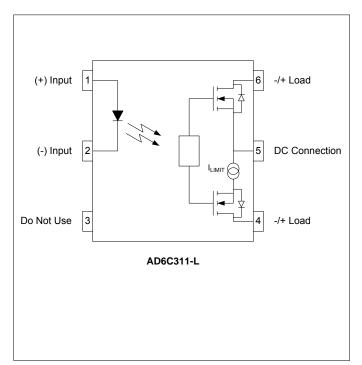


AD6C311-L

1 Form A, Current Limiting 400V / 15 Ω MOSFET Output Solid State Relay

Description


The AD6C311-L is a bi-directional, single-pole, singlethrow, normally open solid-state relay. It provides a load current of 200mA, a high blocking voltage of 400V, and current limiting circuitry in a compact 6 pin DIP package. Current limiting circuitry provides a level of protection against increased load currents or transient current spikes by active current reduction across the device, thereby protecting itself and downstream components.

The AD6C311-L comes standard in a miniature 6 pin DIP package making it ideal for high-density board applications.

Applications

- Reed Relay Replacement
- Multiplexers
- Meter Reading Systems
- Medical Equipment
- Battery Monitoring

Schematic Diagram

Features

- High Isolation Voltage (3750V_{RMS})
- Low Input Control Current (2.5mA TYP)
- 200mA Maximum Continuous Load Current
- 15Ω Maximum On-Resistance
- Active Current Limiting Protection
- Long Life / High Reliability
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

UL / C-UL:	File # E201932
VDE:	File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

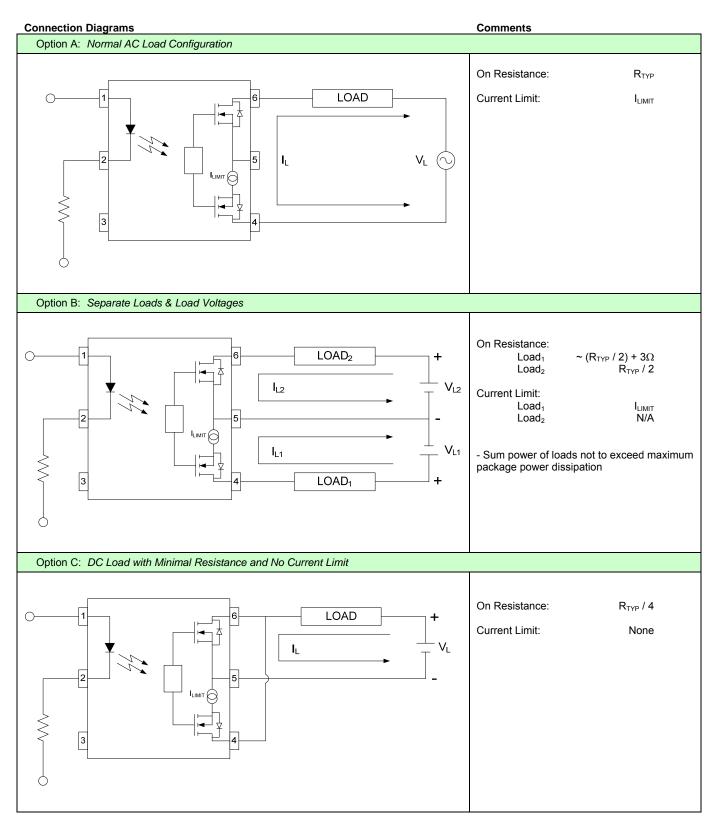
Storage Temperature	55 to +125°C
Operating Temperature	40 to +85°C
Continuous Input Current	50mA
Transient Input Current	500mA
Reverse Input Control Voltage	6V
Input Power Dissipation	40mW
Output Power Dissipation	800mW
Solder Temperature – Wave (10sec)	260°C
Solder Temperature – IR Reflow (10sec)	260°C

Ordering Information

Part Number Description

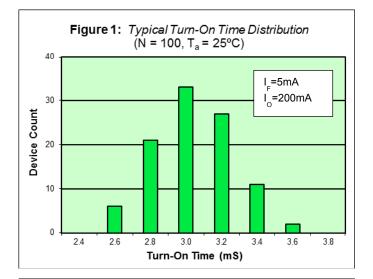
AD6C311-L	6 pin DIP, (50/Tube)
AD6C311-LS	6 pin SMD, (50/Tube)
AD6C311-LSTR	6 pin SMD, Tape and Reel (1000/Reel)

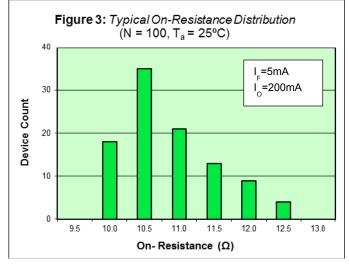
NOTE: Suffixes listed above are not included in marking on device for part number identification

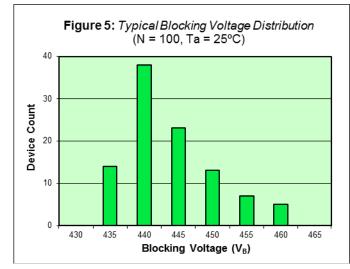


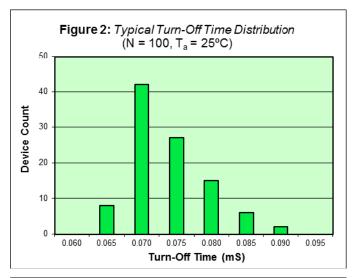
Electrical Characteristics, T_A = 25°C (unless otherwise specified)

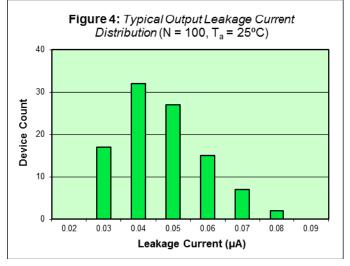
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input Specifications						
LED Forward Voltage	VF	-	1.2	1.5	V	I _F = 10mA
LED Reverse Voltage	BV _R	6	-	-	V	I _R = 10μΑ
Turn-On Current	IF	-	2.5	5	mA	I _O = 200mA
Turn-Off Current	I _{FOFF}	-	0.5	-	mA	-
Output Specifications						
Blocking Voltage	V _B	400	-	-	V	I ₀ =1μA
Continuous Load Current	Ι _ο	-	-	200	mA	I _F =5mA
Current Limit (AC or DC connection)	I _{LIMIT}	-	300	-	mA	I _F =5mA
On Resistance	R _{on}	-	11	15	Ω	I _F =5mA, I _O =200mA
Leakage Current	I _{Oleak}	-	0.2	1	μA	I _F =0mA, V _O =400V
Output Capacitance	C _{OUT}	-	25	50	pF	I _F =0mA, f=1.0MHz
Offset Voltage	V _{OFFSET}	-	-	0.2	mV	I _F =5mA
Coupled Specifications						
Turn-On Time	T _{ON}	-	3	5	mS	I _F =5mA, I _O =200mA
Turn-Off Time	T _{OFF}	-	0.5	1.0	mS	I _F =0mA, I _O =200mA
Coupled Capacitance		-	3	-	pF	
Contact Transient Ratio	-	2,000	7,000	0	V/µS	dV = 50V
Isolation Specifications						
Isolation Voltage	V _{ISO}	3,750	-	-	V_{RMS}	RH ≤ 50%, t=1min
Input-Output Resistance	R _{I-O}	-	10 ¹²	-	Ω	V _{I-O} = 500V _{DC}

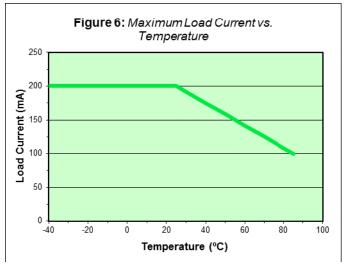



AD6C311-L Current Limiting Connection Diagrams, T_A = 25°C (unless otherwise specified)






AD6C311-L Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)



AD6C311-L Solder Temperature Profile Recommendations

(1) Infrared Reflow:

Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

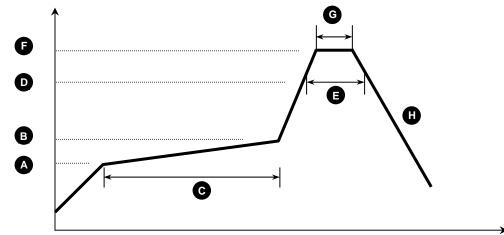


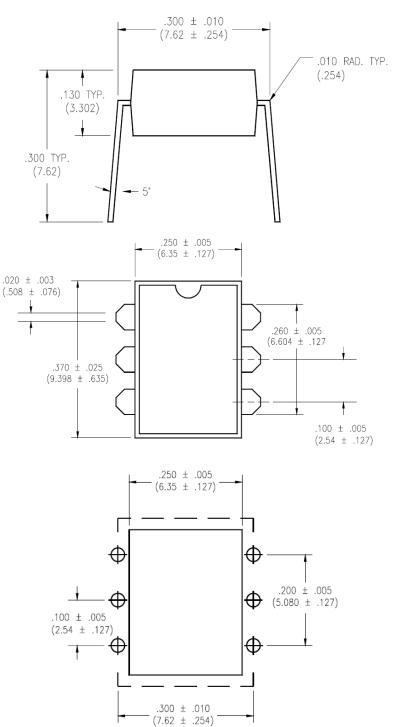
Figure 1

Process Step	Description	Parameter
Α	Preheat Start Temperature (°C)	150°C
В	Preheat Finish Temperature (°C)	180°C
С	Preheat Time (s)	90 - 120s
D	Melting Temperature (°C)	230°C
=	Time above Melting Temperature (s)	30s
F	Peak Temperature, at Terminal (°C)	260°C
G	Dwell Time at Peak Temperature (s)	10s
H	Cool-down (°C/s)	<6°C/s

(2) Wave Solder:

Maximum Temperature:	260°C (at terminal)
Maximum Time:	10s
Pre-heating:	100 - 150°C (30 - 90s)
Single Occurrence	

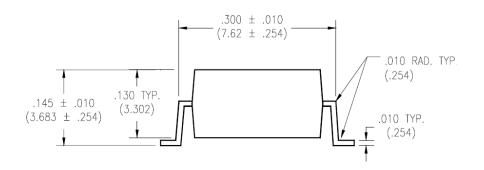
(3) Hand Solder:

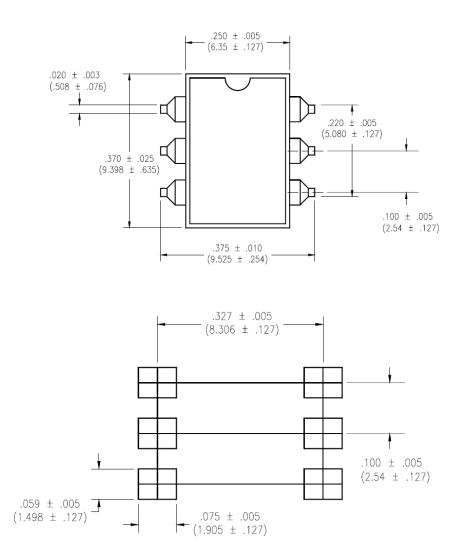

Maximum Temperature: Maximum Time:	350°C 3s	(at tip of soldering iron)
Single Occurrence		

AD6C311-L Package Dimensions

6 PIN DIP Package

Note: All dimensions in inches ["] with millimeters in parenthesis () **Device Weight:** 0.45g

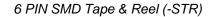


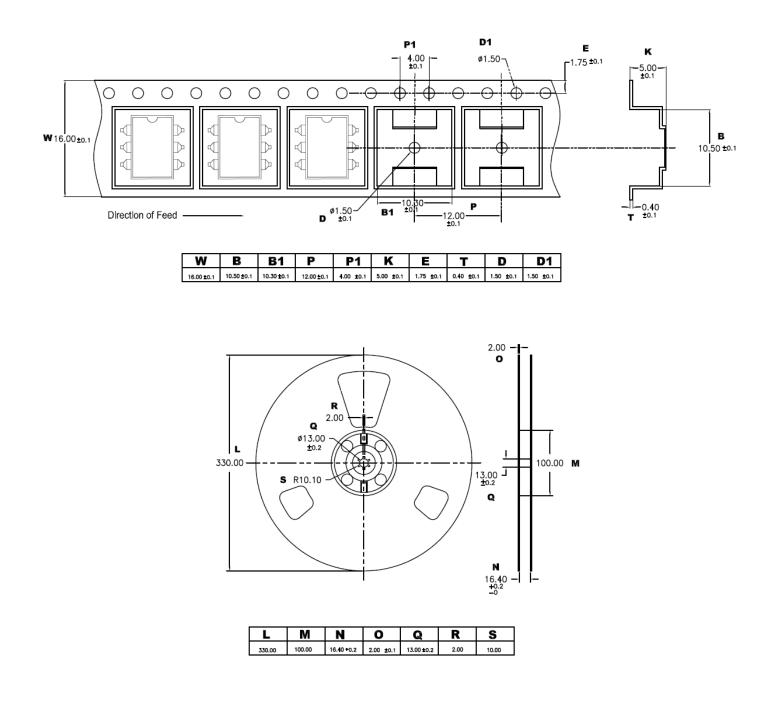


AD6C311-L Package Dimensions

6 PIN SMD Surface Mount Package (-S)

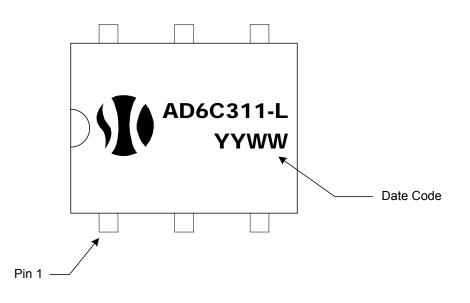
Note: All dimensions in inches ["] with millimeters in parenthesis () Device Weight: 0.45g





AD6C311-L 1 Form A, Current Limiting 400V / 15 Ω MOSFET Output Solid State Relay

AD6C311-L Package Dimensions



Note: All dimensions in millimeters

AD6C311-L Package Marking

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices.

SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.