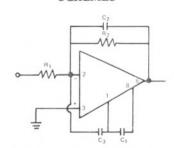
HIGH SPEED FET-INPUT OP AMPS AD513, AD516

GENERAL DESCRIPTION


The AD513 and AD516 high speed FET op amps combine high DC accuracy with excellent dynamic response by utilizing the flexibility of external compensation. With simple lag compensation, the AD513 and AD516 achieve slew rate of 20V/µsec, and gain bandwidth of 1MHz at unity gain and 10MHz for gains greater than 100. With feedforward compensation a slew rate of 50V/µsec and gain bandwidth of 30MHz can be achieved. High accuracy DC specifications include max bias current as low as 20pA, a minimum gain of 50,000, and CMRR of 80dB.

The AD513 is suggested for all general purpose FET input amplifier requirements where low cost and frequency response flexibility are of prime importance. The AD516, with specifications otherwise similar to the AD513, offers significant improvement in offset voltage by supplementing the AD513 configuration with internal laser trimming of thin film resistors to provide wpical offset voltages below 1mV.

The devices are also fully short circuit protected and can be externally offset voltage nulled. All the circuits are supplied in the TO 99 package in the same pin contiguration as the AD101A and AD108/108A. The AD513 (AD516) and AD513 K/AD516K are specified for (to +70 °C temperature range operation; the AD513S/AD516S for operation from -55 °C to +125 °C.

PIN CONFIGURATION Top View

TYPICAL COMPENSATING SCHEMES

TO-99

Offset Nulling Scheme

Slew Rate (V/µs)		50	20	30	50	6	15
BW (kHz)	1000	1000	500	1000	1000	100	300
C ₂ (pF)	0	150	0	0	150	0	0
C2 (pF)	0	12	0	12	8	0	39
C, (pF)	30	1	8	1	0	1	0
$R_2(\Omega)$	10k	10k	100k	10k	10k	100k	10k
$R_{i}(\Omega)$	10k	10k	10k	1k	1k	1k	100
Gain (Inv)	1.	1	10	10	10	100	100

ELECTRICAL SPECIFICATIONS (Parameter	AD5131/AD5161	AD513K/AD516K	ess otherwise specified	
	1105153,1105103	1100011011		
Open Loop Gain (Note 1)		\sim 11	_ //	'
$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	20,000 min	50,000 min	50,000 min	
$T_A = min \text{ to } max$	15,000 min	40,000 min	40,000 min	
Output Characteristics		,	\rightarrow	11 -
Voltage at $R_L = 2k\Omega$, $T_A = min$ to max	±10V min		. \cup	1 L
at $R_L = 10k\Omega$, $T_A = min to max$	±12V min			
Load Capacitance, Unity Gain (Note 2)	1000pF			
Short Circuit Current	25mA			_
Frequency Response	221111			
Unity Gain, Small Signal (Feedforward)	1MHz			
Slew Rate, Unity Gain (Feedforward)	50V/μsec			
Input Offset Voltage (Note 3)		20mV may/1 5mV may	x 20mV max/1.5mV max	
vs Temperature, T _A = min to max	75μV/°C max	25μV/°C max	50μV/°C max	
vs Supply, T _A = min to max	300μV/V max	200µV/V max	200µV/V max	
Input Bias Current	Joop 111 max	200pt/ Villan	200m TT max	
Either Input (Note 4)	20-4	20-1	20-1	
	30pA max	20pA max	20pA max	
Input Impedance				
Differential	10 ¹¹ Ω 2pF			
 Common Mode	10 ¹¹ Ω 2pF			
Input Noise				
Voltage, 0.1Hz to 10Hz	15μV (p-p)		•	
5Hz to 50kHz	5μV (rms)	•	•	
f = 1kHz (spot noise)	25nV/√Hz		•	
Input Voltage Range				
Differential	±2V _S	•	•	
Common Mode, $T_A = \min to \max$	±10V min	•	•	
 Common Mode Rejection, V _{in} = ±10V	70dB min		•	
Power Supply				
Rated Performance	±15V	•	•	
Operating	±(5 to 18)V	•	•	
Quiescent Current	7mA max	•	•	
Temperature				
Operating, Rated Performance	0 to +70°C	•	-55°C to +125°C	
Storage	-65°C to +150°C	•	•	
Price				
(1-24)	\$11.00/\$13.00	\$13.50/\$15.50	\$21.00/\$26.50	
(25-99)	\$9.00/\$11.00	\$10.80/\$12.80	\$16.80/\$21.80	
(100-999)	\$7.50/\$9.50	\$9.00/\$11.00	\$14.00/\$17.60	

NOTES

- 1. Open Loop Gain is specified with Vos both nulled and unnulled.
- *Specifications same as for AD513J.
- 2. A conservative design would not exceed 500pF of load capacitance.
- 3. Input Offset Voltage specifications are guaranteed after 5 minutes of operation at TA = +25°C.
- 4. Bias Current specifications are guaranteed after 5 minutes of operation at T_A = +25°C. For