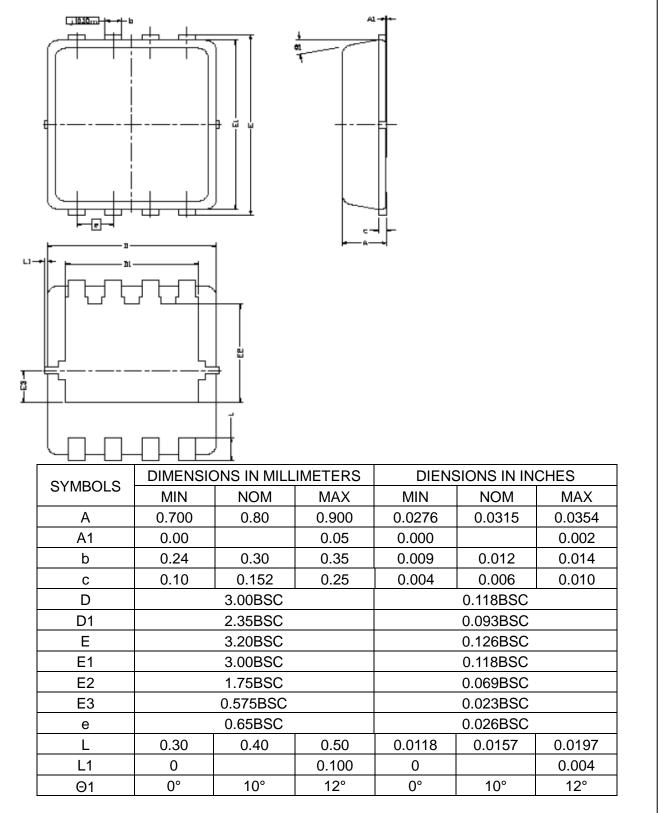
TJ –Junction Temperature(°C) 3. On-Resistance vs. Variation with Temperature



ID-Drain Current (A)ace 2. On-Resistance Variation with Drain Current and Gate Voltage


VGS - Gate-to-Source Voltage (V) 4. On-Resistance vs with Gate to Source Voltage

VGS- Gate to Source Voltage (V) 6.Body Diode Forward Voltage Variation with source Current and Temperature



Typical Performance Characteristics

11. Transient Thermal Response Curve

Unit: mm

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/