### **Standard Products**

### Datasheet

## ACT8502 48-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

www.aeroflex.com/mux

May 5, 2014

# A passion for performance.

#### **FEATURES**

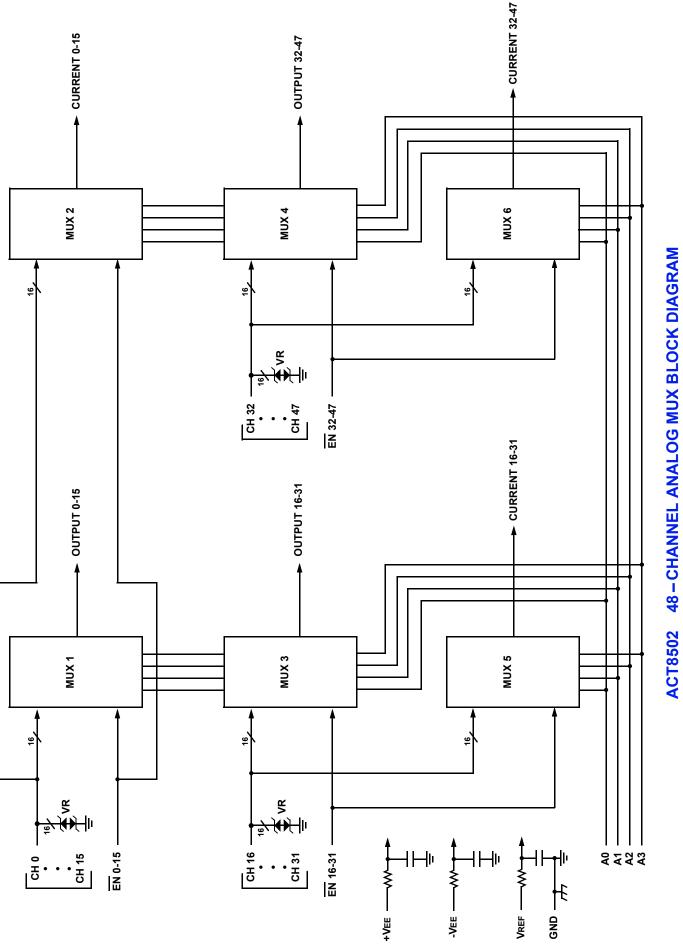
- □ 48 channels provided by six 16-channel multiplexers
- □ Radiation performance

- Total dose: 300 krads(Si), Dose rate = 50 - 300 rads(Si)/s

- SEU: Immune up to 120 MeV-cm<sup>2</sup>/mg - SEL: Immune by process design

- □ Full military temperature range
- □ Low power consumption < 90mW
- □ One address bus (A0-3) and three enable lines afford flexible organization
- $\Box$  All channel inputs protected by  $\pm 20$ V nominal Transorbs
- ☐ Fast access time 1500ns typical
- □ Break-Before-Make switching
- ☐ High analog input impedance (power on or off)
- ☐ Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic
  - 96 leads, 1.32"Sq x 0.20"Ht quad flat pack
  - Typical Weight 15 grams
- ☐ Aeroflex Plainview's Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.

## **GENERAL DESCRIPTION**


Aeroflex's ACT8502 is a radiation tolerant, 48 channel multiplexer MCM (multi-chip module) with electrostatic discharge (ESD) protection on all channel inputs.

The ACT8502 has been specifically designed to meet exposure to radiation environments. The multiplexer is available in a 96 lead High Temperature Co-Fired Ceramic (HTCC) Quad Flatpack (CQFP). It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534, the ACT8502 is ideal for demanding military and space applications.

#### ORGANIZATION AND APPLICATION

The ACT8502 consists of six 16 channel multiplexers arranged as shown in the Block Diagram. The ACT8502 design is inherently radiation tolerant.

The ACT8502 consists of forty-eight (48) channels addressable by bus  $A_0 \sim A_3$  in three 16 channel blocks, each block enabled separately. Each block connects the addressed channel to two outputs, "Output" and "Current". This technique enables selecting and reading a remote resistive sensor without the MUX resistance being part of the measurement. For grounded sensors, this is done by passing current to the sensor by means of the "Current" pin and reading the resultant voltage (proportional to the sensor resistance) at the "Output" pin.



## ABSOLUTE MAXIMUM RATINGS 1/

| Parameter                                                                 | Range                        | Units       |
|---------------------------------------------------------------------------|------------------------------|-------------|
| Case Operating Temperature Range                                          | -55 to +125                  | °C          |
| Storage Temperature Range                                                 | -55 to +150                  | °C          |
| Supply Voltage +VEE (Pin 44) -VEE (Pin 46) VREF (Pin 48)                  | +16.5<br>-16.5<br>+16.5      | V<br>V<br>V |
| Digital Input Overvoltage<br>VEN (Pins 5, 91, 92), VA (Pins 1, 3, 93, 95) | <vr +4<br="">&gt;GND -4</vr> | V           |
| Analog Input Over Voltage Vs                                              | ±18                          | ٧           |

#### Notes:

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

## **RECOMMENDED OPERATING CONDITIONS 1/**

| Symbol | Parameter                 | Typical | Units |
|--------|---------------------------|---------|-------|
| +VEE   | +15V Power Supply Voltage | +15.0   | V     |
| -VEE   | -15V Power Supply Voltage | -15.0   | V     |
| VREF   | Reference Voltage         | +5.00   | V     |
| VAL    | Logic Low Level           | +0.8    | V     |
| VAH    | Logic High Level          | +4.0    | V     |

#### Notes

## DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/

(Tc =  $-55^{\circ}$ C to  $+125^{\circ}$ C, +VEE = -15V, -VEE = -15V, VREF = +5.0V - Unless otherwise specified)

| Parameter             | Symbol      | Conditions                     | Min | Max  | Units |
|-----------------------|-------------|--------------------------------|-----|------|-------|
| Supply Current        | +IEE        | Ven(0-47) = Va(0-3) = 0        |     | 3    | mA    |
|                       | -IEE        |                                | -3  | -0.3 | mA    |
|                       | +ISBY       | VEN(0-47) = 4V, VA(0-3) = 0 6/ | 0.3 | 3    | mA    |
|                       | -ISBY       |                                | -3  | -0.3 | mA    |
| Address Input Current | IAL(0-3)    | VA = 0V <u>1</u> /, <u>7</u> / | 6   | 6    | μΑ    |
|                       | Іан(0-3)    | VA = 5V <u>1</u> /, <u>7</u> / | -6  | 6    | μΑ    |
| Enable Input Current  | IENL(0-15)  | VEN(0-15) = 0V <u>7</u> /      | -2  | 2    | μΑ    |
|                       | IENH(0-15)  | VEN(0-15) = 5V <u>7</u> /      | -2  | 2    | μΑ    |
|                       | IENL(16-31) | VEN(16-31) = 0V <u>7/</u>      | -2  | 2    | μΑ    |
|                       | IENH(16-31) | VEN(16-31) = 5V <u>7/</u>      | -2  | 2    | μΑ    |
|                       | IENL(32-47) | VEN(32-47) = 0V 7/             | -2  | 2    | μΑ    |
|                       | IENH(32-47) | VEN(32-47) = 5V <u>7/</u>      | -2  | 2    | μΑ    |

 $<sup>\</sup>underline{1}/$  All measurements are made with respect to ground.

<sup>1/</sup> Power Supply turn-on sequence shall be as follows: +VEE, -VEE, followed by VREF.

## DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/ (continued)

(Tc =  $-55^{\circ}$ C to  $+125^{\circ}$ C, +VEE = -15V, -VEE = -15V, VREF = +5.0V - Unless otherwise specified)

| Parameter                                               | Symbol                     | Conditions                                                                                                                        |                          | Min                     | Max                     | Units |      |      |    |
|---------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|-------------------------|-------|------|------|----|
| Positive Input                                          | ISOFFOUTPUT                | VIN = +10V, VEN = 4V, output and all unused MUX                                                                                   | X inputs                 | -100                    | +700                    | nA    |      |      |    |
| Leakage Current<br>CH0-CH47                             | +ISOFFCURRENT              | - under test = -10V 2/, 3/, <u>7</u> /                                                                                            |                          | -100                    | +700                    | nA    |      |      |    |
| Negative Input                                          | -Isoffoutput               | VIN = -10V, VEN = 4V, output and all unused MUX inputs                                                                            |                          |                         |                         |       | -100 | +700 | nA |
| Leakage Current<br>CH0-CH47                             | -ISOFFCURRENT              | under test = +10V <u>2</u> /, <u>3</u> /, <u>7</u> /                                                                              |                          | -100                    | +700                    | nA    |      |      |    |
| Output Leakage Current<br>OUTPUTS<br>(pins 25, 70 & 68) | +ldoffoutput               | Vout = +10V, Ven = 4V, output and all unused MUX inputs under test = -10V $\underline{3}$ /, $\underline{4}$ /, $\underline{7}$ / |                          | -100                    | +100                    | nA    |      |      |    |
| CURRENTS<br>(pins 67 & 69)                              | +IDOFFCURRENT              |                                                                                                                                   |                          |                         |                         | nA    |      |      |    |
| Output Leakage Current<br>OUTPUTS<br>(pins 25, 70 & 68) | -IDOFFOUTPUT               | VOUT = -10V, VEN = 4V, output and all unused MUX inputs under test = +10V $\underline{3}$ /, $\underline{4}$ /, $\underline{7}$ / |                          | -100                    | +100                    | nA    |      |      |    |
| CURRENTS<br>(pins 67 & 69)                              | -IDOFFCURRENT              |                                                                                                                                   |                          | -100                    | +100                    | nA    |      |      |    |
| Input Clamped Voltage<br>CH0 - CH47                     | +VCLMP(0-47)               | VEN = 4V, all unused MUX inputs under test are open. $3/$ +25°C +125°C -55°C                                                      |                          | 18.0<br>18.0<br>17.5    | 23.0<br>23.5<br>22.5    | >>>   |      |      |    |
| Input Clamped Voltage<br>CH0 - CH47                     | -VCLMP(0-47)               |                                                                                                                                   | +25°C<br>+125°C<br>-55°C | -23.0<br>-23.5<br>-22.5 | -18.0<br>-18.0<br>-17.5 | >>>   |      |      |    |
| Switch ON Resistance<br>OUTPUTS                         | RDS(ON)(0-47) <sub>A</sub> | VIN = +15V, VEN = 0.8V, IOUT = -1mA<br><u>2</u> /, <u>3</u> /, <u>5</u> /                                                         |                          | 500                     | 3000                    | Ω     |      |      |    |
| (pins 25, 70 & 68)                                      | RDS(ON)(0-47) <sub>B</sub> | Vin = +5V, Ven = 0.8V, Iout = -1mA<br><u>2</u> /, <u>3</u> /, <u>5</u> /                                                          |                          | 500                     | 3000                    | Ω     |      |      |    |
|                                                         | RDS(ON)(0-47) <sub>C</sub> | Vin = -5V, Ven = 0.8V, Iout = +1mA<br>2/, 3/, 5/                                                                                  |                          | 500                     | 3000                    | Ω     |      |      |    |
| Switch ON Resistance<br>CURRENTS                        | RDS(ON)(0-47) <sub>A</sub> | Vin = +15V, VEN = 0.8V, IOUT = -1mA<br><u>2</u> /, <u>3</u> /, <u>5</u> /                                                         |                          | 500                     | 3000                    | Ω     |      |      |    |
| (pins 26, 67 & 69)                                      | RDS(ON)(0-47) <sub>B</sub> | VIN = +5V, VEN = 0.8V, IOUT = -1mA $\underline{2}$ /, $\underline{3}$ /, $\underline{5}$ /                                        |                          | 500                     | 3000                    | Ω     |      |      |    |
|                                                         | RDS(ON)(0-47) <sub>C</sub> | VIN = -5V, VEN = 0.8V, IOUT = +1mA<br>2/, 3/, 5/                                                                                  |                          | 500                     | 3000                    | Ω     |      |      |    |

#### Notes:

- 1/ Measure inputs sequentially. Ground all unused inputs of the device under test. VA is the applied input voltage to the address lines A(0-3).
- 2/ VIN is the applied input voltage to the input channels CH0-CH47.
- 3/ VEN is the applied input voltage to the enable lines EN (0-15), EN (16-31) and EN (32-47).
- 4/ VOUT is the applied input voltage to the output lines OUTPUT(0-15), OUTPUT(16-31), OUTPUT(32-47), CURRENT(0-15), CURRENT(16-31) and CURRENT(32-47).
- 5/ Negative current is the current flowing out of each of the MUX pins. Positive current is the current flowing into each MUX pin.
- 6/ If not tested, shall be guaranteed to the specified limits.

  7/ These parameters for Tc = -55°C are guaranteed by design, characterization, or correlation to other test parameters but not production tested

## SWITCHING CHARACTERISTICS

(Tc = -55°C to +125°C, +VEE = +15V, -VEE = -15V, VREF = +5.0V -- Unless otherwise specified)

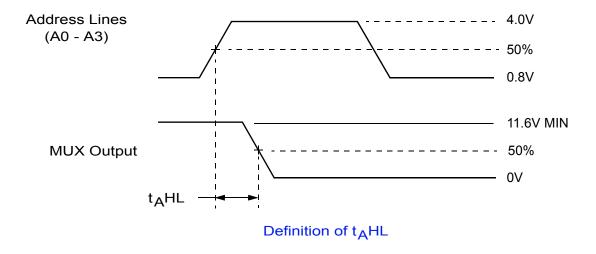
| Parameter          | Symbol              | Conditions                     | Min | Max  | Units |
|--------------------|---------------------|--------------------------------|-----|------|-------|
| Switching Test MUX | t <sub>A</sub> HL   | RL = $10K\Omega$ , CL = $50pF$ | 10  | 1500 | ns    |
|                    | t <sub>A</sub> LH   | RL = $10K\Omega$ , CL = $50pF$ |     |      |       |
|                    |                     | Tc = +25°C, +125°C             | 10  | 2000 | ns    |
|                    |                     | Tc = -55°C                     | 10  | 5000 | ns    |
|                    | t <sub>ON</sub> EN  | RL = $1K\Omega$ , CL = $50pF$  | 10  | 1500 | ns    |
|                    | t <sub>OFF</sub> EN |                                | 10  | 1000 | ns    |

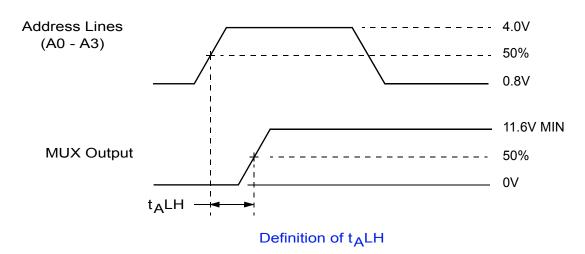
## **TRUTH TABLE (CH0 – CH15)**

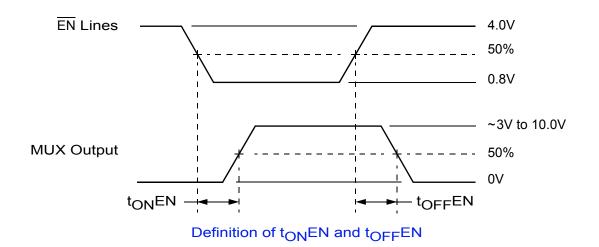
| A3 | A2 | <b>A1</b> | Α0 | EN(0-15) | "ON" CHANNEL 1/ |
|----|----|-----------|----|----------|-----------------|
| Х  | Х  | Х         | Х  | Н        | NONE            |
| L  | L  | L         | L  | L        | CH0             |
| L  | L  | L         | Н  | L        | CH1             |
| L  | L  | Н         | L  | L        | CH2             |
| L  | L  | Н         | Н  | L        | CH3             |
| L  | Н  | L         | L  | L        | CH4             |
| L  | Н  | L         | Н  | L        | CH5             |
| L  | Н  | Н         | L  | L        | CH6             |
| L  | Н  | Н         | Н  | L        | CH7             |
| Н  | L  | L         | L  | L        | CH8             |
| Н  | L  | L         | Н  | L        | CH9             |
| Н  | L  | Н         | L  | L        | CH10            |
| Н  | L  | Н         | Н  | L        | CH11            |
| Н  | Н  | L         | L  | L        | CH12            |
| Н  | Н  | L         | Н  | L        | CH13            |
| Н  | Н  | Н         | L  | L,       | CH14            |
| Н  | Н  | Н         | Н  | L        | CH15            |

<sup>1/</sup> Between CH0-15 and OUTPUT (0-15) and CURRENT (0-15).

## **TRUTH TABLE (CH16 – CH31)**


| <b>A3</b> | <b>A2</b> | <b>A1</b> | <b>A0</b> | EN(16-31) | "ON" CHANNEL 1/ |
|-----------|-----------|-----------|-----------|-----------|-----------------|
| Х         | Χ         | Х         | Х         | Н         | NONE            |
| L         | L         | L         | L         | L         | CH16            |
| L         | L         | L         | Н         | L         | CH17            |
| L         | L         | Н         | ا<br>ا    | L         | CH18            |
| L         | L         | Н         | Н         | L         | CH19            |
| L         | Ι         | L         | L         | L         | CH20            |
| L         | Н         | L         | Н         | L         | CH21            |
| L         | Н         | Н         | L         | L         | CH22            |
| L         | Н         | Н         | Н         | L         | CH23            |
| Н         | L         | L         | L         | L         | CH24            |
| Н         | L         | L         | Н         | L         | CH25            |
| Н         | L         | Н         | L         | L         | CH26            |
| Н         | L         | Н         | Н         | L         | CH27            |
| Н         | Н         | L         | L         | L         | CH28            |
| Н         | Н         | L         | Н         | L         | CH29            |
| Н         | Н         | Н         | L         | L         | CH30            |
| Н         | Н         | Н         | Н         | L         | CH31            |


<sup>1/</sup> Between CH16-31 and OUTPUT (16-31) and CURRENT (16-31).


## TRUTH TABLE (CH32 - CH47)

| <b>A3</b> | <b>A2</b> | <b>A1</b> | <b>A0</b> | EN(32-47) | "ON" CHANNEL 1/ |
|-----------|-----------|-----------|-----------|-----------|-----------------|
| Х         | Х         | Х         | Х         | Н         | NONE            |
| L         | L         | L         | L         | L         | CH32            |
| L         | L         | L         | Н         | L         | CH33            |
| L         | L         | Н         | L         | L         | CH34            |
| L         | L         | Н         | Н         | L         | CH35            |
| L         | Н         | L         | L         | L         | CH36            |
| L         | Н         | L         | Н         | L         | CH37            |
| L         | Н         | Н         | L         | L         | CH38            |
| L         | Ι         | Н         | Ι         | L         | CH39            |
| Н         | L         | L         | L         | L         | CH40            |
| Н         | L         | L         | Н         | L         | CH41            |
| Н         | L         | Н         | L         | L         | CH42            |
| Н         | L         | Н         | Н         | L         | CH43            |
| Н         | Н         | L         | L         | L         | CH44            |
| Н         | Н         | L         | Н         | L         | CH45            |
| Н         | Н         | Н         | L         | L         | CH46            |
| Н         | Н         | Н         | Н         | L         | CH47            |

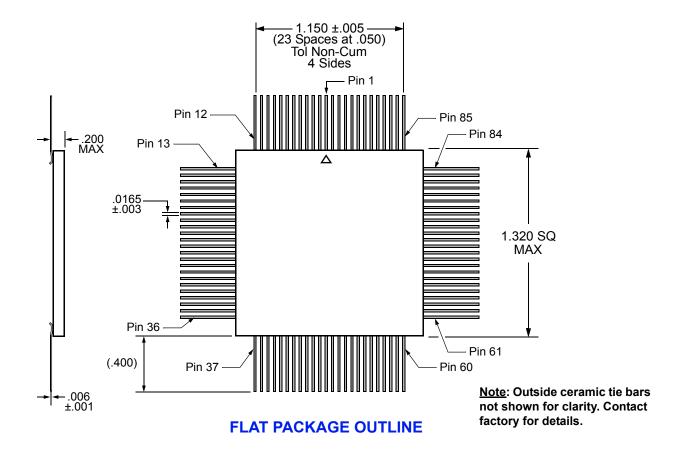
<sup>1/</sup> Between CH32-47 and OUTPUT (32-47) and CURRENT (32-47) SCD8502 Rev H 5/5/14







NOTE: f = 10KHz, Duty cycle = 50%.


## **PIN NUMBERS & FUNCTIONS**

|      | ACT8502 – 96 Leads Ceramic QUAD Flat Pack |      |          |      |                 |  |  |
|------|-------------------------------------------|------|----------|------|-----------------|--|--|
| Pin# | Function                                  | Pin# | Function | Pin# | Function        |  |  |
| 1    | A2                                        | 33   | CH11     | 65   | CH33            |  |  |
| 2    | NC                                        | 34   | NC       | 66   | CH32            |  |  |
| 3    | A3                                        | 35   | CH12     | 67   | Output I(32-47) |  |  |
| 4    | NC                                        | 36   | NC       | 68   | Output V(32-47) |  |  |
| 5    | EN 0-15                                   | 37   | CH13     | 69   | Output I(16-31) |  |  |
| 6    | NC                                        | 38   | NC       | 70   | Output V(16-31) |  |  |
| 7    | CH0                                       | 39   | CH14     | 71   | GND             |  |  |
| 8    | NC                                        | 40   | NC       | 72   | GND             |  |  |
| 9    | CH1                                       | 41   | CH15     | 73   | CH31            |  |  |
| 10   | NC                                        | 42   | NC       | 74   | CH30            |  |  |
| 11   | CH2                                       | 43   | NC       | 75   | CH29            |  |  |
| 12   | NC                                        | 44   | +VEE     | 76   | CH28            |  |  |
| 13   | CH3                                       | 45   | NC       | 77   | CH27            |  |  |
| 14   | NC                                        | 46   | -VEE     | 78   | CH26            |  |  |
| 15   | CH4                                       | 47   | NC       | 79   | CH25            |  |  |
| 16   | NC                                        | 48   | VREF     | 80   | CH24            |  |  |
| 17   | CH5                                       | 49   | NC       | 81   | CH23            |  |  |
| 18   | NC                                        | 50   | CASE GND | 82   | CH22            |  |  |
| 19   | CH6                                       | 51   | CH47     | 83   | CH21            |  |  |
| 20   | NC                                        | 52   | CH46     | 84   | CH20            |  |  |
| 21   | CH7                                       | 53   | CH45     | 85   | CH19            |  |  |
| 22   | NC                                        | 54   | CH44     | 86   | CH18            |  |  |
| 23   | GND                                       | 55   | CH43     | 87   | CH17            |  |  |
| 24   | GND                                       | 56   | CH42     | 88   | CH16            |  |  |
| 25   | Output V(0-15)                            | 57   | CH41     | 89   | GND             |  |  |
| 26   | Output I(0-15)                            | 58   | CH40     | 90   | GND             |  |  |
| 27   | CH8                                       | 59   | CH39     | 91   | EN 32-47        |  |  |
| 28   | NC                                        | 60   | CH38     | 92   | EN 16-31        |  |  |
| 29   | CH9                                       | 61   | CH37     | 93   | A0              |  |  |
| 30   | NC                                        | 62   | CH36     | 94   | NC              |  |  |
| 31   | CH10                                      | 63   | CH35     | 95   | A1              |  |  |
| 32   | NC                                        | 64   | CH34     | 96   | NC              |  |  |

NOTE: It is recommended that all "NC" or "no connect pin" be grounded. This eliminates or minimizes any ESD or static buildup.

#### ORDERING INFORMATION

| Model Number   | DLA SMD #                                        | Screening                                                                        | Package           |
|----------------|--------------------------------------------------|----------------------------------------------------------------------------------|-------------------|
| ACT8502-7      | -                                                | Commercial Flow, +25°C testing only                                              |                   |
| ACT8502-S      | 502-S 5962-0323401KXC In accordance with DLA SMD |                                                                                  | QUAD<br>Flat Pack |
| ACT8502-901-1S | 5962F0323401KXC                                  | In accordance with DLA Certified RHA Program Plan to RHA Level "F", 300krads(Si) |                   |



#### EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Government is required prior to the export of this product from the United States.

www.aeroflex.com/HiRel info-ams@aeroflex.com

#### Datasheet Definitions:

Advanced Product in Development
Preliminary Shipping Non-Flight Prototypes
Datasheet Shipping QML and Reduced HiRel

Aeroflex Plainview, Inc. reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.



Our passion for performance is defined by three attributes.







Solution-Minded

Performance-Driven

Customer-Focused