

Data Sheet

AD7846-CHIPS

FEATURES

- 16-bit monotonicity over temperature
- Microprocessor compatible with read-back capability
- Unipolar or bipolar output
- Multiplying capability
- ▶ Low power dissipation: 100 mW typical

APPLICATIONS

- Instrumentation
- Automatic test equipment
- Industrial automation
- Energy grid systems
- Aerospace

GENERAL DESCRIPTION

The AD7846-CHIPS is a 16-bit digital-to-analog converter (DAC) constructed with the Analog Devices, Inc., LC^2MOS process. The device has V_{REF+} and V_{REF-} reference inputs and an on-chip output amplifier that can be configured to give a unipolar output range (0 V to +5 V or 0 V to +10 V) or bipolar output ranges (±5 V or ±10 V).

The DAC uses a segmented architecture. The four MSBs in the DAC latch select one of the segments in a 16-resistor string. Both taps of the segment are buffered by amplifiers and fed to a 12-bit DAC, which provides a further 12 bits of resolution. This architecture ensures 16-bit monotonicity. Excellent integral linearity results from tight matching between the input offset voltages of the two buffer amplifiers.

FUNCTIONAL BLOCK DIAGRAM

LC2MOS 16-Bit Voltage Output DAC

In addition to the excellent accuracy specifications, the AD7846-CHIPS also offers a comprehensive microprocessor interface. There are 16 data input and output pins, plus control lines (\overline{CS} , R/W, \overline{LDAC} , and \overline{CLR}). R/W and \overline{CS} allow writing to and reading from the input and output latch, and this read-back function is useful in ATE applications. \overline{LDAC} allows simultaneous updating of DACs in a multiDAC system, and the \overline{CLR} line resets the contents of the DAC latch to 00 ... 000 or 10 ... 000 depending on the state of R/W, which means that the DAC output can be reset to 0 V in both unipolar and bipolar configurations.

Additional application and technical information can be found in the AD7846 data sheet.

PRODUCT HIGHLIGHTS

- 16-Bit Monotonicity. The guaranteed 16-bit monotonicity over temperature makes the AD7846-CHIPS ideal for closed-loop applications.
- 2. Readback. The ability to read back the DAC register contents minimizes software routines when the AD7846-CHIPS is used in automatic test equipment systems.
- **3.** Power Dissipation. A power dissipation of 100 mW makes the AD7846-CHIPS a low power, high accuracy DAC.

Figure 1. Functional Block Diagram

Rev. A

DOCUMENT FEEDBACK

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

1
. 1
.1
1
.1
3
. 5
.5

Absolute Maximum Ratings	7
ESD Caution	7
Pin Configuration and Function Descriptions	8
Outline Dimensions	10
Die Specifications and Assembly	
Recommendations	10
Ordering Guide	11
Outline Dimensions Die Specifications and Assembly Recommendations Ordering Guide	10 10 11

REVISION HISTORY

1/2024—Rev. 0 to Rev. A	
Updated Outline Dimensions	10
Changes to Table 7	10

11/2023—Revision 0: Initial Version

 V_{DD} = +14.25 V to +15.75 V, V_{SS} = -14.25 V to -15.75 V, and V_{CC} = +4.75 V to +5.25 V. V_{OUT} loaded with 2 k Ω , 1000 pF to 0 V, V_{REF+} = +5 V, and R_{IN} connected to 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

RESOLUTION 16 Bits UNPOLAR OUTPUT Value: = 0.V. Vour = 0.V to +10.V Fallew Accuracy at 25°C ±12 LSB 11.58 = 15.3 μV Differential Nonlinearly Error ±11 LSB All grades guaranted monotonic Gain Error at 25°C ±12 LSB Vour load = 10 MΩ True to Tax ±16 LSB Vour load = 10 MΩ Offset Error at 25°C ±12 LSB Vour load = 10 MΩ Offset Error at 25°C ±12 LSB Vour load = 10 MΩ Offset Error at 25°C ±11 ppn FSR°C ppn FSR°C Offset Error at 25°C ±16 LSB LSB LSB Offset Error at 25°C ±6 LSB LSB LSB LSB Differential Nonlinearly Error ±1 LSB Vour load = 10 MΩ True to True to 10 to +10.V True to True ±6 LSB Vour load = 10 MΩ True to True to 10 to +10.V True to True ±12 LSB Vour load = 10 MΩ True to True to 10.V True to True ±1 ppn FSR°	Parameter ¹	Min	Тур	Мах	Unit	Test Conditions/Comments
UNIPCLAR OUTPUTVec. = 0.V Vour = 0.V to +10.VRelative Accuracy at 25°C±12LSB1LSB = 153 µVTaw. to Two X±16LSBAll grades guaranteed monotonicVac. To Xour to Xour to 40.0Differential Nonlinearity Error±11LSBAll grades guaranteed monotonicTaw. to Two: X±16LSBVour to 40.0Offset Error at 25°C±12LSBVour to 40.0Taw. to Two: X±16LSBVour to 40.0Offset Error at 25°C±12LSBTu SBDifferential Nonlinearity Error±1ppm FSR*CDifferential Nonlinearity Error±1LSBVour to 40.0Differential Nonlinearity Error±6LSBVour to 40.0Differential Nonlinearity Error±1LSBVour to 40.0Differential Nonlinearity Error±16LSBVour to 40.0Differential Nonlinearity Error±16LSBVour to 40.0Differential Nonlinearity Error±16LSBVour to 40.0Differential Nonlinearity Error±16LSBVour to 40.0Differential Nonlinearity Error±17ppm FSR*CDifferential State±18 <td>RESOLUTION</td> <td></td> <td>16</td> <td></td> <td>Bits</td> <td></td>	RESOLUTION		16		Bits	
Relative Accuracy at 25°C ±12 LS8 LLS8 = 153 μ V T _{MR} to T _{MAX} ±16 LS8 All grades guaranteed monotonic Gain Error at 25°C ±12 LS8 Vourtlead = 10 MO Gain Error at 25°C ±12 LS8 Vourtlead = 10 MO Gain Error at 25°C ±12 LS8 Vourtlead = 10 MO Gain Error at 25°C ±12 LS8 Vourtlead = 10 MO Global Error at 25°C ±16 LS8 Vourtlead = 10 MO Global Error at 25°C ±16 LS8 Vourtlead = 10 MO Global Error at 25°C ±6 LS8 Vourtlead = 10 MO Task to Tuxx ±5 LS8 Vourtlead = 10 MO Gain Error at 25°C ±6 LS8 Vourtlead = 10 MO Task to Tuxx ±16 LS8 Vourtlead = 10 MO Task to Tuxx ±16 LS8 Vourtlead = 10 MO Task to Tuxx ±16 LS8 Vourtlead = 10 MO Task to Tuxx ±16 LS8 Vourtlead = 10 MO Task to Tuxx ±16 LS	UNIPOLAR OUTPUT					V _{REF-} = 0 V, V _{OUT} = 0 V to +10 V
T_{gast} to T_{gast} ± 16 LSB All grades guaranteed monotonic Differential Nonlinearity Error ± 12 LSB V_{QUT} load = 10 MQ T_{gast} to T_{XX} ± 16 LSB V_{QUT} load = 10 MQ T_{gast} to T_{XX} ± 16 LSB V_{QUT} load = 10 MQ Gain Error at 25°C ± 11 ppm FSR/C Offset Temperature Coefficient ² ± 11 ppm FSR/C Differential Nonlinearity Error ± 6 LSB V_{QUT} load = 10 MQ T_gast to T_{XX} ± 6 LSB V_{QUT} load = 10 MQ T_gast to T_{XX} ± 6 LSB V_{QUT} load = 10 MQ T_gast to T_{XX} ± 16 LSB V_{QUT} load = 10 MQ T_gast to T_{XX} ± 16 LSB V_{QUT} load = 10 MQ Gain Error at 25°C ± 6 LSB V_{QUT} load = 10 MQ T_gast to T_{XX} ± 16 LSB V_{QUT} load = 10 MQ Gain Error at 25°C ± 6 LSB V_{QUT} load = 10 MQ T_gasto T_{XX} ± 12 ppm FSR/C	Relative Accuracy at 25°C		±12		LSB	1 LSB = 153 μV
Differential Nonlinearity Error ±1 LSB All grades guaranteed monotonic Gain Error at 25°C ±12 LSB $V_{0,T}$ icad = 10 MΩ Twis to Tuxx ±16 LSB $V_{0,T}$ icad = 10 MΩ Gain Error at 25°C ±12 LSB $V_{0,T}$ icad = 10 MΩ Gain Error at 25°C ±11 ppm FSR/°C ppm FSR/°C BioLARA OLTPUT ±1 ppm FSR/°C spite Relative Accuracy at 25°C ±6 LSB 1LSB = 305 µV Twis to Tuxx ±8 LSB All grades guaranteed monotonic Offeet Error at 25°C ±6 LSB Vour load = 10 MΩ Twis to Tuxx ±8 LSB Vour load = 10 MΩ Offeet Error at 25°C ±6 LSB Vour load = 10 MΩ Twis to Tuxx ±16 LSB Vour load = 10 MΩ Gain Emporature Coefficient ² ±1 ppm FSR/°C ErretERCEC INPUT ppm FSR/°C LSB Vour load = 10 MΩ Twis to Tuxx ±16 LSB Vour load = 10 MΩ Vegr- Range Vss + 6<	T _{MIN} to T _{MAX}			±16	LSB	
Gain Error at 25°C ±12 LSB V_{OUT} (ad = 10 MQ Turn to Tuxx 16 LSB LSB Turn to Tuxx 16 LSB Turn to Tuxx ±16 LSB SB Vacur (ad = 10 MQ SB Gain Temperature Coefficient ² ±1 ppm FSR'C SB Vacur = -5 V. Vacur = -10 V to +10 V Relative Accuracy at 25°C ±6 LSB Vacur = -5 V. Vacur = -10 V to +10 V Relative Accuracy at 25°C ±6 LSB Vacur = -5 V. Vacur = -10 V to +10 V Relative Accuracy at 25°C ±6 LSB Vacur (ad = 10 MQ Turn to Tuxx ±8 LSB Vacur (ad = 10 MQ Offset Error at 25°C ±6 LSB Vacur (ad = 10 MQ Turn to Tuxx ±16 LSB Vacur (ad = 10 MQ Bipolar Zao Temperature Coefficient ² ±1 ppm FSR'C Ppm FSR'C Offset Error at 25°C ±6 LSB Vacur (ad = 10 MQ Turn to Tuxx ±12 LSB Se Vacur (ad = 10 MQ Gain Temperature Coefficient ² ±1 ppm FSR'C	Differential Nonlinearity Error			±1	LSB	All grades guaranteed monotonic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gain Error at 25°C		±12		LSB	V_{OUT} load = 10 M Ω
Offset Error at 25°C±12LSBTwin to Tuxx±16LSBGain Temperature Coefficient?±1ppm FSR*COffset Temperature Coefficient?±1ppm FSR*CBIPOLAR CUTPUT±6LSB1 LSB = 305 μ VFatative Accuracy at 25°C±6LSB1 LSB = 305 μ VTwin to Twax±8LSBAll grades guaranteed monotonicGain Error at 25°C±6LSBV _{OLT} lead = 10 MQTwin to Twax±16LSBV _{OLT} lead = 10 MQGine Error at 25°C±6LSBV _{OLT} lead = 10 MQTwin to Twax±11ppm FSR*CBipolar Zero Error at 25°C±6LSBGain Temperature Coefficient?±1ppm FSR*CBipolar Zero Temperature Coefficient?±1ppm FSR*CBipolar Zero Temperature Coefficient?±1ppm FSR*CBipolar Zero Temperature Coefficient?±1ppm FSR*CUnput Resistance20kQTo 0 VVage: + RangeV _{SS} + 6V _{DD} - 6VVage: + RangeV _{SS} + 6V _{DD} - 6VOutput Urbard Characteres0.3QUnput Resistance0.3QUnput Resistance0.3QUnput Resistance0.3QDIGTAL INPUTS10pFInput Lique Cival1	T _{MIN} to T _{MAX}			±16	LSB	
T_{MN} to T_{MX} ±16 LSB ppm FSR*C Gain Temperature Coefficient ² ±1 ppm FSR*C Vref* = -5 V, Vour = -10 V to +10 V BIPOLAR OUTPUT ±1 LSB 1, LSB = 305 μ V 1, LSB = 305 μ V Tarue to Taxes ±6 LSB 1, LSB = 305 μ V 1, LSB = 305 μ V Tarue to Taxes ±16 LSB All grades guaranteed monotonic 4, Restructure to the to taxes Gain Error at 25°C ±6 LSB Vour load = 10 MQ Tarue to Taxes ±16 LSB Vour load = 10 MQ Tarue to Taxes ±16 LSB Vour load = 10 MQ Tarue to Taxes ±16 LSB Vour load = 10 MQ Tarue to Taxes ±16 LSB Vour load = 10 MQ Tarue to Taxes ±16 LSB Vour load = 10 MQ Gain Emperature Coefficient ² ±1 ppm FSR*C ppm FSR*C Bipolar Zero Error at 25°C ±6 Vour FoR*C Your load = 10 MQ Gain Emperature Coefficient ² ±1 ppm FSR*C	Offset Error at 25°C		±12		LSB	
Gain Temperature Coefficient ⁶ ± 1 ppn FSR/°COffset Temperature Coefficient ⁶ ± 1 ppn FSR/°CBIPOLAR OUTPUT 1 Vage.= =-5 V, Vourt = -10 V to +10 VRelative Accuracy at 25°C ± 6 LSB $11.SB = 305 \mu V$ Differential Nonlinearity Error ± 1 LSBAll grades guaranteed monotonicGain Error at 25°C ± 6 LSBVourt load = 10 MQTunk to Tuok ± 16 LSBVourt load = 10 MQTunk to Tuok ± 16 LSBVourt load = 10 MQGain Error at 25°C ± 6 LSBVourt load = 10 MQTunk to Tuok ± 16 LSBVourt load = 10 MQGain Temperature Coefficient ² ± 11 ppn FSR/°CGain Temperature Coefficient ² ± 11 ppn FSR/°COffset Temperature Coefficient ² ± 11 ppn FSR/°CBipolar Zero Temperature Coefficient ² ± 11 ppn FSR/°CBipolar Zero Temperature Coefficient ² ± 11 ppn FSR/°CV REF-RangeVss + 6Voo - 6VV REF-RangeVss + 6Voo - 6VOutput Voltage SwingVss + 4Voo - 3VResistince0.3QQOutput Voltage SwingVss + 4Voo - 3VResistince0.3QNInput Low Voltage (Vh) ± 25 mATo 0 V or any power supplyDIGITAL INPUTS ± 10 μ ANInput Low Voltage (Vh) ± 10 μ ASource current (Igowe) = 1.6 mA	T _{MIN} to T _{MAX}			±16	LSB	
Offset Temperature Coefficient ² ±1ppm FSR/°CBIPOLAR QUTPUT±6LSB1LSB = 305 μ VRelative Accuracy at 25°C±6LSB1LSB = 305 μ VTims to Track±8LSBAll grades guaranteed monotonicGain Error at 25°C±6LSBVour load = 10 MQTims to Track±16LSBVour load = 10 MQOffset Error at 25°C±6LSBVour load = 10 MQTims to Track±16LSBVour load = 10 MQTims to Track±16LSBVour load = 10 MQTims to Track±16LSBVour load = 10 MQTims to Track±12LSBVour load = 10 MQTims to Track±11ppm FSR/°CFibrio Zero Error at 25°C±6LSBTims to Track±1ppm FSR/°CBipolar Zero Error at 25°C±1ppm FSR/°CFibrio Zero Temperature Coefficient ² ±1ppm FSR/°CREFERENCE INPUT40KQResistance from V _{REF} , to V V _{REF}	Gain Temperature Coefficient ²		±1		ppm FSR/°C	
BIPOLAR OUTPUT Relative Accuracy at 25°C ± 6 $V_{REF} = -5 V. V_{OUT} = -10 V to +10 V$ Relative Accuracy at 25°C ± 6 LSB $1 LSB = 305 \mu V$ Tam, to Taxac ± 8 LSBAll grades guaranteed monotonicGain Error at 25°C ± 6 LSB V_{out} to ad = 10 MQTam, to Taxac ± 16 LSB V_{out} to ad = 10 MQTam, to Taxac ± 16 LSB V_{out} to ad = 10 MQTam, to Taxac ± 16 LSB V_{out} to ad = 10 MQTam, to Taxac ± 16 LSB V_{out} to ad = 10 MQTam, to Taxac ± 16 LSB V_{out} to ad = 10 MQTam, to Taxac ± 16 LSB V_{out} to ad = 10 MQTam, to Taxac ± 12 LSB V_{out} to ad = 10 MQTam, to Taxac ± 12 LSB V_{out} to ad = 10 MQTam, to Taxac ± 12 LSB V_{out} to ad = 10 MQTam, to Taxac ± 12 LSB V_{out} to ad = 10 MQTam, to Taxac ± 12 LSB V_{out} to ad = 10 MQTam, to Taxac ± 12 LSB V_{out} to V_{out} Input Resistance 20 KQ Pm FSR/°CReference 20 KQ V_{out} Vager, Range $V_{SS} + 6$ $V_{OD} - 6$ V Vager, Range $V_{SS} + 6$ $V_{OD} - 3$ V Output Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ V Resistance 0.3 Ω Ω $To 0 V$ Output Voltage (V_{L}) 0.4 <t< td=""><td>Offset Temperature Coefficient²</td><td></td><td>±1</td><td></td><td>ppm FSR/°C</td><td></td></t<>	Offset Temperature Coefficient ²		±1		ppm FSR/°C	
Relative Accuracy at 25°C ± 6 LSB $1LSB \pm 305 \mu^{VC}$ Twin to Twick ± 8 LSBLSBAll grades guaranteed monotonicDifferential Nonlinearity Error ± 1 LSBLSBAll grades guaranteed monotonicGain Error at 25°C ± 6 LSB V_{OUT} load = 10 MQTwin to Twax ± 16 LSB V_{OUT} load = 10 MQTwin to Twax ± 16 LSB V_{OUT} load = 10 MQTwin to Twax ± 16 LSB V_{OUT} load = 10 MQTwin to Twax ± 16 LSB V_{OUT} load = 10 MQTwin to Twax ± 16 LSB V_{OUT} load = 10 MQTwin to Twax ± 16 LSB V_{OUT} load = 10 MQTwin to Twax ± 12 LSB V_{OUT} load = 10 MQGain Error at 25°C ± 6 LSB V_{OUT} load = 10 MQTwin to Twax ± 12 LSB V_{OUT} load = 10 MQTwin to Twax ± 12 LSB V_{OUT} Gain Error at 25°C ± 1 ppm FSR/°CTwin to Twax ± 12 LSB V_{OUT} Gain Error at 25°C ± 1 ppm FSR/°CInput Resistance 20 kQResistance from V _{REF} , to V _{REF} .VREF- Range $V_{SS} + 6$ $V_{DO} - 6$ VUtput Urbage Swing $V_{SS} + 4$ $V_{DO} - 3$ VCapacitive Load 0.3 0 To 0 VOutput Low 2014 Evaluation 0.3 0 Short Circuit Current ± 25 mATo 0 V or any power supplyDIGI	BIPOLAR OUTPUT					V _{REF-} = -5 V, V _{OUT} = -10 V to +10 V
T_{MN} to T_{MAX} ±8LSBAll grades guaranteed monotonicGain Error at 25°C±6LSB V_{OUT} load = 10 M Ω T_{MN} to T_{MAX} ±16LSB V_{OUT} load = 10 M Ω T_{MN} to T_{MAX} ±16LSB V_{OUT} load = 10 M Ω T_{MN} to T_{MAX} ±16LSB V_{OUT} load = 10 M Ω T_{MN} to T_{MAX} ±16LSBLSBBipolar Zeo Error at 25°C±6LSBLSB T_{MN} to T_{MAX} ±12LSBLSBGain Temperature Coefficient ² ±1ppm FSR"CBipolar Zeo Error at 25°C±1ppm FSR"CImput Resistance20K Ω Resistance from V_{REF*} to V_{REF*} REFERENCE INPUT40K Ω Typically 30 k Ω NgEr, Range $V_{SS} + 6$ $V_{DO} - 6$ V V_{REF*} Range $V_{SS} + 6$ $V_{DO} - 6$ VOutput Vidage Swing $V_{SS} + 4$ $V_{DO} - 3$ VCapacitive Load2K Ω To 0 VCapacitive Load0.3 Ω Source current (I_{NO})DIGITAL INPUTS2.4VVInput Low Vidage (V_{M})±10 μA Input Low Vidage (V_{M})10 pF DIGITAL INPUTS0.4VSink current ($I_{SDRQ} = 1.6$ mADigit Capacitance (I_{MQ})4.00.4VNuture Vidage (V_{M})4.00.4VDigit Low Vidage (V_{M})4.00.4VDigit Low Vidage (V_{M}) <td>Relative Accuracy at 25°C</td> <td></td> <td>±6</td> <td></td> <td>LSB</td> <td>1 LSB = 305 µV</td>	Relative Accuracy at 25°C		±6		LSB	1 LSB = 305 µV
Differential Nonlinearity Error ± 1 LSBAll grades guaranteed monotonicGain Error at 25°C ± 6 LSB V_{OUT} load = 10 MQT_MN to T_MAX ± 16 LSB V_{OUT} load = 10 MQT_MN to T_MAX ± 16 LSB V_{OUT} load = 10 MQT_MN to T_MAX ± 16 LSB V_{OUT} load = 10 MQT_MN to T_MAX ± 16 LSB V_{OUT} load = 10 MQGain Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Error at 25°C ± 6 LSBT_MN to T_MAX ± 12 LSBGain Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CUnput Resistance20KQResistance from V_REF. to V_REF. N_{REF} . Range $V_{SS} + 6$ $V_{OD} - 6$ V OUTPUT CHARACTERISTICS $V_{SS} + 6$ $V_{OD} - 6$ V Output Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ V Resistance0.3 Ω Ω Short Circuit Current ± 25 mATo 0 VInput High Voltage (V_{H1}) 2.4 V V Input Low Voltage (V_{L1}) 4.0 V Sink current ($I_{SDHC} = 1.6$ mADIGITAL UTPTS O 0.4 V Source current ($I_{SDHC} = 1.6$ mAOutput Koltage Leakage (Current ± 10 μ Dio DInput High Voltage (V_{C1}) 4.0 0.4 V <t< td=""><td>T_{MIN} to T_{MAX}</td><td></td><td></td><td>±8</td><td>LSB</td><td></td></t<>	T _{MIN} to T _{MAX}			±8	LSB	
Gain Error at 25°C ± 6 LS8 $V_{OUT} \log 4 = 10 M\Omega$ $T_{INN} to T_{MAX}$ ± 16 LS8UV $Diffset Error at 25°C\pm 6LS8UVT_{INN} to T_{MAX}\pm 16LS8UVBipolar Zero Error at 25°C\pm 6LS8UVT_{INN} to T_{MAX}\pm 12LS8UVBipolar Zero Error at 25°C\pm 6LS8UVT_{INN} to T_{MAX}\pm 12LS8UVBipolar Zero Temperature Coefficient2\pm 1ppm FSR"CDiffset Temperature Coefficient2\pm 1ppm FSR"CInput Resistance20K\OmegaResistance from VREF+ to VREF-Typically 30 k\OmegaVREF- RangeVSS + 6VDO - 6VVREF- RangeVSS + 4VDO - 3VCapacitive Load2K\OmegaTo 0 VCapacitive Load1000pFTo 0 VOutput Voltage Swing2.4VVNot Create Load0.3\OmegaTo 0 V or any power supplyDIGTAL UPUTS0.8VInput High Voltage (VH)Input Low Voltage (VH)0.8VInput Low Voltage (VGL)Output Low Voltage (VGL)0.4VSink current (ISONK) = 1.6 mADoutput Low Voltage (VGL)0.4VSink current (ISONK) = 1.6 mAOutput Low Voltage (VGL)0.4VSink current (ISONK) = 1.6 mAOutput Low Voltage (VGL)0.4VSink current (ISONK) = 1.6 mAOutput Low Voltage (COL)0.4VSource curren$	Differential Nonlinearity Error			±1	LSB	All grades guaranteed monotonic
T_{MIN} to T_{MAX} ± 16 LS8 V_{OUT} load = 10 MQ T_{MIN} to T_{MXX} ± 6 LS8 V_{OUT} load = 10 MQ T_{MIN} to T_{MXX} ± 16 LS8LS8Bipolar Zero Error at 25°C ± 6 LS8 T_{MIN} to T_{MXX} ± 12 LS8Gain Temperature Coefficient ² ± 1 ppm FSR"Cppm FSR"CBipolar Zero Emperature Coefficient ² ± 1 ppm FSR"CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR"CREFERENCE INPUT 40 $k\Omega$ Resistance from V_{REF+} to V_{REF-} Input Resistance 20 $k\Omega$ Resistance from V_{REF+} to V_{REF-} V_{REF-} Range $V_{SS} + 6$ $V_{OD} - 6$ V OUTPUT CHARACTERISTICS $V_{SS} + 6$ $V_{OD} - 3$ V Capacitive Load 2 $k\Omega$ T_{OV} Output Voltage Swing $V_{SS} + 4$ $V_{DO} - 3$ V Capacitive Load 0.03 Ω T_{OV} Output Resistance 0.3 Ω T_{OV} DIGTAL UPUTS 0.8 V V Input High Voltage (V_{H}) 2.4 V V Input Low Voltage (V_{CL}) 0.4 V $Sink current ((S_{OW}c) = 1.6 mAOutput Low Voltage (V_{CL})0.4VSink current ((S_{OW}c) = 1.6 mAOutput Low Voltage (V_{CL})0.4VSink current ((S_{OW}c) = 1.6 mAOutput Low Voltage (V_{CL})0.4VSink current ((S_{OW}c) = 1.6 mAOutput Low $	Gain Error at 25°C		±6		LSB	V_{OUT} load = 10 M Ω
Offset Error at 25°C ± 6 LSB V_{OUT} load = 10 M Ω T_MIN to T_MAX ± 16 LSBBipolar Zero Error at 25°C ± 6 LSBT_MIN to T_MAX ± 12 LSBGain Temperature Coefficient ² ± 1 ppm FSR/°COffset Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CREFERENCE INPUT 40 K Ω Resistance from V_{REF+} to V_{REF-} Input Resistance 20 $K\Omega$ Typically 30 k Ω V_REF+ Range $V_{SS} + 6$ $V_{DD} - 6$ V OUTPUT CHARACTERISTICS $V_{SS} + 4$ $V_{DD} - 3$ V Capacitive Load 2 k Ω To 0 VCapacitive Load 0.3 Ω To 0 VDigital Resistance 0.3 Ω To 0 V or any power supplyDigital Resistance 0.3 Ω To 0 V or any power supplyDigital Low Voltage (V_{L}) 2.4 V VInput High Voltage (V_{L}) 0.4 V Sink current ($(I_{SUNC}) = 1.6$ mAInput Low Voltage (V_{L}) 0.4 V Sink current ($(I_{SUNC}) = 1.6$ mADigital Low Voltage (V_{CL}) 0.4 V Source current ($(I_{SUNC}) = 1.6$ mADigital Low Voltage (V_{CL}) 0.4 V Source current ($(I_{SUNC}) = 1.6$ mADigital Low Voltage (V_{CL}) 0.4 V Source current ($(I_{SUNC}) = 1.6$ mADigital Low Voltage (V_{CL}) 0.4 V Source current ($(I_{SUNC}) = 1.6$ m	T _{MIN} to T _{MAX}			±16	LSB	
T_{NIN} to T_{MAX} ± 16 LSBLSBBipolar Zero Error at 25°C ± 6 LSB T_{NIN} to T_{MAX} ± 12 LSBGain Temperature Coefficient ² ± 1 ppm FSR/°CDifset Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CREFERENCE INPUT20KQResistance from V_{REF+} to V_{REF-} Input Resistance20KQTypically 30 KQ V_{REF-} Range $V_{SS} + 6$ $V_{DD} - 6$ V V_{REF-} Range $V_{SS} + 6$ $V_{DD} - 6$ VOutput Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ VResistance0.3QTo 0 VOutput Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ VCapacitive Load0.3QTo 0 VOutput Resistance0.3QTo 0 V or any power supplyDIGITAL UPUTS1000pFTo 0 V or any power supplyInput Low Voltage (V_{L})0.8VInput Low Voltage (V_{L})0.4VOutput Low Voltage (V_{CR})4.0VOutput Low Voltage (V_{CR})4.0VOutput Low Voltage (V_{CR})4.0VOutput Low Voltage (V_{CR})0.4VDiGITAL UPUTS0.4VDidTAL OUTPUTS0.4VDutput Low Voltage (V_{CR})0.4VDidta Low toolage (V_{CR})	Offset Error at 25°C		±6		LSB	V_{OUT} load = 10 M Ω
Bipolar Zero Error at 25°C ± 6 LSB T_{MN} to T_{MAX} ± 12 LSBGain Temperature Coefficient ² ± 1 ppm FSR*CBipolar Zero Error at 25°C ± 1 ppm FSR*COffset Temperature Coefficient ² ± 1 ppm FSR*CBipolar Zero Error emperature Coefficient ² ± 1 ppm FSR*CREFERENCE INPUTInput Resistance20k Ω Resistance from V _{REF+} to V _{REF-} NREF- RangeV _{SS} + 6V _{DD} - 6VVV _{REF-} RangeV _{SS} + 6V _{DD} - 6VVOutput Voltage SwingV _{SS} + 4V _{DD} - 3VVResistince Load2k Ω To 0 VVOutput Voltage SwingV _{SS} + 4V _{DD} - 3VVCapacitive Load2k Ω To 0 VVOutput Voltage (V _H) ± 25 mATo 0 V or any power supplyDIGITAL INPUTS1000pFTo 0 V or any power supplyInput High Voltage (V _H) ± 10 μA Input Capacitance (C _{IN}) ² Input Low Voltage (V _H) ± 10 μA Source current ((source) = 4:0 μA Input Low Voltage (V _{OL}) 0.4 VSink current ((source) = 4:0 μA Output Low Voltage (V _{OL}) 0.4 VSource current ((source) = 4:0 μA Output Low Voltage (V _{OL}) 4.0 μA Do DO EDIGITAL OUTPUTS μA μA Do DUTPUT ((source) = 4:0 μA Output Low Voltage (V _{OL}) μA μA Do DUF = <tr< td=""><td>Τ_{ΜΙΝ} to Τ_{ΜΔΧ}</td><td></td><td></td><td>±16</td><td>LSB</td><td></td></tr<>	Τ _{ΜΙΝ} to Τ _{ΜΔΧ}			±16	LSB	
T_{MM} to T_{MAX} ± 12 LSBGain Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CInput Resistance20kQResistance from V_{REF+} to V_{REF-} V_{REF+} Range $V_{SS} + 6$ $V_{DD} - 6$ V V_{REF-} Range $V_{SS} + 6$ $V_{DD} - 6$ V Output Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ V Resistance0.3 Q To 0 VCapacitive Load1000pFTo 0 VOutput Voltage (V_{LA}) ± 25 mATo 0 V or any power supplyDIGTAL INPUTS2.4 V V Input Law Voltage (V_{L}) ± 10 μA Input Capacitance (C_{M}) ² Input Low Voltage (V_{L}) 0.4 V Sink current (I_{SUNRC}) = 1.6 mAOutput Low Voltage (V_{OL}) 0.4 V Source current (I_{SUNRC}) = 400 μA Input Low Voltage (V_{OL}) 0.4 V Source current (I_{SUNRC}) = 400 μA Input Low Voltage (V_{OL}) 0.4 V Source current (I_{SUNRC}) = 1.6 mAOutput High Voltage (V_{OL}) 0.4 V Source current (I_{SUNRC}) = 400 μA Input Low Voltage (V_{OL}) 0.4 V Source current (I_{SUNRC}) = 400 μA Input Low Voltage (V_{OL}) 0.4 V Source current (I_{SUNRC}) = 1.6 mA <tr< td=""><td>Bipolar Zero Error at 25°C</td><td></td><td>±6</td><td></td><td>LSB</td><td></td></tr<>	Bipolar Zero Error at 25°C		±6		LSB	
Gain Temperature Coefficient2 ± 1 ppm FSR/°COffset Temperature Coefficient2 ± 1 ppm FSR/°CBipolar Zero Temperature Coefficient2 ± 1 ppm FSR/°CInput Resistance20k Ω Resistance from V _{REF+} to V _{REF-} VREF+ RangeV _{SS} + 6V _{DD} - 6VVREF- RangeV _{SS} + 6V _{DD} - 6VOUTPUT CHARACTERISTICSVVVOutput Voltage SwingV _{SS} + 4V _{DD} - 3VResistance0.3 Ω To 0 VCapacitive Load1000pFTo 0 VOutput Resistance0.3 Ω To 0 V or any power supplyDIGITAL INPUTS2.4VVInput Low Voltage (V _{IL})0.8VInput Low Voltage (V _{CL})0.4VSink current (I _{SMK}) = 1.6 mAOutput High Voltage (V _{OL})0.4VSource current (I _{SOURCE}) = 400 μ ADIGITAL UTPUTS0.4VSource current (I _{SOURCE}) = 400 μ AInput Low Voltage (V _{OL})0.4VSource current (I _{SOURCE}) = 400 μ ADIGITAL UTPUTS0.4VSource current (I _{SOURCE}) = 400 μ AInput Low Voltage (V _{OL})0.4VSource current (I _{SOURCE}) = 400 μ AInput Low Voltage (V _{OL})0.4VSource current (I _{SOURCE}) = 400 μ AInput Low Voltage (V _{OL})0.4VSource current (I _{SOURCE}) = 400 μ AInput Low Voltage (V _{OL})0.4VSource current (I _{SOURCE}) = 400 μ ADutput Low Voltage (V _{OL})0.4 </td <td>T_{MIN} to T_{MAX}</td> <td></td> <td></td> <td>±12</td> <td>LSB</td> <td></td>	T _{MIN} to T _{MAX}			±12	LSB	
Offset Temperature Coefficient ² ± 1 pm FSR/°CBipolar Zero Temperature Coefficient ² ± 1 pm FSR/°CREFERENCE INPUTInput Resistance20k Ω Resistance from V_{REF+} to V_{REF-} Input Resistance20k Ω Resistance from V_{REF+} to V_{REF-} VREF+ Range $V_{SS} + 6$ $V_{DD} - 6$ VOUTPUT CHARACTERISTICSVVSS + 4 $V_{DD} - 6$ VOutput Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ VVResistive Load2k Ω To 0 VVCapacitive Load0.3 Ω To 0 VVOutput Resistance0.3 Ω To 0 V or any power supplyDIGITAL INPUTS2.4VVVInput Legacitance (C_{N}) ² 10pFDisk current (I_{SINK}) = 1.6 mAOutput Woltage (V_{L1})4.0VSink current (I_{SINK}) = 1.6 mAOutput High Voltage (V_{OL})4.0VDB0 to DB15 = 0 V to V_{CC}	Gain Temperature Coefficient ²		±1		ppm FSR/°C	
Bipolar Zero Temperature Coefficient ² ± 1 ppm FSR/°CREFERENCE INPUT Input Resistance20k Ω Resistance from V _{REF+} to V _{REF+} Typically 30 k Ω V _{REF+} RangeV _{SS} + 6V _{DD} - 6VV _{REF-} RangeV _{SS} + 6V _{DD} - 6VOUTPUT CHARACTERISTICS0VOutput Voltage SwingV _{SS} + 4V _{DD} - 3VResistive Load2K Ω To 0 VCapacitive Load1000pFTo 0 VOutput Voltage Samce0.3 Ω To 0 V or any power supplyDIGITAL INPUTS2.4VVInput Low Voltage (V _H)±10 μ AInput Capacitance (C _{IN}) ² 0.4VDIGITAL OUTPUTS0.4VOutput Voltage (V _{OL})4.0VSource current (Isource) = 400 μ ADigital Leakage Current±10 μ AInput Low Voltage (V _{OL})0.4VDigital Lourput S0.4VDigital Lourput S0.4VDutput State Leakage Current±10 μ AFloating State Leakage Current±10 μ AFloating State Leakage Current±10 μ AFloating State Leakage Current10 μ F	Offset Temperature Coefficient ²		±1		ppm FSR/°C	
REFERENCE INPUT Input Resistance20kΩResistance from V_{REF+} to V_{REF-} Typically 30 kΩ V_{REF+} Range $V_{SS} + 6$ $V_{DD} - 6$ V V_{REF-} Range $V_{SS} + 6$ $V_{DD} - 6$ V OUTPUT CHARACTERISTICS $V_{SS} + 4$ $V_{DD} - 3$ V Output Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ V Resistive Load2kΩTo 0 VCapacitive Load0.3 Ω Short Circuit Current ± 25 mATo 0 V or any power supplyDIGITAL INPUTS0.8 V Input Low Voltage (V_{IL}) 0.8 V Input Capacitance (C_{IN}) ² 10 pF DIGITAL OUTPUTS0.4 V Sink current ($(I_{SINK}) = 1.6$ mAOutput High Voltage (V_{CL}) 0.4 V Source current ($(I_{SINK}) = 1.6$ mADIGITAL OUTPUTS ± 10 μ ADB0 to DB15 = 0 V to V_{CC} Floating State Leakage Current ± 10 μ ADB0 to DB15 = 0 V to V_{CC}	Bipolar Zero Temperature Coefficient ²		±1		ppm FSR/°C	
$\begin{array}{ c c c c c c } \mbox{Input Resistance} & 20 & K\Omega & Resistance from V_{REF+} to V_{REF-} \\ & 40 & K\Omega & Typically 30 \ k\Omega & V_{REF-} to V_{REF-} \\ \hline V_{REF-} Range & V_{SS} + 6 & V_{DD} - 6 & V & V \\ \hline OUTPUT CHARACTERISTICS & & & & & & & & & & & & & & & & & & &$	REFERENCE INPUT					
V_{REF} , Range $V_{SS} + 6$ $V_{DD} - 6$ V Typically 30 kΩ V_{REF} , Range $V_{SS} + 6$ $V_{DD} - 6$ V OUTPUT CHARACTERISTICS $V_{SS} + 4$ $V_{DD} - 3$ V Output Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ V Resistive Load2kΩTo 0 VCapacitive Load1000pFTo 0 VOutput Resistance0.3ΩShort Circuit Current±25mATo 0 V or any power supplyDIGITAL INPUTS2.4VInput High Voltage (V _H)2.4VInput Current (I _N)±10 μ AInput Current (I _N)±10 μ AInput Current (I _N)0.4VSink current (I _{SINK}) = 1.6 mASource current (I _{SOURCE}) = 400 μ AFloating State Leakage Current±10 μ A	Input Resistance	20			kΩ	Resistance from V _{REF+} to V _{REF-}
V_{REF+} Range $V_{SS} + 6$ $V_{DD} - 6$ V V_{REF-} Range $V_{SS} + 6$ $V_{DD} - 6$ V $OUTPUT CHARACTERISTICSV_{SS} + 4V_{DD} - 3VOutput Voltage SwingV_{SS} + 4V_{DD} - 3VResistive Load2k\OmegaTo 0 VCapacitive Load1000pFTo 0 VOutput Resistance0.3\OmegaShort Circuit Current\pm 25DIGITAL INPUTS100PFTo 0 V or any power supplyInput High Voltage (V1L)0.8VInput Current (IN)\pm 10\mu AInput Current (IN)\pm 10\mu AInput Capacitance (CIN)20.4VDIGITAL OUTPUTS0.4VOutput High Voltage (VOL)0.4VOutput High Voltage (VOL)4.0VDIGITAL OUTPUTSUUOutput High Voltage (VOL)UOutput High Voltage (VOL)UUUUUUUUUUUUUUUUUUUUUUUUUUUUU<$	•			40	kΩ	Typically 30 kΩ
NEE Range $V_{SS} + 6$ $V_{DD} - 6$ V OUTPUT CHARACTERISTICS $V_{SS} + 4$ $V_{DD} - 3$ V Qutput Voltage Swing $V_{SS} + 4$ $V_{DD} - 3$ V Resistive Load 2 KΩ To 0 V Capacitive Load 1000 pF To 0 V Output Resistance 0.3 Ω Short Circuit Current ± 25 mA To 0 V or any power supply DIGITAL INPUTS Input High Voltage (V _{IL}) 2.4 V V Input Current (I _N) Input Current (I _N) ± 10 μA Input Current (I _N) E Input Current (I _N) Input Current (I _N) ± 10 μA Input Current (I _N) Input Current (I _N) ± 10 μA Input Capacitance (C _{IN}) ² 1.6 A Source current (I _{SOURCE}) = 4.00 μA Input Current (I _{SOURCE}) = 4.00 μA IDB0 to DB15 = 0 V to V _{CC} DB0 to DB15 = 0 V to V _{CC}	V _{REE+} Range	V _{SS} + 6		V _{DD} – 6	V	
TRUECoDoDoOUTPUT CHARACTERISTICS $V_{SS} + 4$ $V_{DD} - 3$ V Output Voltage Swing 2 $k\Omega$ To 0 VResistive Load21000pFTo 0 VOutput Resistance0.3 Ω Short Circuit Current ± 25 mATo 0 V or any power supplyDIGITAL INPUTS1nput High Voltage (V _H)2.4VVInput Low Voltage (V _H)2.4Input Low Voltage (V _{IL})0.8VInput Current (I _{IN}) ± 10 μA Input Current (I _N) ± 10 μA Source current (I _{SINK}) = 1.6 mADIGITAL OUTPUTS0.4VSource current (I _{SOURCE}) = 400 μA Diding State Leakage Current ± 10 μA DB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 pF DB0 to DB15 = 0 V to V _{CC}	V _{REE} Range	V _{SS} + 6		V _{DD} - 6	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OUTPUT CHARACTERISTICS			00		
Resistive Load2kQTo 0 VCapacitive Load1000pFTo 0 VOutput Resistance0.3QShort Circuit Current ± 25 mATo 0 V or any power supplyDIGITAL INPUTS1 ± 25 mATo 0 V or any power supplyInput High Voltage (V _{IL})0.8VInput Current (I _{IN})Input Current (I _{IN}) ± 10 μ AFeDIGITAL OUTPUTS0.4VSink current (I _{SINK}) = 1.6 mAOutput Low Voltage (V _{OL})0.4VSource current (I _{SINK}) = 1.6 mAOutput High Voltage (V _{OL})0.4VSource current (I _{SUNCE}) = 400 μ AFloating State Leakage Current ± 10 μ ADB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 p FDIG to V	Output Voltage Swing	Vss + 4		Vpp - 3	V	
Capacitive LoadImage: Constraint of the	Resistive Load	2			kO	To 0 V
Output Resistance0.3 Ω Short Circuit Current ± 25 mATo 0 V or any power supplyDIGITAL INPUTSInput High Voltage (V _{IH})2.4VInput Low Voltage (V _{IL})0.8VInput Capacitance (C _{IN}) ² 10pFDIGITAL OUTPUTS0.4VOutput High Voltage (V _{OL})0.4VSink current (I _{SUNK}) = 1.6 mAOutput High Voltage (V _{OH})4.0VFloating State Leakage Current ± 10 μA Floating State Qutput Capacitance ² 10 pF	Capacitive Load	_		1000	pF	To 0 V
Short Circuit Current ± 25 mATo 0 V or any power supplyDIGITAL INPUTS Input High Voltage (V _H)2.4VInput Low Voltage (V _H)2.4VInput Current (I _N) ± 10 μA Input Capacitance (C _{IN}) ² 10pFDIGITAL OUTPUTS Output Low Voltage (V _{OL})0.4VSink current (I _{SINK}) = 1.6 mAOutput High Voltage (V _{OL})4.0VSource current (I _{SOURCE}) = 400 μA Floating State Leakage Current Floating State Qutput Capacitance ² 10	Output Resistance		0.3		Ω	
DIGITAL INPUTS2.4VInput High Voltage (V _{IL})2.4VInput Low Voltage (V _{IL})0.8VInput Current (I _{IN}) ± 10 μA Input Capacitance (C _{IN}) ² 10 pF DIGITAL OUTPUTS0.4VOutput High Voltage (V _{OL})0.4VOutput High Voltage (V _{OH})4.0VFloating State Leakage Current ± 10 μA DB0 to DB15 = 0 V to V _{CC} 10	Short Circuit Current		±25		mA	To 0 V or any power supply
Input High Voltage (V _{IH})2.4VInput Low Voltage (V _{IL})0.8VInput Current (I _{IN}) ± 10 μA Input Capacitance (C _{IN}) ² 10pFDIGITAL OUTPUTS0.4VOutput High Voltage (V _{OL})0.4VOutput High Voltage (V _{OH})4.0VFloating State Leakage Current ± 10 μA DB0 to DB15 = 0 V to V _{CC} 10pF	DIGITAL INPUTS					
Input Low Voltage (VIL)0.8VInput Current (IN) ± 10 μA Input Capacitance (CIN) ² 10 pF DIGITAL OUTPUTS0.4VOutput Low Voltage (VOL)0.4VSink current (ISINK) = 1.6 mAOutput High Voltage (VOH)4.0Floating State Leakage Current ± 10 Floating State Output Capacitance ² 10	Input High Voltage (V _{IH})	2.4			V	
Input Current (I _{IN}) ± 10 μA Input Capacitance (C _{IN}) ² 10 pF DIGITAL OUTPUTS 0.4 V Sink current (I _{SINK}) = 1.6 mA Output High Voltage (V _{OL}) 0.4 V Source current (I _{SOURCE}) = 400 μA Floating State Leakage Current ± 10 μA DB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 pF	Input I ow Voltage (V ₁)			0.8	V	
Input Capacitance $(C_{IN})^2$ 10 pF DIGITAL OUTPUTS 0.4 V Sink current $(I_{SINK}) = 1.6 \text{ mA}$ Output Low Voltage (V_{OL}) 0.4 V Source current $(I_{SOURCE}) = 400 \ \mu A$ Floating State Leakage Current ± 10 μA DB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 pF pF	Input Current (Im)			+10	uA	
DIGITAL OUTPUTS 0.4 V Sink current (I _{SINK}) = 1.6 mA Output Low Voltage (V _{OL}) 0.4 V Source current (I _{SOURCE}) = 400 µA Floating State Leakage Current ±10 µA DB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 pF	Input Capacitance $(C_{IN})^2$			10	pF	
Output Low Voltage (V _{OL}) 0.4 V Sink current (I _{SINK}) = 1.6 mA Output High Voltage (V _{OH}) 4.0 V Source current (I _{SOURCE}) = 400 µA Floating State Leakage Current ±10 µA DB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 pF						
Output High Voltage (V_{OH})4.0VSource current (I_{SOURCE}) = 400 µAFloating State Leakage Current±10µADB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10pF	Output Low Voltage (Vol.)			0.4	V	Sink current (Ising) = 1.6 mA
Floating State Leakage Current ±10 μA DB0 to DB15 = 0 V to V _{CC} Floating State Output Capacitance ² 10 νF	Output High Voltage (Volt)	4.0		•••	v	Source current (Isource) = 400 IIA
Floating State Output Capacitance ²	Floating State Leakage Current			+10	uA	DB0 to DB15 = 0 V to V_{co}
	Floating State Output Capacitance ²			10	pF	

Table 1. Specifications (Continued)

Parameter ¹	Min	Тур	Мах	Unit	Test Conditions/Comments
POWER REQUIREMENTS ³					
V _{DD}	+11.4		+15.75	V	
V _{SS}	-11.4		-15.75	V	
V _{CC}	+4.75		+5.25	V	
V _{DD} Current (I _{DD})			5	mA	V _{OUT} unloaded
V _{SS} Current (I _{SS})			5	mA	V _{OUT} unloaded
V _{CC} Current (I _{CC})			1	mA	
Power Supply Sensitivity ⁴			1.5	LSB/V	
Power Dissipation		100		mW	V _{OUT} unloaded

¹ Temperature range is-40°C to +105°C.

² Guaranteed by design and characterization, not production tested.

³ The AD7846-CHIPS is functional with power supplies of ±12 V. See the Typical Performance Characteristics section in the AD7846 data sheet.

 4 $\,$ Sensitivity of gain error, offset error, and bipolar zero error to V_{DD} and V_{SS} variations.

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for design guidance and are not subject to test. $V_{REF+} = +5 V$, $V_{DD} = +14.25 V$ to +15.75 V, $V_{SS} = -14.25 V$ to -15.75 V, $V_{CC} = +4.75 V$ to +5.25 V, and R_{IN} connected to 0 V, unless otherwise noted. The minimum, typical, and maximum values are the limits at T_{MIN} to T_{MAX} .

Table 2. AC Performance Characteristics

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
Output Settling Time ¹			6	μs	To 0.006% FSR, V _{OUT} loaded, V _{REF} = 0 V, typically 3.5 μ s
			9	μs	To 0.003% FSR, V _{OUT} loaded, V _{REF-} = –5 V, typically 6.5 μ s
Slew Rate		7		V/µs	
Digital-to-Analog Glitch					
Impulse		70		nV-sec	DAC alternately loaded with 10 0000 and 01 1111, V_{OUT} unloaded
AC Feedthrough		0.5		mV p-p	$V_{\text{REF-}}$ = 0 V, $V_{\text{REF+}}$ = 1 V RMS, 10 kHz sine wave, DAC loaded with all 0s
Digital Feedthrough		10		nV-sec	DAC alternately loaded with all 1s and all 0s, $\overline{\text{CS}}$ high
Output Noise Voltage Density, 1 kHz to 100 kHz		50		nV/√Hz	Measured at V _{OUT} , DAC loaded with 0111011 11, V _{REF+} = V _{REF-} = 0 V

¹ LDAC = 0. Settling time does not include deglitching time of 2.5 µs (typ).

TIMING CHARACTERISTICS

 V_{DD} = +14.25 V to +15.75 V, V_{SS} = -14.25 V to -15.75 V, and V_{CC} = +4.75 V to +5.25 V, unless otherwise noted. The minimum, typical, and maximum value limits are T_{MIN} to T_{MAX} .

Parameter ¹	Min	Тур	Max	Unit	Test Conditions/Comments	
t ₁	0			ns	R/\overline{W} to \overline{CS} setup time	
t ₂	60			ns	CS pulse width (write cycle)	
t ₃	0			ns	R/\overline{W} to \overline{CS} hold time	
t ₄	60			ns	Data setup time	
t ₅	0			ns	Data hold time	
t ₆ ²			120	ns	Data access time	
t ₇ ³	10			ns	Bus relinquish time	
			60	ns		
t ₈	0			ns	CLR setup time	
t ₉	70			ns	CLR pulse width	
t ₁₀	0			ns	CLR hold time	
t ₁₁	70			ns	LDAC pulse width	
t ₁₂	130			ns	CS pulse width (read cycle)	

¹ Timing specifications are sample tested at 25°C to ensure compliance. All input control signals are specified with rise time (t_R) = fall time (t_F) = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.

² t₆ is measured with the load circuits of Figure 3 and Figure 4 and defined as the time required for an output to cross 0.8 V or 2.4 V.

³ t₇ is defined as the time required for an output to change 0.5 V when loaded with the circuits of Figure 5 and Figure 6.

Timing Diagrams

Figure 2. Timing Diagram

Figure 4. Load Circuits for Bus Relinquish Time (t_6)—High Z to V_{OL}

$$DBx \circ \underbrace{ \begin{array}{c} \bullet \\ & &$$

Figure 5. Load Circuit for Access Time (t_7)—High Z to V_{OH}

305

Figure 6. Load Circuits for Bus Relinquish Time (t7)—High Z to VOL

ABSOLUTE MAXIMUM RATINGS

Table 4. Absolute Maximum Ratings

Parameter	Rating
V _{DD} to DGND	-0.4 V to +17 V
V _{CC} to DGND	-0.4 V, V _{DD} + 0.4 V, or +7 V (whichever is
	lower)
V _{SS} to DGND	+0.4 V to -17 V
V _{REF+} to DGND	V _{DD} + 0.4 V, V _{SS} - 0.4 V
V _{REF-} to DGND	V _{DD} + 0.4 V, V _{SS} - 0.4 V
V _{OUT} to DGND ¹	V_{DD} + 0.4 V, V_{SS} – 0.4 V, or ±10 V (whichever is
	lower)
R _{IN} to DGND	V _{DD} + 0.4 V, V _{SS} - 0.4 V
Digital Input Voltage to DGND	-0.4 V to V _{CC} + 0.4 V
Digital Output Voltage to DGND	-0.4 V to V _{CC} + 0.4 V
Power Dissipation	
To 75°C	1000 mW
Derates Above 75°C	10 mW/°C
Temperature	
Operating Range	-40°C to +105°C
Storage Range	-65°C to +150°C

¹ V_{OUT} can be shorted to DGND, V_{DD}, V_{SS}, or V_{CC} provided that the power dissipation of the die is not exceeded.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES 1. NC = NO CONNECT. PROBE PAD. DO NOT CONNECT TO THIS PAD.

200

Table 5. Pad Function Descriptions

Ded No.	Mnomonio	Pod Tyrpo	V Avia	V Avia	Decarintian
Pau No.	whemonic	Pau Type	X-AXIS	T-AXIS	Description
1	DB2	Single	+158	+1759	Data Input and Output.
2	DB1	Single	-240	+1759	Data Input and Output.
3	DB0	Single	-735	+1825	Data Input and Output, LSB.
4A	N	Daubla	-1335	+1812	Depitive Supply for the Apples Circuits, 15 V Neminal
4B	VDD	Double	-1515	+1812	
5	V _{OUT}	Single	-1675	+1631	DAC Output.
6	R _{IN}	Single	-1675	+901	Input to Summing Resistor of the DAC Output Amplifier. R _{IN} is used to select the output voltage ranges.
7A		Daubla	-1617	+312	
7B	V _{REF+}	Double	-1617	+132	VREF+ Input. The DAC is specified for VREF+ = 5 V.
8A		Dauble	-1617	-56	
8B	V _{REF} -	Double	-1617	-236	VREF- Input. For unipolar operation, connect VREF- to UV, and for bipolar operation, connect it to -5 V.
9	V _{SS}	Single	-1676	-738	Negative Supply for the Analog Circuitry, -15 V Nominal.
10	DB15	Single	-1662	-1223	Data Input and Output, MSB.
11	DB14	Single	-1662	-1624	Data Input and Output.
12	DB13	Single	-1223	-1756	Data Input and Output.
13	DB12	Single	-821	-1756	Data Input and Output.
14	DB11	Single	-124	-1756	Data Input and Output.
15	DB10	Single	+270	-1756	Data Input and Output.
16	DB9	Single	+744	-1758	Data Input and Output.
17	DB8	Single	+1118	-1758	Data Input and Output.
18	DB7	Single	+1541	-1767	Data Input and Output.
19	DB6	Single	+1660	-1347	Data Input and Output.
20	DGND	Single	+1613	-883	Ground for the Digital Circuitry.
21	Vcc	Single	+1645	-333	Positive Supply for the Digital Circuitry, 5 V Nominal.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pad Function Descriptions (Continued)

Pad No.	Mnemonic	Pad Type	X-Axis	Y-Axis	Description
22	R/W	Single	+1674	+283	R/W Input. This pin can be used to load data to the DAC or to read back the DAC latch contents.
23	CS	Single	+1676	+643	Chip Select Input. This pin selects the device.
24	CLR	Single	+1676	+1329	Clear Input. The DAC can be cleared to 000000 or 100000.
25	LDAC	Single	+1654	1720	Asynchronous Load Input to the DAC.
26	DB5	Single	+1256	+1747	Data Input and Output.
27	DB4	Single	+907	+1747	Data Input and Output.
28	DB3	Single	+573	+1747	Data Input and Output.
N/A	NC	Single	+675	+1409	Probe pad. Do not connect to this pad.
N/A	NC	Single	-725	-908	Probe pad. Do not connect to this pad.
N/A	NC	Single	-1048.5	+1809.4	Probe pad. Do not connect to this pad.
N/A	NC	Single	-1174.5	+1809.4	Probe pad. Do not connect to this pad.
N/A	NC	Single	-1669	-464.9	Probe pad. Do not connect to this pad.
N/A	NC	Single	-515	-1803.9	Probe pad. Do not connect to this pad.
N/A	NC	Single	+1675	+846.5	Probe pad. Do not connect to this pad.
N/A	NC	Single	+1675.4	+1021	Probe pad. Do not connect to this pad.

Table 6. Output Voltage Ranges

Output Range (V)	V _{REF+} (V)	V _{REF-} (V)	R _{IN} (V)
0 to +5	+5	0	V _{OUT}
0 to +10	+5	0	0
+5 to -5	+5	-5 V	V _{OUT}
+5 to -5	+5	0	+5
+10 to -10	+5	-5	0

OUTLINE DIMENSIONS

Figure 8. 28-Pad Bare Die [CHIP] (C-28-3) Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS

Table 7. Die Specifications

Parameter	Value	Unit
Die Size	3820 × 4070	μm (maximum)
Thickness	300	μm (typical)
Bond Pad	92 × 92	μm (typical)
Minimum Bond Pad Pitch	180	μm
Bond Pad Composition	Aluminum (AI)/1.0 Silicon (Si)/0.5 Copper (Cu)	%

Table 8. Assembly Recommendations

Assembly Component	Recommendation			
Die Attach	Epoxy dispense			
Bonding Method	Thermosonic gold ball bonding			
Bonding Sequence	Bond Pad 20 (DGND) first			

12-12-2023-A

OUTLINE DIMENSIONS

Updated: January 18, 2024

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD7846-CHIPS	-40°C to +105°C	CHIPS OR DIE	C-28-3

¹ The AD7846-CHIPS is a RoHS compliant part.

