24 bit, 96 kHz Stereo A/D Converter

Features

- 24-bit I2S audio data format output
- Single power supply 3.3 V for analog and digital
- Single-ended analog input with internal anti-alias filter
- SNR: 98 dB (A-weighted)DR: 99 dB (A-weighted)
- THD: -91 dB
- Master/slave mode selection
- Multiple sampling frequencies (F_S): 8~96 kHz
 System clock: 128 F_S, 256 F_S, 384 F_S, 512 F_S
- Power down function
- Internal PLL
- 16-pin TSSOP package

Applications

- DVD recorders
- CD recorders
- MD players
- HDD players
- A/V receivers

- Personal Video recorders
- Musical Instrument
- Automotive audio applications

Description

The AD12250A converts stereo single-ended analog input signals into 24-bit \mbox{I}^2S digital audio data through on-chip anti-aliasing filter, multi-bit $\Sigma\text{-}\Delta$ modulator, decimation filter and high-pass filter which removes dc offsets. The AD12250A supports sampling frequencies from 8 kHz to 96 kHz and offers 128 F_S , 256 F_S , 384 F_S or 512 F_S system clock operation modes depending on sampling frequency and master/slave mode selection. The AD12250A is suitable for digital audio media applications which require high performance A/D conversion and low system cost.

Ordering Information

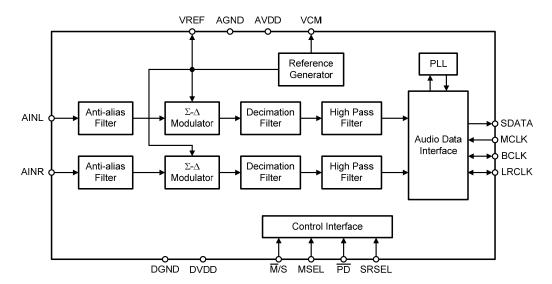
Product Number	Package	Packing	Comments
AD12250A-SG	16L TSSOP 4.4mm	Tube	Green
AD12250A-SG/TR	16L TSSOP 4.4mm	2.5k Tape & Reel	Green

AD12250A

Marking Information

Line 1: LOGO

Line 2: Product No


Line 3: Tracking Code

Line 4: Date Code

ESMT
AD12250A
Tracking Code
Date Code


Functional Block Diagram

Publication Date: Mar. 2009 Revision: 1.3 2/15

Pin Assignment

Pin Description

Pin	Name	Туре	Description	Characteristics
1	SRSEL	I	48kHz/96kHz sample rate selection	Schmitt trigger input buffer
2	MCLK	1	Master clock input	Schmitt trigger input buffer
3	MSEL	I	MCLK divided-by-2 selection in master mode	Schmitt trigger input buffer
4	SDATA	0	Serial audio data output	
5	DGND	Р	Digital ground	
6	DVDD	Р	Digital supply	
7	BCLK	I/O	Bit clock input/output (64Fs)	Schmitt trigger input buffer
8	LRCLK	I/O	Left/Right clock input/output (Fs)	Schmitt trigger input buffer
9	PD	1	Power down, low active	Schmitt trigger input buffer
10	AINL	1	Left channel analog input	
11	VCM	0	Common-mode voltage	
12	AINR	1	Right channel analog input	
13	AVDD	Р	Analog supply	
14	AGND	Р	Analog ground	
15	VREF	0	Positive reference voltage	
16	M/S	Ι	Master/Slave mode selection	Schmitt trigger input buffer

Package Options

Package Type	Part Number	Thermal Information
16L TSSOP 4.4mm	AD12250A-SG	$\theta_{JA}\cong 60~^{\circ}\text{C/W}$ (Condition: still air)
16L TSSOP 4.4mm	AD12250A-SG/TR	$\theta_{JA}\cong 60~^{\circ}\text{C/W}$ (Condition: still air)

Publication Date: Mar. 2009 Revision: 1.3 3/15

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	0	3.6	V
AVDD	Supply for Analog Circuit	0	3.6	V
	Analog Input Voltage	AGND	AVDD	V
	Digital Input Voltage	DGND	DVDD	V
T _{stg}	Storage Temperature	-65	150	°C
Ta	Ambient Operating Temperature	-40	85	°C

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
DVDD	Supply for Digital Circuit	3.0	3.3	3.6	V
AVDD	Supply for Analog Circuit	3.0	3.3	3.6	V
Ta	Ambient Operating Temperature	0		70	°C

Digital Characteristics

Symbol	Parameter	Min	Тур	Max	Units
V_{IH}	High-Level Input Voltage	2.0			V
V_{IL}	Low-Level Input Voltage			0.8	V
V_{OH}	High-Level Output Voltage	2.4			V
V _{OL}	Low-Level Output Voltage			0.4	V
Cı	Input Capacitance		6.4		pF

Power Supply Characteristics

● Condition: T_A = 25 °C, F_S = 48 kHz, MCLK = 256 F_S, slave mode, full-scale 1 kHz input signal

Symbol	Parameter	Condition	Min	Тур	Max	Units
AVDD	Supply for Analog Circuit		3.0	3.3	3.6	V
DVDD	Supply for Digital Circuit		3.0	3.3	3.6	V
I _A	Analog Power Supply Current	AVDD = 3.3 V		18		mA
I _D	Digital Power Supply Current	DVDD = 3.3 V		12		mA
Pc	Power Consumption	Normal Operation, AVDD, DVDD = 3.3 V		99		mW
		Power Down		<0.5		μW
PSRR	Power Supply Rejection Ratio (Note1)	1 kHz signal at AVDD		56		dB

Note1: PSRR = 56dB for $1\mu F$ capacitor on VCM pin and 36dB for $0.1\mu F$ capacitor on VCM pin.

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2009 Revision: 1.3 4/15

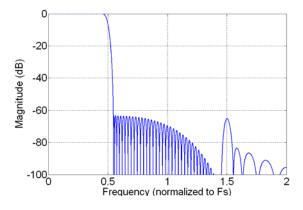
Analog Characteristics and Specifications

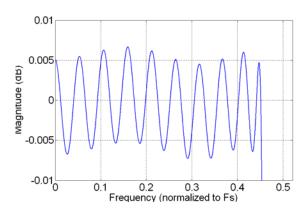
Condition: T_A = 25 °C, AVDD = DVDD = 3.3 V, F_S = 48 kHz, MCLK = 256 F_S, master mode, 1 kHz input signal, without using external reference voltage (unless otherwise stated)

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
	Full Scale Input Range				0.85·AVDD		Vpp
	Input Common Mode Voltage				1/2·AVDD		V
	Positive Reference Voltage				9/14·AVDD		V
	Input Resistance				107		kΩ
THD	Total Harmonic Distortion	F _S = 48 kHz	-1 dB		-84 (-91*)		dB
טווו	Total Harmonic Distortion	F _S = 96 kHz	-1 dB		-84 (-91*)		dB
SNR	Signal to Noise Ratio	F _S = 48 kHz	-1 dB		95 (98*)		dB
SINK	(A-weighted)	F _S = 96 kHz	-1 dB		94 (97*)		dB
DR	Dynamic Range (A-weighted)	F _S = 48 kHz	-60 dB		98 (99*)		dB
DK	Dynamic Range (A-weighted)	F _S = 96 kHz	-60 dB		97 (98*)		dB
	Channel Separation		0 dB		-90		dB
	Interchannel Gain Mismatch				0.1		dB

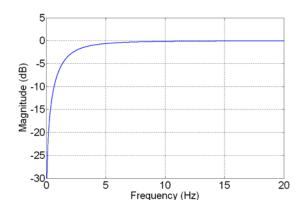
^{*} Performance can be further improved by using clean external reference voltage as shown in circuit connection diagram.

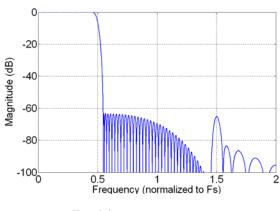
Digital Filter Characteristics and Specifications

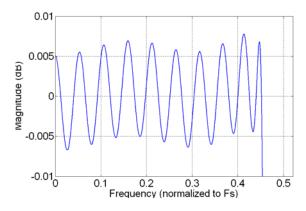

Parameter	Min	Тур	Max	Units			
SRSEL = $0 (F_S = 48 \text{ kHz})$							
Passband	0		0.4535	Fs			
Passband Ripple			±0.008	dB			
Stopband	0.5465			Fs			
Stopband Attenuation	63.24			dB			
Group Delay		21/F _S		S			
SRSEL = 1	1 (F _S = 96 kHz))					
Passband	0		0.4535	Fs			
Passband Ripple			±0.008	dB			
Stopband	0.5465			Fs			
Stopband Attenuation	63.24			dB			
Group Delay		21/F _S		S			
High pass fi	Iter (SRSEL =	0)					
Cutoff frequency (-3 dB)		2		Hz			
High pass fi	Iter (SRSEL =	1)					
Cutoff frequency (-3 dB)		4		Hz			


Publication Date: Mar. 2009 Revision: 1.3 5/15

Digital Filter Response

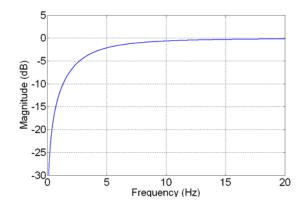

• Frequency response when SRSEL = 0 (F_S = 48 kHz)


Total frequency response


Inband ripple

Highpass filter response (F_S = 48 kHz)

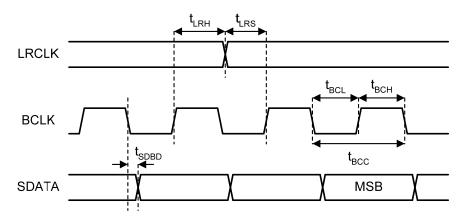
• Frequency response when SRSEL = 1 (F_S = 96 kHz)



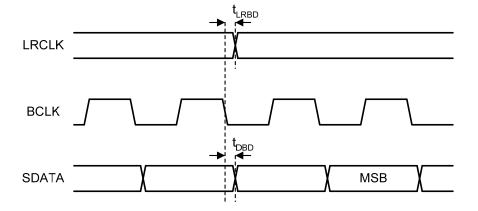
Total frequency response

Inband ripple

Publication Date: Mar. 2009 Revision: 1.3 6/15


Highpass filter response (F_S = 96 kHz)

Interface Configuration

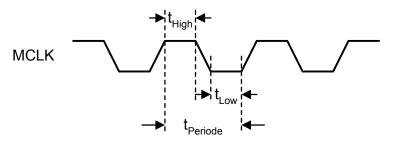

I²S

AD12250A will output serial audio data in I²S format.

1. Slave mode

2. Master mode

Publication Date: Mar. 2009 Revision: 1.3 7/15



Symbol	l Parameter Min		Тур	Max	Units	
	Slave Mode					
t_{LRH}	LRCLK Hold Time to BCLK Rising Edge	10			ns	
t_{LRS}	LRCLK Set-Up Time to BCLK Rising Edge	10			ns	
t _{BCL}	BCLK Pulse Width Low	20			ns	
t _{BCH}	BCLK Pulse Width High	20			ns	
t_{BCC}	BCLK Period	40			ns	
t _{SDBD}	SDATA Delay from BCLK Falling Edge	0		15	ns	
	Master Mode					
t _{LRBD}	LRCLK Delay from BCLK Falling Edge	0		10	ns	
t _{DBD}	SDATA Delay from BCLK Falling Edge	0		10	ns	

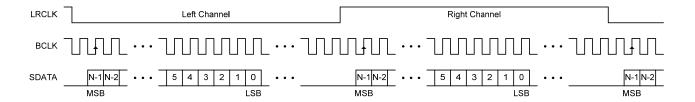
System Clock Timing

AD12250A has only one central clock (MCLK) to drive the sigma delta circuit and digital filter. The following table contains supported clock frequencies. MCLK timing requirements are shown in the following figure.

LRCLK	MCLK (MHz)			
(kHz)	128F _S	256F _S	384F _S	512F _S
8	1.024	2.048	3.072	4.096
32	4.096	8.192	12.288	16.384
44.1	5.6448	11.2896	16.9340	22.5792
48	6.144	12.288	18.432	24.576
64	8.192	16.384	24.576	_
88.2	11.2896	22.5792	33.8688	_
96	12.288	24.576	36.864	_

 $t_{\text{High}} \ge 13.56 \text{ns}, \ t_{\text{Low}} \ge 13.56 \text{ns} \ \text{and} \ t_{\text{Periode}} \ge 27.13 \text{ns}$ Typical MCLK duty cycle = 50%

Publication Date: Mar. 2009 Revision: 1.3 8/15



Operation Descriptions

AD12250A uses multi-bit sigma-delta modulators and digital decimation filters to covert analog audio signal to high precision digital form.

Serial data interface

In the master mode, AD12250A outputs data with I²S format through 3 pins, LRCLK, BCLK and SDATA. There are 64 BCLK cycles in each LRCLK cycle. 24-bit I²S serial data are outputted through the SDATA. LRCLK: Left-right clock which indicates which-channel output is currently on SDATA pin. (Bi-directional) BCLK: Bit sampling clock which indicates the individual serial bits on SDATA pin. (Bi-directional) SDATA: Serial audio data output which is 2's complement and MSB first.

In the slave mode, both BCLK and LRCLK are input pins. AD12250A can support up to 64 BCLK clock cycles in one LRCLK clock cycles in one LRCLK clock cycles in one LRCLK clock cycle. AD12250A will output up to 24 bits I²S serial audio output data to SDATA pin.

High pass filter

AD12250A has digital high pass filters which will remove the DC component in input audio signals.

Power down mode

AD12250A will enter power down mode when \overline{PD} pin is pulled low. In the power down mode, clock will be stopped from feeding into digital circuits and analog circuits will be turned off. After the power down mode is de-asserted, SDATA will be hold to zero in the next 400 ms (for F_S = 48 kHz & 96 kHz) then a fade-in procedure will be executed. After the fade-in procedure is finished, AD12250A will enter normal operation.

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2009 Revision: 1.3 9/15

Master mode

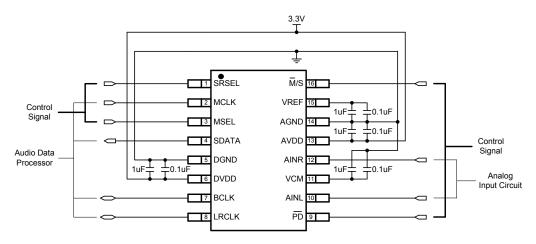
When $\overline{\text{M/S}}$ pin is pulled low, AD12250A will enter the master mode. LRCLK and BCLK will become output pins. BCLK frequency will be fixed at 64 F_S. SRSEL and MSEL will determine the ratio of LRCLK and MCLK frequency (see the following table). AD12250A has an internal PLL which will transfer input master clock frequency to 256 F_S for internal circuits.

LRCLK (F _s)	MCLK		
LROLK (FS)	MSEL = 1	MSEL = 0	
SRSEL=0	2565	510E	
$(8kHz \le F_S \le 48KHz)$	256F _S	512F _S	
SRSEL=1	400E	2565	
$(48kHz\!<\!F_S\!\leq\!96KHz)$	128F _S	256F _S	

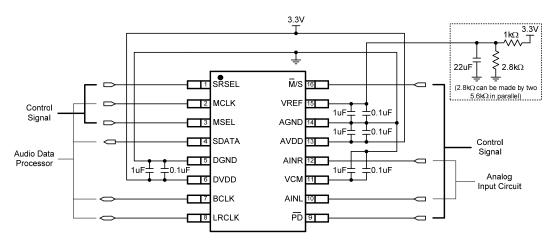
Slave Mode

When $\overline{\text{M/S}}$ pin is pulled high, AD12250A will enter the slave mode. LRCLK and BCLK will become input pins. Supported MCLK & LRCLK ratios are listed below. AD12250A will automatically detect the cycle number of MCLK within a LRCLK period in slave mode and then transfer input master clock frequencies in the following table to 256F_S by the internal PLL. When clock error is greater than 8 MCLK cycles in the following table, AD12250A will force the output to be zero till the clock error is within 8 MCLK cycles. It is suggested to use the exact MCLK/LRCLK ratio in the following table to get maximum performance.

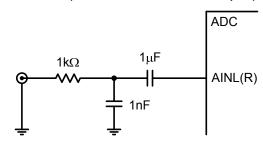
LRCLK (F _S)	MCLK		
SRSEL=0	2565 2045 5125		
(8kHz≦F _S ≦48KHz)	256F _S , 384F _S , 512F _S		
SRSEL=1	1005 0565 2045		
$(48kHz\!<\!F_S\!\leq\!96KHz)$	128F _S , 256F _S , 384F _S		

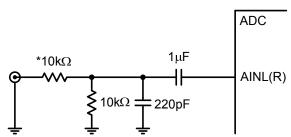

Application Circuit Example

- Circuit connection diagram
 - 1. Without external reference voltage

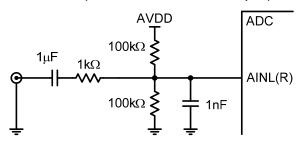

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2009 Revision: 1.3 10/15

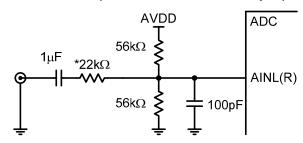



2. With external reference voltage

- Analog Input circuit example
 - 1. AINL(R) dc bias provided by ADC (Note2)
 - a. Without signal attenuation (for 1 Vrms full scale input)



b. With 6dB signal attenuation (for 2 Vrms full scale input)

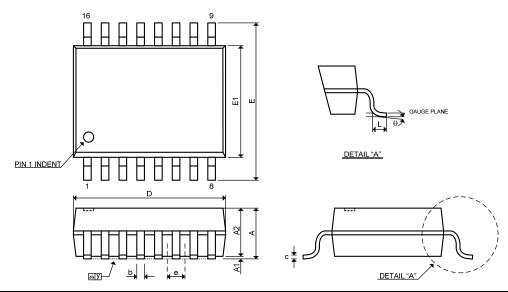


- *Other gain setting can be made by adjusting this resistance (Note3)
- 2. AINL(R) dc bias provided by external potential divider
 - a. Without signal attenuation (for 1 Vrms full scale input)

b. With 6dB signal attenuation (for 2 Vrms full scale input)

*Other gain setting can be made by adjusting this resistance (Note4)

Note2: Typically, AINL(R) dc bias has about 70 mV level up shift from AVDD/2 at AVDD = 3.3 V.


Note3: If the resistance becomes α Ω , gain $\cong \frac{10k}{\alpha+10k}$ and low-pass 3-dB frequency $\cong \frac{1}{2\cdot\pi(\alpha||10k)\cdot220p}$ Hz.

Note4: If the resistance becomes α Ω , gain $\cong \frac{22k}{\alpha+22k}$ and low-pass 3-dB frequency $\cong \frac{1}{2 \cdot \pi \cdot (\alpha||22k) \cdot 100p}$ Hz.

Package Dimensions - AD12250A

• 16L TSSOP (4.4 mm) Package

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
STIVIDULS	MIN	NOM	MAX	MIN	NOM	MAX
Α	_	_	1.20	_	-	0.0472
A1	0.00	_	0.15	0.000	_	0.0059
A2	0.80	1.00	1.05	0.0315	0.0394	0.0413
b	0.19	_	0.30	0.0075	_	0.0118
D	4.90	5.00	5.10	0.1929	0.1969	0.2008
E	6.40 BSC			0.2520 BSC		
E1	4.30	4.40	4.50	0.1693	0.1732	0.1772
е	0.65 BSC			0.0256 BSC		
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
у	0.05			0.0020		
θ	0°	_	8°	0°	_	8°

Publication Date: Mar. 2009 Revision: 1.3 13/15

Revision History

Revision	Date	Description	
1.0	2005.11.03	Original	
1.1	2007.04.27	Modify characteristics pin1-3 · 7-9 · 16 to Schmitt trigger TTL input buffer	
1.2	2008.11.27	 Describe in detail about the support of Fs Document no. rename 	
1.3	2009.03.24	Add AD12250A-SG/TR Modify ordering information Comments from Pb-free to Green Add marking	

Publication Date: Mar. 2009 Revision: 1.3 14/15 **ESMT** AD12250A

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2009 Revision: 1.3 15/15