ACT108-600E AC Thyristor power switch

Rev. 02 — 21 October 2009

Product data sheet

www.DataSheet

Product profile 1.

1.1 General description

AC Thyristor power switch in a SOT54 plastic package with self-protective capabilities against low and high energy transients

1.2 Features and benefits

- Exclusive negative gate triggering
- Full cycle AC conduction
- Remote gate separates the gate driver from the effects of the load current
- Safe clamping of low energy over-voltage transients
- Self-protective turn-on during high energy voltage transients
- Very high noise immunity

1.3 Applications

- Fan motor circuits
- Lower-power highly inductive, resistive and safety loads
- Pump motor circuits

1.4 Quick reference data

Table 1. **Quick reference**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DRM}	repetitive peak off-state voltage		-	-	600	V
I _{GT}	gate trigger current	V_D = 12 V; I_T = 100 mA; LD+G-; T_j = 25 °C; see <u>Figure 6</u>	1	-	10	mA
		$V_D = 12 \text{ V}; I_T = 100 \text{ mA};$ LD- G-; $T_j = 25 \text{ °C}$	1	-	10	mA
I _{T(RMS)}	RMS on-state current	full sine wave; T _{lead} ≤ 71 °C; see <u>Figure 1</u>	-	-	8.0	Α
dV _D /dt	rate of rise of off-state voltage	$V_{DM} = 402 \text{ V}; T_j = 125 \text{ °C};$ gate open circuit; see Figure 10	1000	-	-	V/µs
V_{CL}	clamping voltage	$I_{CL} = 100 \text{ mA; } t_p = 1 \text{ ms;}$ $T_j \le 125 \text{ °C; see } \frac{\text{Figure } 13}{\text{Figure } 13}$	650	-	-	V
V_{PP}	peak pulse voltage	$T_j = 25$ °C; non-repetitive, off-state; see Figure 4	-	-	2	kV
V _T	on-state voltage	I _T = 1.1 A; see <u>Figure 9</u>	-	-	1.3	V

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	CM	common		
2	G	gate		LD
3	LD	load		G — CM 001aaj924
			SOT54 (TO-92)	

3. Ordering information

Table 3. Ordering information

Type number	Package			
	Name	Description	Version	
ACT108-600E	TO-92	plastic single-ended leaded (through hole) package; 3 leads	SOT54	

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Conditions	Min	Max	Unit
repetitive peak off-state voltage		-	600	V
RMS on-state current	full sine wave; T _{lead} ≤ 71 °C; see <u>Figure 1</u>	-	8.0	Α
non-repetitive peak	full sine wave; $T_{j(init)} = 25 ^{\circ}C$; $t_p = 16.7 ms$	-	8.8	Α
on-state current	full sine wave; $T_{j(init)} = 25$ °C; $t_p = 20$ ms; see Figure 2 and 3	-	8	Α
I ² t for fusing	t _p = 10 ms; sine-wave pulse	-	0.32	A ² s
rate of rise of on-state current	$I_T = 1 \text{ A}$; $I_G = 20 \text{ mA}$; $dI_G/dt = 0.2 \text{ A/}\mu\text{s}$	-	100	A/µs
peak gate current	t = 20 μs	-	1	Α
peak gate voltage	positive applied gate voltage	-	15	V
average gate power	over any 20 ms period	-	0.1	W
storage temperature		-40	150	°C
junction temperature		-	125	°C
peak pulse voltage	T _j = 25 °C; non-repetitive, off-state; see Figure 4	-	2	kV
	repetitive peak off-state voltage RMS on-state current non-repetitive peak on-state current I²t for fusing rate of rise of on-state current peak gate current peak gate voltage average gate power storage temperature junction temperature	repetitive peak off-state voltage RMS on-state current full sine wave; $T_{lead} \le 71$ °C; see Figure 1 non-repetitive peak on-state current full sine wave; $T_{j(init)} = 25$ °C; $t_p = 16.7$ ms on-state current full sine wave; $T_{j(init)} = 25$ °C; $t_p = 20$ ms; see Figure 2 and 3 l ² t for fusing $t_p = 10$ ms; sine-wave pulse rate of rise of on-state current $t_p = 10$ ms; sine-wave pulse $t_$	repetitive peak off-state voltage $ \begin{array}{c} \text{RMS on-state current} \\ \text{RMS on-state current} \\ \text{RMS on-state current} \\ \text{full sine wave; $T_{\text{lead}} \leq 71 ^{\circ}\text{C}$; see Figure 1} \\ \text{non-repetitive peak} \\ \text{on-state current} \\ \text{full sine wave; $T_{\text{j(init)}} = 25 ^{\circ}\text{C}$; $t_p = 16.7 \text{ms}$} \\ \text{full sine wave; $T_{\text{j(init)}} = 25 ^{\circ}\text{C}$; $t_p = 20 \text{ms}$;} \\ \text{see Figure 2 and 3} \\ \text{I}^2\text{t for fusing} \\ \text{t}_p = 10 \text{ms; sine-wave pulse} \\ \text{rate of rise of on-state current} \\ \text{peak gate current} \\ \text{t} = 20 \mu\text{S} \\ \text{peak gate voltage} \\ \text{positive applied gate voltage} \\ \text{average gate power} \\ \text{over any 20 ms period} \\ \text{storage temperature} \\ \text{junction temperature} \\ \text{-40} \\ \text{junction temperature} \\ \text{-} \\ \end{array}$	repetitive peak off-state voltage $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

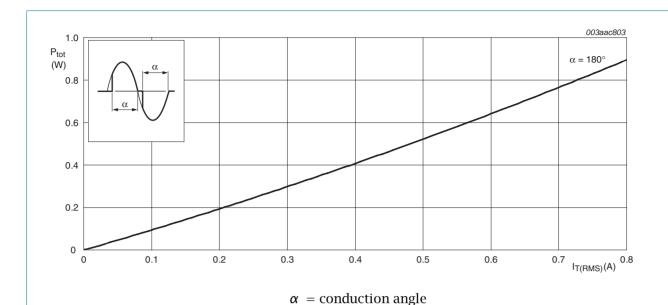


Fig 1. Total power dissipation as a function of RMS on-state current; maximum values

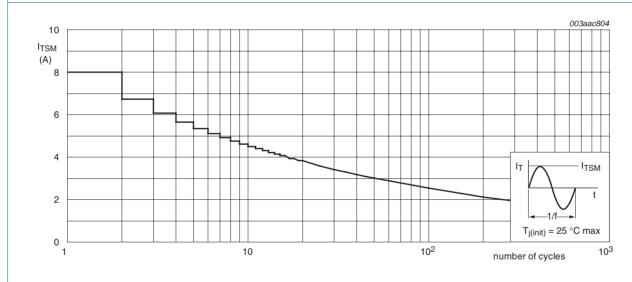


Fig 2. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximum values

 $f = 50 \,\mathrm{Hz}$

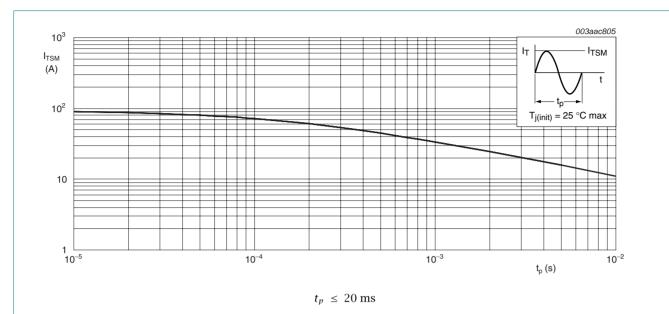


Fig 3. Non-repetitive peak on-state current as a function of pulse width; maximum values

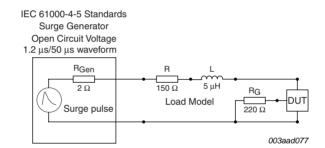
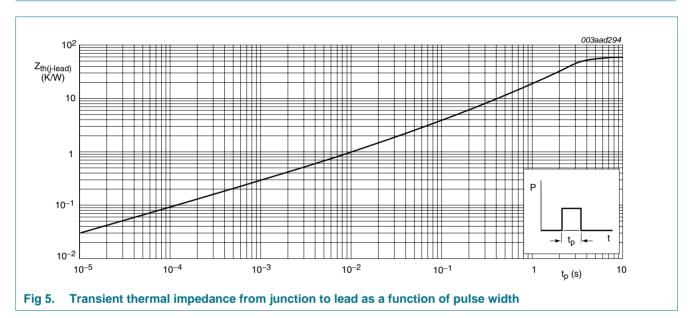


Fig 4. Test circuit for inductive and resistive loads with conditions equivalent to IEC 61000-4-5


4 of 12

5. Thermal characteristics

Table 5. Thermal characteristics

www.DataSheet4U.com

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{\text{th(j-lead)}}$	thermal resistance from junction to lead	full cycle with heatsink compound; see Figure 5	-	-	60	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	full cycle; printed-circuit board mounted; lead length 4 mm	-	150	-	K/W

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{GT}	gate trigger current	$V_D = 12 \text{ V; } I_T = 100 \text{ mA; LD+ G-;}$ $T_j = 25 \text{ °C; see } \frac{\text{Figure 6}}{\text{C}}$	1	-	10	mA
		$V_D = 12 \text{ V}; I_T = 100 \text{ mA}; LD\text{- G-}; T_j = 25 ^{\circ}\text{C}$	1	-	10	mA
IL	latching current	$V_D = 12 \text{ V}; I_G = 12 \text{ mA}; T_j = 25 ^{\circ}\text{C};$ see Figure 7	-	-	30	mA
I _H	holding current	$V_D = 12 \text{ V; } T_j = 25 \text{ °C; see } \frac{\text{Figure 8}}{}$	-	9	25	mA
V_{T}	on-state voltage	I _T = 1.1 A; see <u>Figure 9</u>	-	-	1.3	V
V_{GT}	gate trigger voltage	$V_D = 600 \text{ V}; I_T = 100 \text{ mA}; T_j \le 125 \text{ °C}$	0.15	-	-	V
		$V_D = 600 \text{ V}; I_T = 100 \text{ mA}; T_j = 25 \text{ °C}$	-	-	1	V
I_D	off-state current	V _D = 600 V; T _j ≤ 125 °C	-	-	0.2	mA
		$V_D = 600 \text{ V}; T_j \le 25 \text{ °C}$	-	-	2	μΑ
dV _D /dt	rate of rise of off-state voltage	V_{DM} = 402 V; T_j = 125 °C; gate open circuit; see Figure 10	1000	-	-	V/µs
dI _{com} /dt	rate of change of commutating current	$V_D = 400 \text{ V}; T_j = 125 \text{ °C}; I_{T(RMS)} = 1 \text{ A};$ $dV_{com}/dt = 15 \text{ V/}\mu\text{s};$ gate open circuit; see Figure 11 and 12	0.3	-	-	A/ms
V _{CL}	clamping voltage	I_{CL} = 100 mA; t_p = 1 ms; T_j ≤ 125 °C; see Figure 13	650	-	-	V

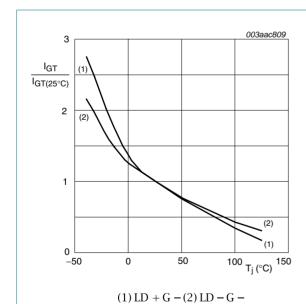


Fig 6. Normalized gate trigger current as a function of junction temperature

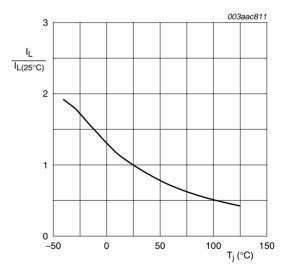


Fig 7. Normalized latching current as a function of junction temperature

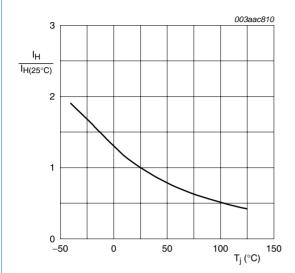
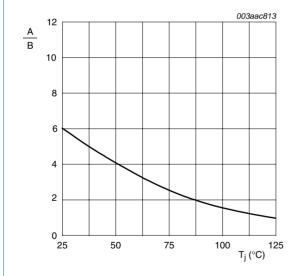


Fig 8. Normalized holding current as a function of junction temperature


 $V_o = 1.043 \text{ V}; R_s = 0.239 \Omega$

(1) $T_j = 125$ °C; typical values

(2) $T_j = 125$ °C; maximum values

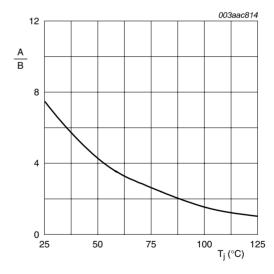

(3) $T_i = 25$ °C; maximum values

Fig 9. On-state current as a function of on-state voltage

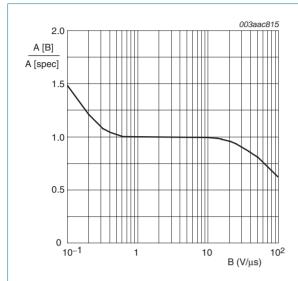

A is dV_D/dt at condition T_j °C B is dV_D/dt at condition $T_j = 125$ °C

Fig 10. Normalized rate of rise of off-state voltage as a function of junction temperature

A is dI_{com}/dt at condition T_j °C B is dI_{com}/dt at $T_j=125$ °CV $_D=400$ V

Fig 11. Normalized critical rate of rise of commutating current as a function of junction temperature

A[B] is $\frac{dI_{com}}{dt}$ at condition B, $\frac{dV_{com}}{dt}$

A[spec] is the specified data sheet value of $\frac{dI_{com}}{dt}$

Fig 12. Normalized critical rate of change of commutating current as a function of critical rate of change of commutating voltage; minimum values

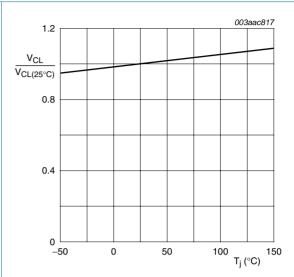
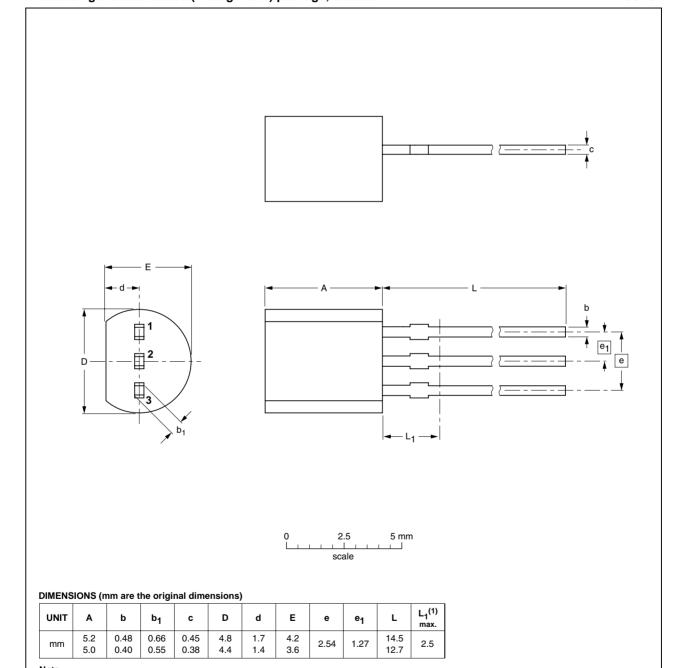



Fig 13. Normalized clamping voltage (upper limit) as a function of junction temperature; minimum values

7. Package outline

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE			REFER	ENCES		EUROPEAN	ISSUE DATE
	VERSION	IEC	JEDEC	DEC JEITA PROJE		PROJECTION	ISSUE DATE
	SOT54		TO-92	SC-43A		\bigoplus	-04-06-28- 04-11-16

Fig 14. Package outline SOT54 (TO-92)

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
ACT108-600E_2	20091021	Product data sheet	-	ACT108-600E_1
Modifications:	 Various ch 	anges to content.		
ACT108-600E_1	20090901	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

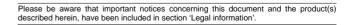
Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.


10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits
1.3	Applications
1.4	Quick reference data
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics
6	Characteristics
7	Package outline
8	Revision history10
9	Legal information1
9.1	Data sheet status
9.2	Definitions1
9.3	Disclaimers
9.4	Trademarks1
10	Contact information

Document identifier: ACT108-600E_2