ACL410C - Direct AC Line LED Driver Dimmable

UP TO 10W OUTPUT with improved dimming compatibility

ACL410C-DS-V1.1 – JUNE 2021

Datasheet

MATURITY In Production

1. FEATURES

ACL410C UP TO 10W OUTPUT Dimmable

- Direct AC Line LED Driver with improved dimming compatibility
- Wide AC Input Range: 50 to 280V AC
- High Power Factor: 0.97 with optimized LED configuration
- Low quiescent current: 610µA
- High Efficiency: 85% typical
- Ultra-Flexible LED Forward Voltage Configuration,
- Up to 4 LED stages capability,
- Over Temperature Power derating
- Embedded and flexible bleeder for external dimmer compatibility (leading and trailing edge dimmers)
- Independent and flexible additional current source for improved low-flicker performances

2. APPLICATIONS

- General Solid State Lighting,
- Medium Power LED Lamp,
- Connected Medium Power Led Lamp,
- Industrial High power LED Lamp,
- Dimmable light.

3. DESCRIPTION

The ACL410C is an AC direct LED driver with improved dimming compatibility requiring few external components.

The dimmer compatibility is ensured by an embedded and configurable bleeder. The bleeder current can be set thanks to external components. The NEMA SSL-6 dimming profile can be easily reached, even in low-flicker configurations.

The ACL410C also embeds an independent and configurable additional current source allowing improved performances in low-flicker configurations.

4. PIN CONNECTIONS

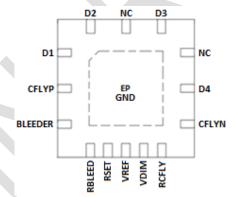


Figure 1: QFN 5x5mm with Exposed Pad (TOP VIEW)

5. TYPICAL APPLICATIONS

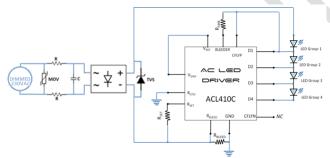


Figure 2: Low-cost application schematic for 230VAC direct AC bulb

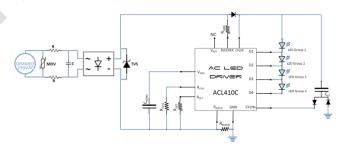


Figure 3: Low-cost application schematic for 230VAC low-flicker bulb

PRELIMINARY

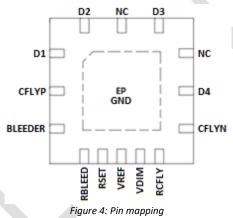
TABLE OF CONTENTS

1.	Features	1
	Applications	
3	Description	1
	Pin Connections	
	Typical Applications	
	Revision History	
7.	Pin configuration	3
	Pin descriptions and Functions	3
	ACL410C PINOUT (QFN 5x5x0.85mm with Exposed Pad)	3
8.	Absolute Maximum Ratings	4
	Electrical Characteristics	
•	Operating Conditions	4
	Operating Conditions Electrical Parameters	4
	Over temperature and LED failure Protection.	5
	R _{SET} open/short Protection.	5
	VDD short Protection	
10.	Package Description	
-	QFN014 5x5x0.85mm with exposed pad	
	PCB Footprint	6
11.	ORDERING INFORMATION	6

6. REVISION HISTORY

Version	Date	Changes
1.0	27/06/2019	Preliminary 1 st public release
1.1	23/06/2021	

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


7. PIN CONFIGURATION

Pin descriptions and Functions

Symbol	Pin #	Туре	Function	
D1	1	IO	LED Cathod group 1	
CFLYP	2	PWR	Power supply	
BLEEDER	3	IO	Bleeder input	
RBLEED	4	IO	Resistor to set the max bleeder current	
Rset	5	GND	Resistor to set the max LED current	
VREF	6	IO	Regulator output 3.3V	
V _{DIM}	7	IO	Analog input for dimming profile improvement	
RCFLY	8	IO	Resistor to set the max low-flicker capacitance current (low-flicker configurations)	
CFLYN	9	IO	Low-flicker capacitor current source	
D4	10	IO	Cathode LED group 4	
NC	11		Not Connected	
D3	12	IO	Cathode LED group 3	
NC	13		Not Connected	
D2	14	IO	Cathode LED group 2	
GND/EP	15	GND	Exposed Pad connected to the GND	

Table 1: Pin description and functions

ACL410C PINOUT (QFN 5x5x0.85mm with Exposed Pad)

8. ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Тур	Max	Units
Input power supply CFLYP	TBD		TBD	V
Input power supply BLEEDER	TBD		TBD	V
Output R _{BLEED}	TBD		TBD	V
Output R _{SET}	TBD		TBD	V
Output VREF	TBD		TBD	V
Input VDIM	TBD		TBD	V
Output R _{CFLY}	TBD		TBD	V
Output capacitor current source CFLYN	TBD		TBD	V
Output LED Voltage D1	TBD		TBD	V
Output LED Voltage D2	TBD		TBD	V
Output LED Voltage D3	TBD		TBD	V
Output LED Voltage D4	TBD		TBD	V
T°junction	TBD		TBD	°C

Notes:

Table 2: Absolute maximum ratings

1. The **ACL410C** product type has been submitted to and conforms with HTOL, PCON/MSL1/TMCL, PCON/MSL1/UHAST and HTSL qualification tests. Stress tests have been completed without rejects and were performed according to the requirements of the test reference.

2. HTOL test reference is JESD22-A108. PCON/MSL1/TMCL test reference is according to the JESD22-A113, JESD22-A104 standard.

PCON/MSL1/UHAST test reference is according to the JESD22-A113, JESD22-A118 standard. HTSL test reference is according to the JESD22-A103 standard.

3. The ACL410C product withstands class I with immunity level A of latch-up JESD78E standard.

9. ELECTRICAL CHARACTERISTICS

Operating Conditions

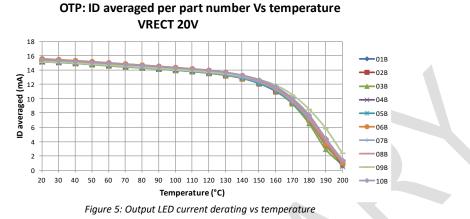
Parameter	Min	Тур	Max	Units
Input power supply CFLYP			TBD	V (peak)
Input power supply BLEEDER			TBD	V (peak)
dV/dt (V _{RECT})			TBD	V.µs⁻¹
V _{D1}	TBD		TBD	V
Voltage difference D _{n-1} -D _n (2≤n≤4)	TBD	75	TBD	V
V _{D4}	TBD	75	TBD	V
R _{SET}	TBD		TBD	Ω
R _{BLEED}	TBD		TBD	Ω
R _{CFLY}	TBD		TBD	Ω
V _{DIM}	TBD		V _{REF}	V
Load Current V _{REF} *			TBD	μA
T ^o junction	TBD		TBD	°C

Table 3: Operating conditions

Electrical Parameters

	Parameter	Conditions	Min	Тур	Max	Units
			TBD	610	TBD	μA
ſ	I _{cc}			$I_{QUIESCENT} + I_{BLEED} + I_{CAP}$		
	ILED		TBD	$\begin{array}{r} I_{D1}=0.74/(9.4+R_{SET})\\ I_{D2}=0.79/(9.4+R_{SET})\\ I_{D3}=0.89/(9.4+R_{SET})\\ I_{D4}=1.05/(9.4+R_{SET}) \end{array}$	- TBD	A
	I _{CAP}		TBD	I _{CAP} =1.204/(9.4+R _{CAP})	TBD	A
	BLEED		TBD	0.102/R _{BLEED}	TBD	A
	Input V _{DIM} current		TBD		TBD	μA
	V _{REF} voltage		TBD		TBD	V
	Output power deration $(P_T = P_{2\xi})$			175		°C
	Output power derating*	from -40°C to 100°C		0.1		%/°C
	Package Thermal Resista air thermal resistance)	ance Θ_{JA}^{**} (junction to		26		°C/W

Table 4: Electrical parameters


* Power derating acts as a soft over temperature protection. LED currents decrease with excessive IC temperature.

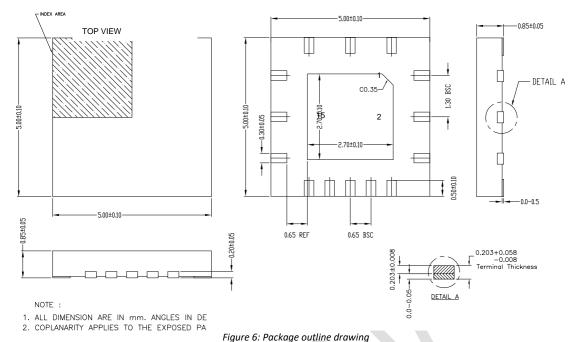
** Warning: Junction-to-air thermal resistance highly depends on application and PCB layout. Thermal management of lighting system has to be carefully taken into account.

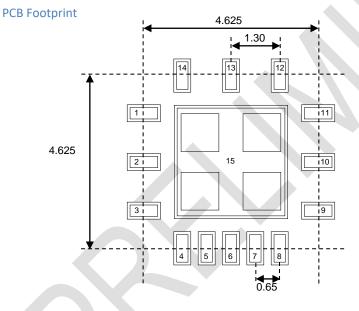
Over temperature and LED failure Protection.

- In case of excessive temperature in the IC, thermal regulation is managed by regulating the delivered power and the associated temperature. The implemented output power acts as soft temperature protection. The LED current is decreased to regulate the junction temperature until a safe state is found.
- In case of LED failure, the output power derating acts also as a protection. If the group of LED n is broken (open circuit), the LED current will flow in the previous pin Dn-1 of the IC. This will increase dissipated power and temperature too. The output power derating will activate to decrease temperature until a safe state is reached again.

R_{SET} open/short Protection.

When R_{SET} Pin is opened, the LED output current becomes zero. When R_{SET} Pin is shorted to GND, a current limitation is enabled. It is set to a hundred of milliamperes and prevents damage to the IC.


VDD short Protection


When VDD Pin is shorted to GND, a current limitation starts up, set to around 25 mA preventing damage to the IC.

10. PACKAGE DESCRIPTION

QFN014 5x5x0.85mm with exposed pad

Pad Top Elec: 0.725 x 0.3 mm Pad Top Paste: 0.725 x 0.3 mm Pad Top Solder Resist: 0.875 x 0.45 mm

Thermal Pad Top Elec: 2.85 x 2.85 mm Thermal Pad Top Paste: 1 x 1 mm (x4) Thermal Pad Top Solder Resist: 3.0 x 3.0 mm

Figure 7: PCB footprint (TOP view)

11. ORDERING INFORMATION

Device*	Package	Shipping**	
ACL410C QFN14 5x5mm Tape & Reel			
Table 5: Ordering reference			

* Only Engineering samples are available.

** Please, ask EASii IC for details of the quantity per reel with part orientation.

IMPORTANT NOTICE AND DISCLAIMER

EASII IC PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with EASii IC products. You are solely responsible for (1) selecting the appropriate EASii IC products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. EASii IC grants you permission to use these resources only for development of an application that uses the EASii IC products described in the resource. Other reproduction and display of these resources are prohibited. No license is granted to any other EASii IC intellectual property right or to any third-party intellectual property right. EASii IC disclaims responsibility for, and you will fully indemnify EASii IC and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. EASii IC's products are provided subject to EASii IC's Terms of Sale (www.easii-ic.com/en/legal/termsofsale.php) or other applicable terms available either on easii-ic.com or provided in conjunction with such EASii IC products. EASii IC's provision of these resources does not expand or otherwise alter EASii IC's applicable warranties or warranty disclaimers for EASii IC products.

EASii IC France: 90, Avenue Leon Blum 38100 Grenoble – France Copyright © 2019 EASii IC \bowtie : sales-IC@easii-ic.com http://www.easii-ic.com