AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

AD5026 is a 16-channel, constant current sink LED driver. It contains High-precision current-drive circuit, 16-bit shift register, Latch and temperature compensation circuit.

AD5026 provides users with great flexibility and device performance in their system design for LED display applications, e.g. LED panels.

AD5026 have the ability of the anti-static technology and anti-jamming technology. It can make chip data transmission more stable and work more reliable. Chip antistatic ability up to more than 4KV.

The AD5026 is available in SSOP24(0.635/1.0) & QFN24 (4X4) Packages.

APPLICATION

- Outdoor LED Video Display
- Indoor LED Video Display
- Message Signs

FEATURES

- Output constant current: 2~90mA
- V_{DS} ≧ 300mV (Iout=20mA)
- Red light min input voltage: 2.3~2.5V
- Blue & Green light min input voltage: 3.6~3.8V
- **Constant Current Accuracy:** Channel-to-Channel<±2% Device-to-Device<±3%
- 25MHz clock frequency
- Operating voltage range: 3.3V~5V
- Anti-static damage ability : > 4KV
- Operating Temperature Range: -40°C ~ +85°C
- Available in SSOP24 (0.635/1.0) & QFN24 (4X4) Packages.

ORDERING INFORMATION

PIN DESCTIPTION

ABSOLUTE MAXIMUM RATINGS

VDD, Supply Voltage	7V
V _{OUT} , Output Voltage	-0.5~10V
louт, Output Current	90mA
V _{IN} , Input Voltage	-0.4~V _{DD} +0.4V
F _{CLK} , Clock Frequency	25MHz
I _{GND} , GND Current	1500mA
T _{STG} , Storage Temperature Range	-65~+150°C
T _{OPR} , Operating Temperature Range	-40~+85°C
V _{ESD} , ESD Voltage	4000V

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 V_{DD} =5V, T_A=25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
High-level output current	Іон		-	-	1	uA	
Low-level output Voltage	Vol	I _{OL} = 1mA	-	-	0.3	V	
High-level output Voltage	Vон	I _{он} = -1mA	3	-	-	V	
	I _{OL1}	Vo≥0.4V, RSET = 490Ω	-	36	-		
Low-level Output Current	Iol2	Vo ≥0.32V, RSET = 245Ω	-	72	-	mA	
		V _{DS} =800mV,	- ±2				
Current Skew	B2B	RSET = 490Ω				%	
		V _{DS} = 300mV,	_	±3			
		RSET = 490Ω					
Pull-up Resistor	RIN(up)	EN Pin	-	250	-	KΩ	
Pull-down Resistor	RIN(down)	LATCH PIn	-	250	-	KΩ	
		RSET=OPEN		1.0		mA	
		OUT 0 to 15 = OFF	-	1.2	-		
		RSET = 490Ω					
Supply Current ("OFF")		OUT 0 to 15 = OFF		8	-	mA	
		RSET = 245Ω		45			
		OUT 0 to 15 = OFF	-	15	-	mA	
		RSET = 490Ω					
		OUT 0 to 15 = ON	-	8	-	mA	
Supply Current ("ON")		RSET = 245Ω					
		OUT 0 to 15 = ON	-	15	-	mA	

AC CHARACTERISTICS

 V_{DD} =5V, T_A=25°C, unless otherwise specified.

Paramete	Parameter Symbol Conditions		Min	Тур	Max	Unit	
Supply Volta	Supply Voltage			3.3	4.2	5.0	V
Output Volta	age	Vo		-	-	10	V
		lo		2	-	90	mA
Output Curr	ent	Іон	Sout=VDD	-	-	-1	
		lol	Sout=0	-	-	1	mA
Input Voltage ("H	bltage ("H" Level) V _{IH}		0.7V _{DD}	-	V _{DD} +0.3	V	
Input Voltage ("L	Input Voltage ("L" Level) VIL			-0.3	-	0.3V _{DD}	V
	LAT	tw(L)		20	-	-	
Pulse Width	CLK	tw(CLK)		20	-	-	ns
	ENB	tw(ENB)		50	-	-	
Setup Time for	Setup Time for DATA		V _{DD} =3.3 to 5V	5	-	-	ns
Hold Time for DATA Setup Time for LAT Hold Time for LAT		th(D)		10	-	-	ns
		tsu(L)		5	-	-	ns
		th(L)		5	-	-	ns
Clock Freque	ency	Fclk	Cascade Operation	-	-	25	MHz

AC CHARACTERISTICS TEST CIRCUIT

DETAILED INFORMATION

Switching Characteristics

Parameter		Symbol	Conditions	Min	Тур.	Max	Unit
Drene notion Delay Time	t _{PLH1}	SCLK to OUTn			67		ns
Propagation Delay Time ("L" to "H")	tPLH2	LAT to OUTn			64		ns
	tрьнз	ENB to OUTn	V _{DD} =5V		64		ns
Delay Time	t _{PLH}	SCLK to SOUT			5		ns
Draw a nation Dalay Time	t _{PLH1}	SCLK to OUTn	V⊫GND		5		ns
Propagation Delay Time ("H" to "L")	tPLH2	LAT to OUTn			4		ns
	t _{PLH3}	ENB to OUTn	10=40 mA		4		ns
Delay Time	tрLн	SCLK to SOUT			5		ns
Output Rise Time of Vout	t _{or}		RL=75Ω		84		ns
Output Fall Time of V _{OUT}	t _{of}				3		ns

Timing Wave Form

Pin Equivalent Input and Output Schematic Diagrams

Blank Input

LAT Input

SOUT Output

SCLK, SIN Input

Description:

- 1. When the LAT is "low", the latch circuit latches the data.
- 2. When the LAT is "high", the latch circuit does not latch data, the data transmitted directly from the input to the output.
- 3. When BLANK is "low", the output of the data to respond to high-low.
- 4. When BLANK is "high", the output terminal closed.

Timing Diagram

Truth Table

SCLK	LAT	BLANK	SIN	OUT0OUT7OUT15	SOUT
	Н	L	DN	D _N D _{N-7} D _{N-15}	D _{N-15}
	L	L	D _{N+1}	No Change	D _{N-14}
	Н	L	D _{N+2}	D _N D _{N-5} D _{N-13}	D _{N-13}
_	Х	L	D _{N+3}		D _{N-13}
_	Х	Н	D _{N+3}	Off	D _{N-13}

Note: When Dn = "H", OUT0 to OUT15 = ON; When Dn = "L", OUT0 to OUT15 = OFF

Constant Current

The AD5026 uses a high-precision constant current driver circuit and temperature compensation circuitry. To ensure the chip at different temperature conditions, different working voltage and the use of harsh environment, the bit output current I_{OUT} constant good results.

Vout vs. lout

Figure 1 Constant-current characteristic curves

From the figure we can see, when to meet the constant-current conditions, AD5026 constant-current driver output stage voltage drop is very low. For example, when the output drive current I_{OUT} = 10 mA, V_{OUT} is about 30 mV. The unique ultra-low pressure drop characteristics, allowing AD5026 work below 3.3V

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, RSET. The relationship between I_{OUT} and RSET is shown in the following:

When the AD5026 for the LED Marquee, the bit output current I_{OUT} is the LED operating current I_{LED} Marquee operating current I_{LED} is the type of LED Marquee determined.

Common AD5026 bit output current IOUT and external resistor RSET corresponding data are as follows:

louτ(mA)	30	25	20	15	10	5	3
RSET(Ω)	600	720	900	1200	1800	3600	6000

AD5026 Resistance of the External Resistor, RSET, in $\,\Omega$

Package Power Dissipation (P_D)

PD with the temperature rise rate of rise as below:

	TA < +25℃	TA < +70°C	TA < +85°C
SSOP24-0.635	1667mW	1067mW	867mW
SSOP24-1.0	2016mW	1290mW	1048mW
QFN24	2907mW	1860mW	1512mW

The package thermal resistance is calculated by JESD51-5

Calculation of thermal resistance:

SSOP24-0.635

$$Rth (j-a) = Rth (j-c) + Rth (c-a)$$
$$= 55^{\circ}C/W + 20^{\circ}C/W$$
$$= 75 \quad ^{\circ}C/W$$

Note: The thermal resistance of the package Rth (j-a) consists of two parts, Rth (j-c) is PN junction to the thermal resistance of the shell and tube. Rth(c-a) is shell and tube to the outdoor air thermal resistance.

EX: When $V_{DD}=5V$, $I_{OUT}=20mA$, $P_D = 5^* 9 = 45mW$

$$P_{\text{DMAX}} = \frac{Tj - Ta}{Rthj - a} = \frac{150 - 25}{75} = 1.667W$$
$$\overline{Io} = \frac{Pd \max - Pd}{Vo*16} = \frac{1.622}{16*Vo} \approx \frac{0.1}{Vo}$$

If blue light voltage is 3V, V_0 is about 2V, $\overline{I_0}$ is 50mA.

 V_0 and $\overline{I_0}$ curve

PACKAGE INFORMATION

Dimension in SSOP24 – Type A (0.635) Package (Unit: mm)

Symbol	Min	Nom	Max		
А	-	-	1.77		
A1	0.08	0.18	0.28		
A2	1.20	1.40	1.60		
A3	0.55	0.65	0.75		
b	0.23	-	0.33		
b1	0.22	0.25	0.28		
С	0.21	-	0.26		
c1	0.19	0.20	0.21		
D	8.45	8.65	8.85		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
е	0.635BSC				
L	0.50	0.65	0.80		
L1	1.05BSC				
θ	0	-	8°		

SECTION B-B

Dimension in SSOP24 – Type B (1.0) Package (Unit: mm)

Symbol	Min	Nom	Max	
А	-	-	1.90	
A1	0.05	-	0.15	
A2	1.40	1.50	1.60	
A3	0.47	0.67	0.87	
b	0.39	-	0.47	
b1	0.38	0.40	0.43	
С	0.15	-	0.20	
c1	0.14	0.15	0.16	
D	12.80	13.00	13.2	
E	7.70	7.90	8.10	
E1	5.80	6.00	6.20	
е		1.00BSC		
L	0.25	0.45	0.65	
L1	0.985BSC			
θ	0	-	8°	
L/F (mil)		160*170		

Dimension in QFN24 (4x4) Package (Unit: mm)

SIDE	VIEW
SIDE	

Symbol	Min	Nom	Max			
А	0.70	0.75	0.80			
A1	0.00	-	0.05			
A3	0.2REF					
D	3.95	4.00	4.05			
E	3.95	4.00	4.05			
b	0.20	0.25	0.30			
L	0.35	0.40	0.45			
D2	2.65	2.70	2.75			
E2	2.65	2.70	2.75			
е	0.50 BSC					

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.