

High Performance Driver/Comparator, Active Load on a Single Chip

AD53509

FEATURES

250 MHz operation Driver/comparator and active load included **On-chip Schottky diode bridge** 52-lead LQFP_EP package

APPLICATIONS

Automatic test equipment (ATE) Semiconductor test systems **Board test systems** Instrumentation and characterization equipment

GENERAL DESCRIPTION

The AD53509 is a single chip that performs the pin electronics functions of driver, comparator, and active load in ATE VLSI and memory testers. In addition, a Schottky diode bridge for the active load and a VCOM buffer are included internally.

The driver is a proprietary design that features three active states: data high mode, data low mode, and term mode as well as an inhibit state. The output voltage range is -2 V to +7 V to accommodate a wide variety of test devices. The output leakage is typically <250 nA over the signal range.

The dual comparator, with an input range equal to the driver output range, features built-in latches and ECL-compatible outputs. The outputs are capable of driving 50 Ω signal lines terminated to -2 V. Signal tracking capability is >5 V/ns.

The active load can be set up to 40 mA load current with less than a 10 μ A linearity error through the set range. I_{OH}, I_{OL}, and the buffered VCOM are independently adjustable. On-board Schottky diodes provide high speed switching and low capacitance.

Also included on the chip is an on-board temperature sensor whose purpose is to give an indication of the surface temperature of the DCL. This information can be used to measure θ_{JC} and θ_{JA} or flag an alarm if proper cooling is lost. Output from the sensor is a current sink that is proportional to absolute temperature. The gain is trimmed to a nominal value of $1.0 \,\mu$ A/K. For example, the output current can be sensed by using a 10 k Ω resistor connected from 10 V to the THERM pin. A voltage drop across the resistor then develops that equals

 $10 \text{ K} \times 1 \mu \text{A/K} = 10 \text{ mV/K} = 2.98 \text{ V}$ (at room temperature)

FUNCTIONAL BLOCK DIAGRAM

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
General Description	. 1
Functional Block Diagram	. 1
Revision History	. 2
Specifications	. 3
Driver Specifications	. 3
Comparator Specifications	. 5

Active Load Specifications	6
Total Function Specifications	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configuration and Function Descriptions	9
Outline Dimensions	11
Ordering Guide	11

REVISION HISTORY

3/08—Rev. A	A to Rev. B
-------------	-------------

Updated Format	Universal
Changes to Features and General Description	1
Changes to Table 1	
Changes to Table 3	6
Changes to Table 9	8
Inserted Table 10	9
Updated Outline Dimensions	
Changes to Ordering Guide	

12/00-Rev. 0 to Rev. A

SPECIFICATIONS

DRIVER SPECIFICATIONS

All specifications are at $T_J = 85^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 11 V \pm 3\%$, $V_{EE} = -6 V = \pm 3\%$, unless otherwise noted. All temperature coefficients are measured at $T_J = 75^{\circ}C$ to $95^{\circ}C$.

Table 1.					
Parameter	Min	Тур	Max	Unit	Test Conditions
DIFFERENTIAL INPUT CHARACTERISTICS, DATA to DATA, IOD to IOD, RLD to RLD					
Input Voltage	-2		+3	V	
Differential Input Range			2	V	All digital inputs within a 2 V range
Bias Current	-250		+250	μA	$V_{IN} = -2 V, +3 V$
REFERENCE INPUTS					
Bias Currents	-50		+50	μΑ	$V_L, V_H, V_T = 5 V$
OUTPUT CHARACTERISTICS					
Logic High Range	-2		+7	V	Data = H, V_H = -2 V to +7 V, V_L = -2 V, V_T = 0 V
Logic Low Range	-2		+б	V	Data = L, V_L = -2 V to +6 V, V_H = 7 V, V_T = 0 V
Amplitude, V_H and V_L	0.1		9	V	$V_L = 0 V, V_H = 0.1 V, V_T = 0 V$
Absolute Accuracy					$V_L = -2 V, V_H = 7 V, V_T = 0 V$
V _H Offset	-50		+50	mV	Data = H, V_H = 0 V, V_L = -2 V, V_T = -1 V
V_H Gain + Linearity Error	0.3 – 5		0.3 + 5	% of $V_H + mV$	Data = H, V_H = -1 V to +7 V, V_L =-2 V, V_T = -2 V
V _L Offset	-50		+50	mV	Data = L, V_L = 0 V, V_H = 5 V, V_T = 3 V
V _L Gain + Linearity Error	-0.3 - 5		+0.3 + 5	% of V _L + mV	Data = L, V_L = -2 V to +6 V, V_H = 7 V, V_T = 7 V
Offset Temperature Coefficient		0.5		mV/°C	
Output Resistance					
$V_{H} = -2 V$	44	46	48	Ω	$V_L = -2 V, V_T = 0 V, I_{OUT} = 0 mA, 1 mA, 30 mA$
$V_{H} = +7 V$	44	46	48	Ω	$V_L = -1 V$, $V_T = 0 V$, $I_{OUT} = 0 mA$, $-1 mA$, $-30 mA$
$V_L = -2 V$	44	46	48	Ω	$V_H = 6 V, V_T = 0 V, I_{OUT} = 0 mA, 1, mA 30 mA$
$V_L = +6 V$	44	46	48	Ω	$V_H = 7 V$, $V_T = 0 V$, $I_{OUT} = 0 mA$, $-1 mA$, $-30 mA$
$V_{H} = +3 V$		46		Ω	$V_L = 0 V, V_T = 0 V, I_{OUT} = -30 \text{ mA}$ (trim point)
Dynamic Current Limit		>100		mA	$C_{BYP} = 39 \text{ nF}, V_H = 6 \text{ V}, V_L = -2 \text{ V}, V_T = 0 \text{ V}$
Static Current Limit	-85		+85	mA	Output to $-2 V$, $V_H = 7 V$, $V_L = -1 V$, $V_T = 0 V$, data = H and output to 7 V, $V_H = 6 V$, $V_L = -2 V$, $V_T = 0 V$, data = L
VT					
Voltage Bange	-2		+7	v	Term mode $V_T = -2V$ to $+7V$ $V_1 = 0V$ $V_2 = 3V$
V _T Offset	-50		+50	mV	Term mode $V_T = 0$ V $V_1 = 0$ V $V_2 = 3$ V
V_T Gain + Linearity Error	-0.3 + 10		+0.3 + 10	% of Vsst + mV	Term mode $V_T = -2V$ to $+7V$ $V_1 = 0V$ $V_2 = 3V$
Offset Temperature Coefficient	0.5 1 10	0.5	10.5 1 10	mV/°C	$V_{T} = 0 V V_{1} = 0 V V_{2} = 3 V$
Output Besistance	44	46	49	0	$I_{OUT} = 30 \text{ mA} + 10 \text{ mA} \text{ V}_T = -2.0 \text{ V} \text{ V}_H = 3 \text{ V}$
		10	12	12	$V_{L} = 0 V, I_{OUT} = -30 mA, -1.0 mA, V_{T} = 7.0 V, V_{H} = 3 V, V_{L} = 0 V, I_{OUT} = \pm 30 mA, \pm 1.0 mA, V_{T} = 0 V, V_{H} = 3 V, V_{L} = 0 V$
DYNAMIC PERFORMANCE, VH AND VL					
Propagation Delay Time		1.5		ns	Measured at 50%, $V_{\rm H}$ = 400 mV, $V_{\rm L}$ = –400 mV, $V_{\rm T}$ = 0 V
Propagation Delay Temperature Coefficient		2		ps/°C	Measured at 50%, $V_H = 400 \text{ mV}$, $V_L = -400 \text{ mV}$, $V_T = 0 \text{ V}$
Delay Matching, Edge to Edge		<100		ps	Measured at 50%, $V_H = 400 \text{ mV}$, $V_L = -400 \text{ mV}$, $V_T = 0 \text{ V}$

Parameter	Min Typ	Max	Unit	Test Conditions
Rise and Fall Times				
1 V Swing	0.42		ns	Measured 20% to 80%, $V_L = 0 V$, $V_H = 1 V$, $V_T = 0 V$
3 V Swing	0.75		ns	Measured 20% to 80%, $V_L = 0 V$, $V_H = 3 V$, $V_T = 0 V$
5 V Swing	1.65		ns	Measured 10% to 90%, V_L = 0 V, V_H = 5 V, V_T = 0 V
9 V Swing	3.0		ns	Measured 10% to 90%, $V_L=-2V,$ $V_H=7V,$ $V_T=0V$
Rise/Fall Time Temperature Coefficient				
1 V Swing	±1		ps/°C	Measured 20% to 80%, $V_L = 0 V$, $V_H = 1 V$
3 V Swing	±2		ps/°C	Measured 20% to 80%, $V_L = 0 V$, $V_H = 3 V$
5 V Swing	±4		ps/°C	Measured 10% to 90%, $V_L = 0 V$, $V_H = 5 V$
Overshoot and Preshoot	<3 + 50		% of Step + mV	$V_{L}, V_{H} = -0.1 V, +0.1 V, V_{L}, V_{H} = 0 V, +1.0 V$
				$V_L, V_H = 0 V, 3.0 V, V_L, V_H = 0 V, 5.0 V$
				$V_{\rm H}, V_{\rm H} = -2.0 V_{\rm c} + 7.0 V_{\rm c}$
Settling Time				
to 15 mV	<50		ns	$V_{\rm H} = 0 V_{\rm r} V_{\rm H} = 0.5 V_{\rm r} V_{\rm T} = -2 V_{\rm r}$
to 4 mV	<10		us	$V_{\rm L} = 0 V, V_{\rm H} = 0.5 V, V_{\rm T} = -2 V$
Delay Change vs. Pulse Width	50		ps	$V_L = 0 V$, $V_H = 2 V$, pulse width = 2.5 ns/7.5 ns, 30 ns/90 ns
Minimum Pulse Width				
3 V Swing	1.4		ns	$V_{1} = 0 V V_{2} = 3 V 90\% (2.7 V)$ reached
				measure @ 50%
5 V Swing	2.0		ns	V_L = 0 V, V_H = 5 V, 90% (4.5 V) reached, measure @ 50%
Toggle Rate	250		MHz	$V_L = 0 V, V_H = 5 V, VDUT > 3.0 V p-p$
DYNAMIC PERFORMANCE, INHIBIT				
Delay Time, Active to Inhibit	3.3		ns	Measured at 50%, $V_{H} = 2 V$, $V_{L} = -2 V$, $V_{T} = 0 V$
Delay Time, Inhibit to Active	2.9		ns	Measured at 50%, $V_{H} = 2 V$, $V_{L} = -2 V$, $V_{T} = 0 V$
Delay Time Matching, Z	<2		ns	Z = delay time, active to inhibit – delay time, inhibit to active (of worst two edges)
Input/Output Spike	150		mV p-p	$V_{H} = 0 V, V_{L} = 0 V, V_{T} = 0 V$
Rise/Fall Time, Active to Inhibit	1.6		ns	$V_H = 2 V, V_L = -2 V$ (measured 20%/80% of 1 V output)
Rise/Fall Time, Inhibit to Active	1.4		ns	$V_H = 2 V, V_L = -2 V$ (measured 20%/80% of 1 V output)
DYNAMIC PERFORMANCE, VT				•
Delay Time, V_H to V_T and V_L to V_T	2.5		ns	Measured at 50%, $V_L = -1 V$, $V_H = 1 V$, $V_T = 0 V$
Delay Time, V_T to V_H and V_T to V_I	2.5		ns	Measured at 50%, $V_L = V_H = 0.4 V$, $V_T = -0.4 V$
Overshoot and Preshoot	<3.0 + 7	5	% of Step + mV	$V_{H}/V_{L}, V_{T} = (0 V, -1 V), (0 V, -2.0 V), (0 V, +6.0 V)$
V _T Mode Rise Time	2.2		ns	$V_L=-2$ V, $V_H=2$ V, $V_T=0$ V, 20% to 80%
V _T Mode Fall Time	2.2		ns	$V_L = -2 V$, $V_H = 2 V$, $V_T = 0 V$, 20% to 80%
PSRR, Drive, or Term Mode	35		dB	$V_S = V_S \pm 3\%$

COMPARATOR SPECIFICATIONS

All specifications are at $T_J = 85^{\circ}C \pm 5^{\circ}C$. Outputs terminated in 150 Ω to GND, $V_{CC} = 11 \text{ V} \pm 3\%$, $V_{EE} = 6 \text{ V} \pm 3\%$, VCCO = 3.3 V, unless otherwise specified. All temperatures coefficients are measured at $T_J = 75^{\circ}C$ to 95°C.

Table 2.					
Parameter	Min	Тур	Max	Unit	Test Conditions
DC INPUT CHARACTERISTICS					
Offset Voltage, Vos	-25		+25	mV	CMV = 0V
Offset Voltage, Drift		50		μV/°C	CMV = 0V
HCOMP, LCOMP Bias Current	-50		+50	μΑ	$V_{IN} = 0 V$
Voltage Range, V _{CM}	-2		+7.0	V	
Differential Voltage, VDIFF			9.0	V	
Gain and Linearity	-0.05		+0.05	% FSR	$V_{IN} = -2 V \text{ to } +7 V (9 V \text{ FSR})$
LATCH ENABLE INPUTS					
Logic 1 Current, I _{IH}			250	μΑ	LEA, $\overline{\text{LEA}}$, LEB, $\overline{\text{LEB}} = 3 \text{ V}$
Logic 0 Current, I⊫	-250			μΑ	LEA, $\overline{\text{LEA}}$, LEB, $\overline{\text{LEB}} = -2 \text{ V}$
Logic Input Range	-2		+3	v	
DIGITAL OUTPUTS					
Logic 1 Voltage, V _{он}	VCCO – 0.98			V	Qx or \overline{Qx} , 16.7 mA load
Logic 0 Voltage, V _{oL}			VCCO – 1.5	V	Qx or \overline{Qx} , 10 mA load
Slew Rate		1		V/ns	
VCCO Range	0		8	v	
SWITCHING PERFORMANCE					
Propagation Delay					
Input to Output		1.8		ns	$V_{IN} = 2 V p - p$
Latch Enable to Output		2		ns	HCOMP = 1 V, LCOMP = 1 V
Propagation Delay Temperature Coefficient		2		ps/°C	
Propagation Delay Change with Respect to					
Slew Rate: 0.5 V/ns, 1.0 V/ns, 3.0 V/ns		<±100		ps	$V_{IN} = 0 V to 5 V$
Slew Rate: 5.0 V/ns		<±350		ps	$V_{IN} = 0 V to 5 V$
Amplitude: 1.0 V, 3.0 V, 5.0 V		<±200		ps	V _{IN} = 1.0 V/ns
Equivalent Input Rise Time		450		ps	$V_{IN} = 0 V \text{ to } 3 V, 3 V/\text{ns}$
Pulse Width Linearity		<±200		ps	V _{IN} = 0 V to 3 V, 3 V/ns, PW = 3 ns to 8 ns
Settling Time		25		ns	Settling to $\pm 8 \text{ mV}$, $V_{IN} = 1 \text{ V}$ to 0 V
Latch Timing					
Input Pulse Width		1.68		ns	
Setup Time		1.0		ns	
Hold Time		1.1		ns	
Hysteresis		6		mV	Latch inputs programmed for hysteresis

ACTIVE LOAD SPECIFICATIONS

All specifications are at $T_I = 85^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 11 \text{ V} \pm 3\%$, $V_{EE} = -6 \text{ V} = \pm 3\%$, unless otherwise noted. All temperature coefficients are measured at $T_I = 75^{\circ}C$ to $95^{\circ}C$.

Table 3.					
Parameter	Min	Тур	Max	Unit	Test Conditions
INPUT CHARACTERISTICS					
INHL, INHL					
Input Voltage	-2		+3	V	$IOHC = 1 V, IOLC = 1 V, VCOM = 2 V, OUT_L = 0 V$
Bias Current	-250		+250	μA	$INHL$, $\overline{INHL} = -2 V$, $+3 V$
IOHC Current Program Range					
IOH = 0 mA to -40 mA	0		4	V	OUT_L = -0.7 V, +7 V
IOLC Current Program Range					
IOL = 0 mA to 40 mA	0		4	V	$OUT_L = -2 V, +5.7 V$
IOHC, IOLC Input Bias Current	-300		+300	μΑ	IOLC = 0 V, 4.0 V and IOHC = 0 V, 4.0 V
IOLRTN, IOHRTN Range	-2		+7	V	$IOL = 40 \text{ mA}, IOH = -40 \text{ mA}, OUT_L = -2 \text{ V}, +7 \text{ V}$
VDUT Range	-2		+7	V	$IOL = 40 \text{ mA}, IOH = -40 \text{ mA}, OUT_L - VCOMI > 1.3 \text{ V}$
VDUT Range, IOH = 0 mA to -40 mA	-0.7		+7	V	OUT_L – VCOM > 1.3 V
VDUT Range, IOL = 0 mA to 40 mA	-2		+5.7	V	VCOM - VDUT > 1.3 V
VCOMI Input Range	-2		+7	V	IOL = 40 mA, IOH = -40 mA
OUTPUT CHARACTERISTICS					
Accuracy					
Absolute Accuracy Error, Load Current	-0.3 - 100		+0.3 + 100	% Iset + μA	IOL, IOH = 25 μ A to 40 mA, VCOM = 0 V, OUT_L = ± 2 V and IOL = 25 μ A to 40 mA, VCOM = 7 V, OUT_L = 5.7 V and IOH = 25 μ A to
					40 mA, VCOM = -2 V, OUT_L = -0.7 V
VCOM Buffer					
Offset Error	-50		+50	mV	$IOL, IOH = 40 \text{ mA}, VCOMI = 0 \text{ V}, OUT_L = VCOM$
Bias Current	-10	+1	+10	μΑ	VCOMI = 0 V, OUT_L = VCOM
Gain Error	-0.2		+0.2	%	IOL, IOH = 40 mA, VCOMI = -1 V to +6 V, V _{OUT} = VCOM
Linearity Error	-10		+10	mV	IOL, IOH = 40 mA, VCOMI = -1 V to +6 V, V _{OUT} = VCOM
Output Current Temperature Coefficient		<±2		μA/°C	Measured at IOH, IOL = 200 μ A
DYNAMIC PERFORMANCE					
Propagation Delay					
±loυτ to Inhibit		1.9		ns	VCOM = ± 2 V, IOL = 20 mA, IOH = -20 mA
Inhibit to ±lout		2.8		ns	$VCOM = \pm 2 V$, $IOL = 20 mA$, $IOH = 20 mA$
Propagation Delay Matching		<1.8		ns	
Input/Output Spike		240		mV	VCOM = 0 V, $IOL = 20 mA$, $IOH = -20 mA$
Settling Time to 15 mV		<50		ns	IOL = 20 mA, IOH = -20 mA, 50 Ω load to ± 15 mV
Settling Time to 4 mV		<10		μs	IOL = 20 mA, IOH = -20 mA, 50 Ω load to ± 4 mV

TOTAL FUNCTION SPECIFICATIONS

All specifications are at $T_I = 85^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 11 V \pm 3\%$, $V_{EE} = -6 V = \pm 3\%$ unless otherwise noted. All temperature coefficients are measured at $T_I = 75^{\circ}C$ to $95^{\circ}C$.

Parameter ¹	Min	Тур	Max	Unit	Test Conditions
OUTPUT CHARACTERISTICS					
Output Leakage Current, $V_{OUT} = -1$ V to +5 V	-250		+250	nA	
Output Leakage Current, $V_{OUT} = -2 V$ to $+7 V$	-500		+500	μΑ	
Output Capacitance		8		pF	Driver and load inhibited
POWER SUPPLIES					
Total Supply Range		17		V	
Positive Supply, V _{cc}		11		V	
Negative Supply, VEE		-6		V	
Positive Supply Current			280	mA	Driver = I_{NH} , I_{LOAD} program = 40 mA, load = active
Negative Supply Current			290	mA	Driver = I_{NH} , I_{LOAD} program = 40 mA, load = active
VCCO Current		65		mA	VCCO = 3.3 V, comparator output 150 Ω to GND
Total Power Dissipation			4.8	W	Driver = I_{NH} , I_{LOAD} program = 40 mA, load = active
Temperature Sensor Gain Factor		1		μA/K	$R_{LOAD} = 10 \text{ k}\Omega, V_{SOURCE} = 11 \text{ V}$

 $^{\rm 1}$ Connecting or shorting the decoupling pins to ground results in the destruction of the device.

Table 5. Driver Truth Table

DATA	DATA	IOD	IOD	RLD	RLD	Output State
0	1	1	0	Х	Х	VL
1	0	1	0	Х	Х	V _H
Х	Х	0	1	0	1	Inhibit
Х	Х	0	1	1	0	VT

Table 6. Comparator Truth Table

						Output States			
	Vout	LEH	LEH	LEL	LEL	QH	QH	QL	QL
>HCOMP	>LCOMP	1	0	1	0	1	0	1	0
>HCOMP	<lcomp< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></lcomp<>	1	0	1	0	1	0	0	1
<hcomp< td=""><td>>LCOMP</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td></hcomp<>	>LCOMP	1	0	1	0	0	1	1	0
<hcomp< td=""><td><lcomp< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td></lcomp<></td></hcomp<>	<lcomp< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td></lcomp<>	1	0	1	0	0	1	0	1
Х	Х	0	1	0	1	QH (t – 1)	QH (t – 1)	QL (t – 1)	<u>QL</u> (t − 1)

Table 7. Active Load Truth Table

			Output States (Including Diode Bridge)		
OUT_L	INHL	INHL	ЮН	IOL	I(OUT_L)
<vcom< td=""><td>0</td><td>1</td><td>$V(IOHC) \times 10 \text{ mA}$</td><td>V(IOLC) × 10 mA</td><td>IOL</td></vcom<>	0	1	$V(IOHC) \times 10 \text{ mA}$	V(IOLC) × 10 mA	IOL
>VCOM	0	1	V(IOHC) \times 10 mA	$V(IOLC) \times 10 \text{ mA}$	IOH
Х	1	0	0	0	0

ABSOLUTE MAXIMUM RATINGS

Table 8.

Parameter	Rating	
Power Supply Voltage		
V _{cc} to GND	13 V	
VEE to GND	-8 V	
V _{CC} to V _{EE}	20 V	
VCCO to GND	10 V	
PWRGND, HQGND, HQGND2	±0.4 V	
Inputs		
DATA, DATA, IOD, IOD, RLD, RLD	-2 V to +5 V	
DATA to $\overline{\text{DATA}}$, IOD to $\overline{\text{IOD}}$, RLD to $\overline{\text{RLD}}$	±3 V	
LEL, <mark>LEL</mark> , LEH, <u>LEH</u>	-2 V to +5 V	
LEL to LEL, LEH to LEH	±3 V	
INHL, INHL	-2 V to +5 V	
INHL to INHL	±3 V	
$V_H, V_L, V_T, VCOMI$ to GND	-3 V to +8 V	
V_H to V_L	±10 V	
$(V_H - V_T)$ and $(V_T - V_L)$	±10 V	
IOHC	±6 V	
IOLC	±6 V	
HCOMP	-3 V to +8 V	
LCOMP	-3 V to +8 V	
HCOMP, LCOMP to VOUT	±10 V	
Outputs		
Vout Short-Circuit Duration	Indefinite ¹	
Vout Inhibit Mode	-3 V to +8 V	
VHDCPL	Do not connect except for capacitor to V_{CC}	
VLDCPL	Do not connect except for capacitor to V_{EE}	
QH, QH, QL, QL Maximum Iout		
Continuous	50 mA	
Surge	100 mA	
THERM	0 V to 13 V	
IOHRTN, IOLRTN	–3.5 V to +8.5 V	
VCOMS Short-Circuit Duration	3 sec ¹	
Environmental		
Operating Temperature (Junction)	175°C	
Storage Temperature Range	–65°C to +150°C	
Lead Temperature (Soldering, 10 sec) ²	260°C	

¹ Output short-circuit protection is guaranteed as long as proper heat sinking is employed to ensure compliance with the operating temperature limits. ² To ensure lead coplanarity (± 0.002 inches) and solderability, handling with bare hands should be avoided and the device should be stored in environments at 24°C \pm 5°C (75°F \pm 10°F) with relative humidity not to exceed 65%.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 9. Package Thermal Resistance

Airflow (m/s)	θ _{JA} (°C/W)
0	42.7
1	37.8
2	36.4

For liquid-cooled applications, $\theta_{JC} = 3.0^{\circ}C/W$.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 34, 51, 52	V _{cc}	Positive Power Supply.
2, 5, 8	VCCO	Comparator Output Power Supply.
3	QL	Comparator Low Output, Inverting.
4	QL	Comparator Low Output, Noninverting.
6	QH	Comparator High Output, Inverting.
7	QH	Comparator High Output, Noninverting.
9, 33, 44, 46, 48	PWRGND	Ground.
10	LEL	Latch Enable Low Input, Inverting.
11	LEL	Latch Enable Low Input, Noninverting.
12	LEH	Latch Enable High Input, Inverting.
13	LEH	Latch Enable High Input, Noninverting.
14, 26	NC	Do not connect.
15	THERM	Temperature Sensor Output.
16	НСОМР	High Comparator Threshold.
17	LCOMP	Low Comparator Threshold.
18	VHDCPL	Connect 39 nF compensation capacitor to VEE.
19	HQGND2	Ground.
20	Vout	DUT Connection.
21	OUT_L	Active Load Output.
22	VLDCPL	Connect 39 nF compensation capacitor to VEE.
23	IOLRTN	Active Load Low Inhibit Control.
24	VCOMS	VCOM Buffer Sense Output.
25	VCOMI	VCOM Input Voltage.
27	IOHRTN	Active Load High Inhibit Control.
28	HQGND	Ground.
29	IOHC	Active Load High Current Control Input.
30	IOLC	Active Load Low Current Control Input.

Pin No.	Mnemonic	Description
31	VL	Low Driver Level.
32, 39, 40, 41	VEE	Negative Power Supply.
35	INHL	Inhibit Load Input, Inverting.
36	INHL	Inhibit Load Input, Noninverting.
37	DATA	Drive Data Input, Noninverting.
38	DATA	Drive Data Input, Inverting.
42	IOD	IO Data Input, Inverting.
43	IOD	IO Data Input, Noninverting.
45	V _T	Term Driver Level.
47	V _H	High Driver Level.
49	RLD	V _T /Inhibit Selection Input, Noninverting.
50	RLD	V _T /Inhibit Selection Input, Inverting.

OUTLINE DIMENSIONS

022708-A

Figure 3. 52-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP] (SW-52-1) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Ordering Quantity
AD53509JSW	0°C to 70°C	52-Lead LQFP_EP	SW-52-1	90
AD53509JSWZ ¹	0°C to 70°C	52-Lead LQFP_EP	SW-52-1	90

 1 Z = RoHS Compliant Part.

NOTES

©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D01539-0-3/08(B)

Rev. B | Page 12 of 12

www.analog.com