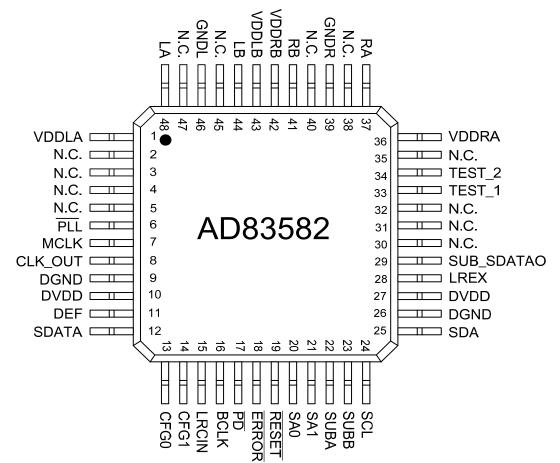
10Wx2 +20W 2.1CH Digital Audio Amplifier with EQ Functions and Sub-Woofer PWM out

Features

- 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR(A-weighting) Loudspeaker: 98dB (PSNR), 108dB (DR) @24V
 Multiple sampling frequencies (Fs)
- Multiple sampling frequencies (f 32kHz / 44.1kHz / 48kHz and 64kHz / 88.2kHz / 96kHz and 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 64x~1024x Fs for 32kHz / 44.1kHz / 48kHz
 64x~512x Fs for 64kHz / 88.2kHz / 96kHz
 64x~256x Fs for 128kHz / 176.4kHz / 192kHz
- Supply voltage
 3.3V for digital circuit
 12V~24V for loudspeaker driver
- Loudspeaker output power for 24V
 10W x 2CH into 8Ω @0.2% THD+N for stereo
 15W x 2CH into 8Ω @0.25% THD+N for stereo
 20W x 1CH into 4Ω @0.25% THD+N for mono
 30W x 1CH into 4Ω @0.3% THD+N for mono
- Sound processing including : 8 bands parametric EQ Volume control (+24dB~-103dB, 0.5dB/step), Dynamic range control 3D surround sound Channel mixing Automatic Zero-detection mute Bass/Treble tone control
 - Bass management crossover filter DC-blocking high-pass filter
- Anti-pop design
- Over-temperature protection
- I²C control interface with selectable device address
- Support hardware and software reset
- Internal PLL
- Subwoofer PWM output
- Under-voltage shutdown
- Short-circuit protection

Applications

- CD and DVD
- TV audio
- Car audio
- Boom-box
- MP3 docking systems
- Powered speaker
- Wireless audio


Description

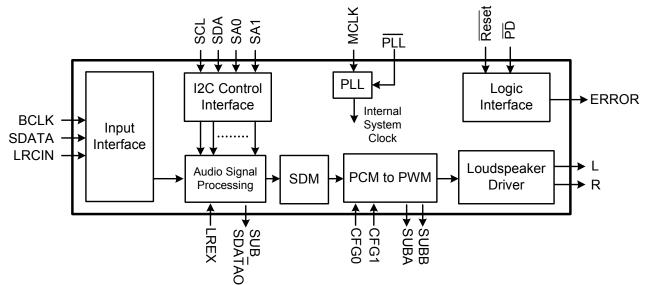
AD83582 is a digital audio amplifier capable of driving a pair of 8Ω , 10W and 4Ω SE, 10W or a single 4Ω , 20W speaker operating at 24V supply without external heat-sink or fan requirement. It's also capable of driving a pair of 8Ω , 15W or a single 4Ω , 30W speaker operating at a 24V supply with proper cooling method.

AD83582 can provide advanced audio processing capabilities, such as volume control, 8 EQ bands, audio mixing, 3D surround and Dynamic Range Control(DRC).These functions are fully programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD83582 from damage due to accidental erroneous operating condition. AD83582 is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog class-AB or class-D audio amplifier counterpart implemented by analog circuit design. AD83582 is pop free during instantaneous power switch because of its built-in, robust anti-pop circuit.

The output stage is flexibly configurable for stereo or mono applications. In addition, AD83582 provides a sub-woofer PWM output port for the increasingly popular 2.1 channel applications. The programmable audio bass content of this subwoofer PWM output port can drive an external, low cost digital amplifier power stage (such as ESMT's AD9256H, AD92580, ...). Furthermore, it is possible to use three pieces of AD83582 to realize 5.1 channels for home theater applications.

Pin Assignment

Pin Description


PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	VDDLA	Р	Left channel supply A	
2	N.C.	NC		
3	N.C.	NC		
4	N.C.	NC		
5	N.C.	NC		
6	PLL	I	PLL enable, low active	Schmitt trigger TTL input buffer
7	MCLK	I	Master clock input	Schmitt trigger TTL input buffer
8	CLK_OUT	0	Clock output from PLL	TTL output buffer
9	DGND	Р	Digital Ground	
10	DVDD	Р	Digital Power	
11	DEF	I	Default volume setting (1:Un-Mute ; 0:Mute)	Schmitt trigger TTL input buffer
12	SDATA	Ι	Serial audio data input	Schmitt trigger TTL input buffer
13	CFG0	I	Stereo/Mono configuration pin (1:Stereo ; 0: Mono)	Schmitt trigger TTL input buffer

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

Publication Date: Sep. 2011 Revision: 0.2 2/57

14	CFG1	I	Sub-woofer PWM output enable, high active	Schmitt trigger TTL input buffer
15	LRCIN	Ι	Left/Right clock input (Fs)	Schmitt trigger TTL input buffer
16	BCLK	Ι	Bit clock input (64Fs)	Schmitt trigger TTL input buffer
17	PD	I	Power down, low active	Schmitt trigger TTL input buffer
18	ERROR	0	Error status, low active	Open-drain output
19	RESET	I	Reset, low active	Schmitt trigger TTL input buffer
20	SA0	Ι	I ² C select address 0	Schmitt trigger TTL input buffer
21	SA1	Ι	I ² C select address 1	Schmitt trigger TTL input buffer
22	SUBA	0	Sub-Woofer PWM output A	
23	SUBB	0	Sub-Woofer PWM output B	
24	SCL	Ι	l ² C serial clock input	Schmitt trigger TTL input buffer
25	SDA	I/O	I ² C bi-directional serial data	Schmitt trigger TTL input buffer
26	DGND	Р	Digital Ground	
27	DVDD	Р	Digital Power	
28	LREX	Ι	Left/Right channel exchange	Schmitt trigger TTL input buffer
29	SUB_SDATAO	0	Sub-woofer serial audio data output	
30	N.C.	NC		
31	N.C.	NC		
32	N.C.	NC		
33	TEST_1	0	Reserved pin for testing purpose	
34	TEST_2	0	Reserved pin for testing purpose	
35	N.C.	NC		
36	VDDRA	Р	Right channel supply A	
37	RA	0	Right channel output A	
38	N.C.	NC		
39	GNDRA	Р	Right channel ground	
40	GNDRB	Р		
41	RB	0	Right channel output B	
42	VDDRB	Р	Right channel supply B	
43	VDDLB	Р	Left channel supply B	
44	LB	0	Left channel output B	
45	GNDLB	Р		
46	GNDLA	Р	Left channel ground	
47	N.C.	NC		
48	LA	0	Left channel output A	

Functional Block Diagram

Ordering Information

Product ID	D Package Packing		Comments
AD83582-LE48NAY	E-LQFP-48L 7x7 mm	2.5K Units / Small Box (250 Units / Tray, 10 Trays / Small Box)	Green

Available Package

Package Type	Device No.	θ _{ja} (°C/W)	Ψ _{jt} (°C/W)	θ _{jc} (°C/W)	Exposed Thermal Pad
7x7 48L E-LQFP	AD83582	27.4	1.33	6.0	Yes (Note1)

Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.

Note 1.2: θ_{ja} is measured on a room temperature (T_A =25 C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The measurement is tested using the JEDEC51-5 thermal measurement standard.

Note 1.3: θ_{jc} represents the heat resistance for the heat flow between the chip and the package's top surface.

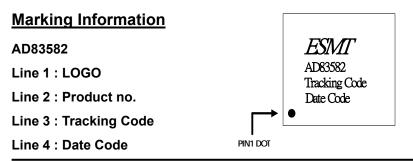
Note 1.4: Ψ_{jt} represents the heat resistance for the heat flow between the chip and the exposed pad's center.

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	0	3.6	V
VDDL/R	Supply for Driver Stage	0	30	V
Vi	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
Ta	Ambient Operating Temperature	0	70	°C

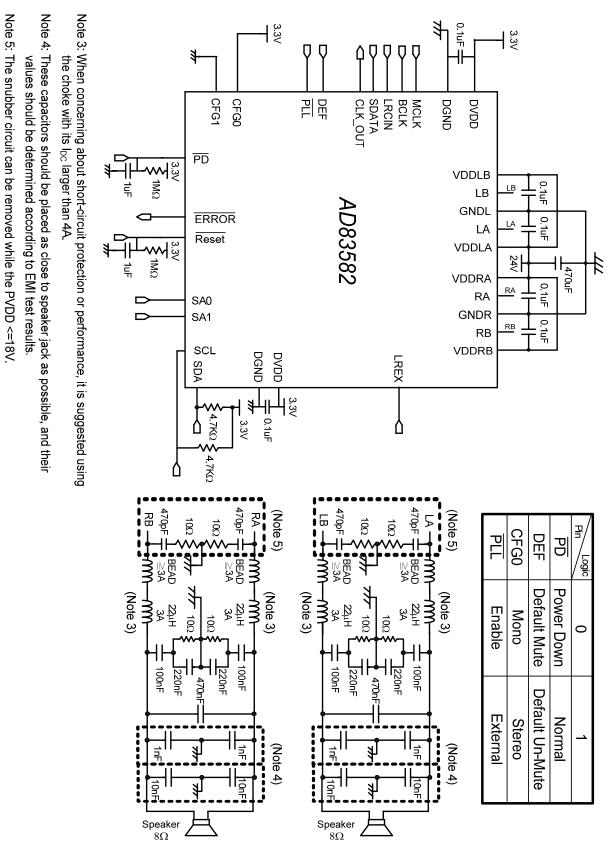
Recommended Operating Conditions

Symbol	Parameter Typ		Units
DVDD	Supply for Digital Circuit 3.15~3.45		V
VDDL/R	Supply for Driver Stage	10~26	V
Ta	T _a Ambient Operating Temperature		°C


Digital Characteristics

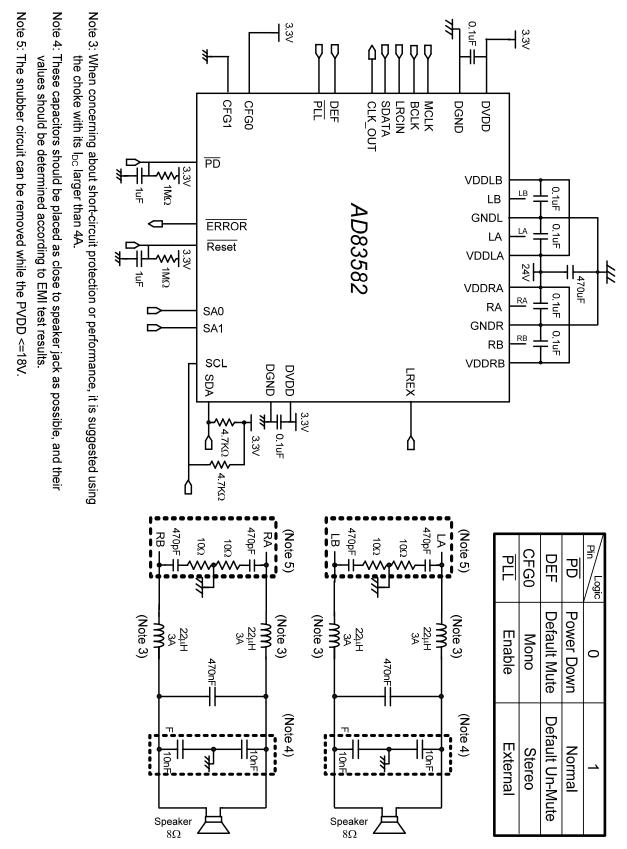
Symbol	Parameter	Min	Тур	Max	Units
V _{IH}	High-Level Input Voltage	2.0			V
V _{IL}	Low-Level Input Voltage			0.8	V
V _{OH}	High-Level Output Voltage	2.4			V
V _{OL}	Low-Level Output Voltage			0.4	V
Cı	Input Capacitance		6.4		pF

General Electrical Characteristics


Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD} (HV)	PVDD Supply Current during Power Down	PVDD=24V			10	uA
I _{PD} (LV)	DVDD Supply Current during Power Down	DVDD=3.3V			10	uA
т	Junction Temperature for Driver Shutdown			160		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			40		°C
UV _H	Under Voltage Disabled (For DVDD)			2.8		V
UVL	Under Voltage Enabled (For DVDD)			2.7		V
Dda an	Static Drain-to-Source On-state Resistor, PMOS	PVDD=24V,		295		m
Rds-on	Static Drain-to-Source On-state Resistor, NMOS	ld=500mA		185		m
	L(R) Channel Over-Current Protection (Note 2)	PVDD=24V		5		А
I _{SC}	Mono Channel Over-Circuit Protection (Note 2)	PVDD=24V		10		А

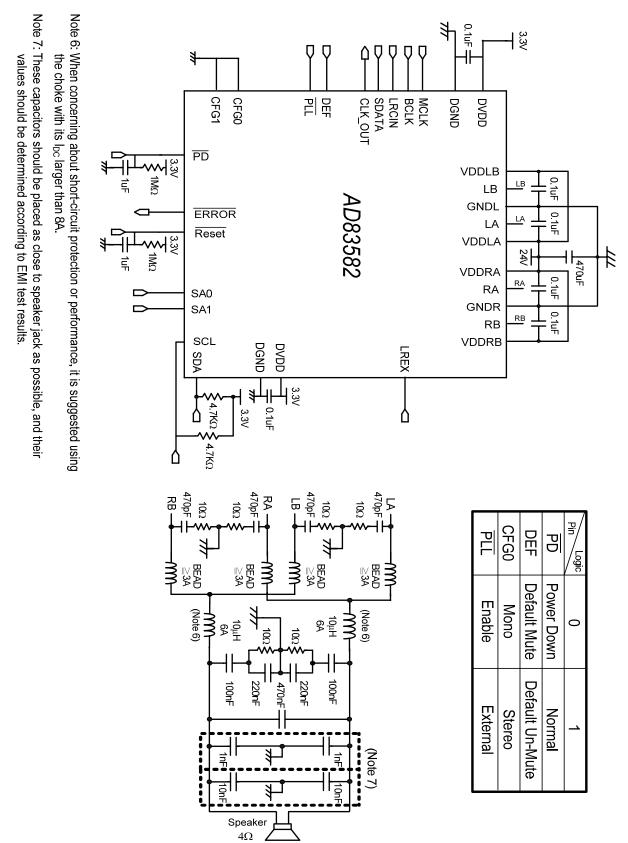
Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

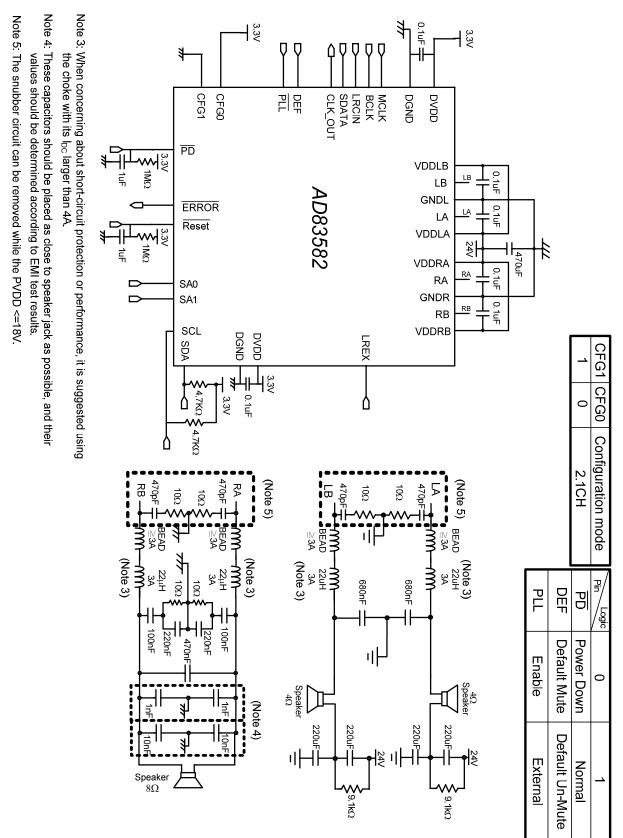

Application Circuit Example for Stereo

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

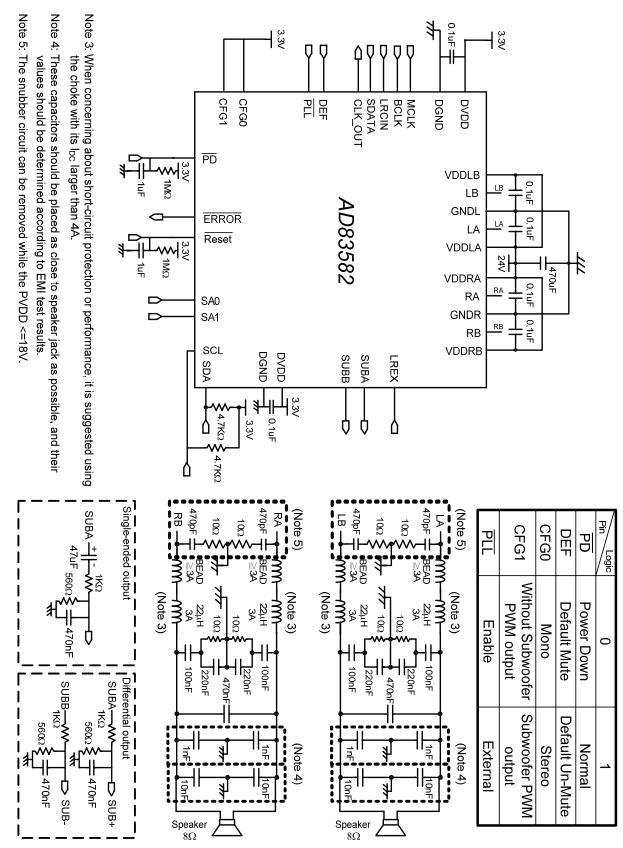
Publication Date: Sep. 2011 Revision: 0.2 6/57


Application Circuit Example for Stereo (Economic type, moderate EMI suppression)

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.


Publication Date: Sep. 2011 Revision: 0.2 7/57

Application Circuit Example for Mono



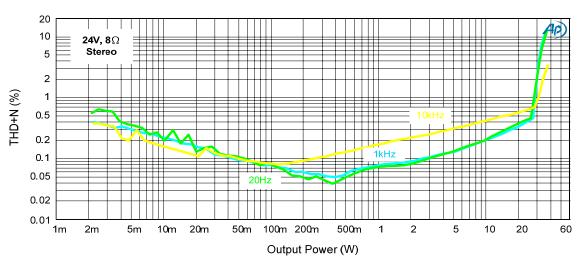
Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

Application Circuit Example for Single Chip 2.1CH (SEx2 + BTLx1)

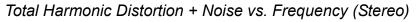
Application Circuit Example for stereo with subwoofer PWM output

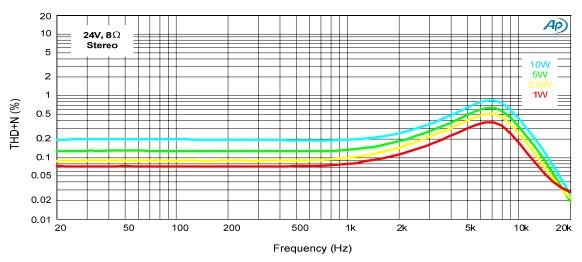
Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

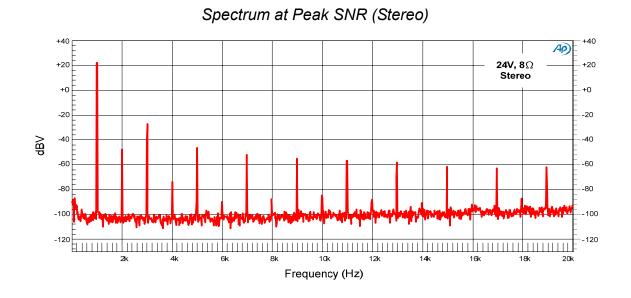
Electrical Characteristics and Specifications for Loudspeaker

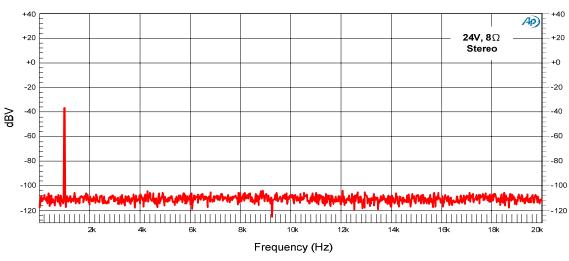

BTL output for stereo

Condition: DVDD =3.3V, VDDL=VDDR=24V, F_s =48kHz, Load=8 with passive LC lowpass filter (L=22µH with R_{DC} =0.12 Ω , C=470nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

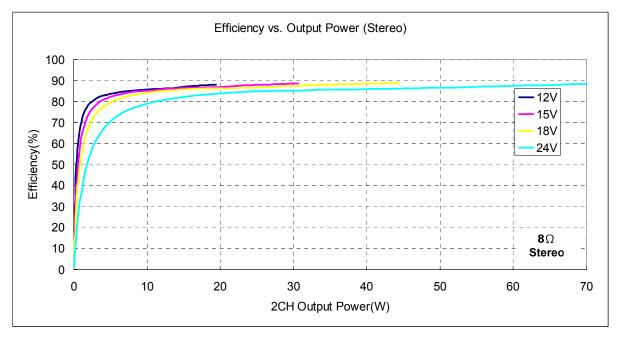

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=10%)	+8dB volume	-6dB		35		W
(Note 9)	RMS Output Power (THD+N=1%)	+8dB volume	-7.8dB		28		W
THD+N	Total Harmonic Distortion + Noise	P _o =21.8W	-1dB		0.37		%
SNR	Signal to Noise Ratio(Note 8)	P _o =21.8W	-1dB		98		dB
DR	Dynamic Range(Note 8)		-60dB		108		dB
PSRR	Power Supply Rejection Ratio		-60dB		60		dB
	Channel Separation	1W @1kHz	-1dB		60		dB
η	Efficiency	THD+N=10%	-6dB		85		%
'7	Efficiency at Power Saving Mode	111D+N-1070	-000		88.5		70

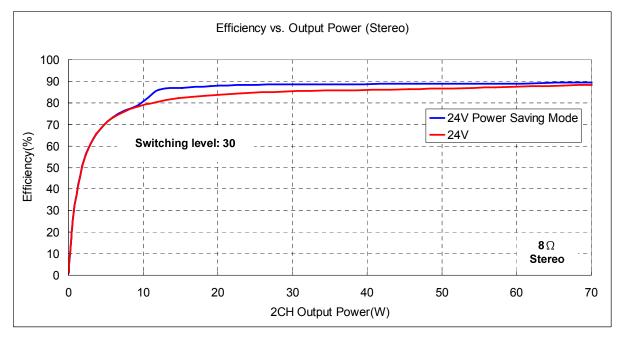

Note 8: Measured with A-weighting filter.


Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.



Total Harmonic Distortion + Noise vs. Output Power (Stereo)



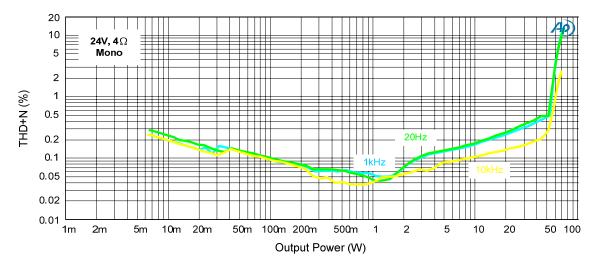


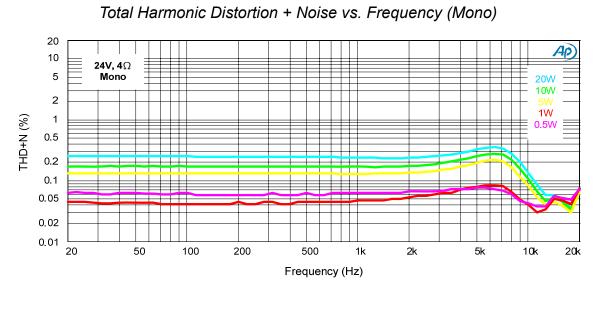
Efficiency (Stereo)

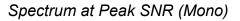
Efficiency (Stereo) for Power Saving Mode

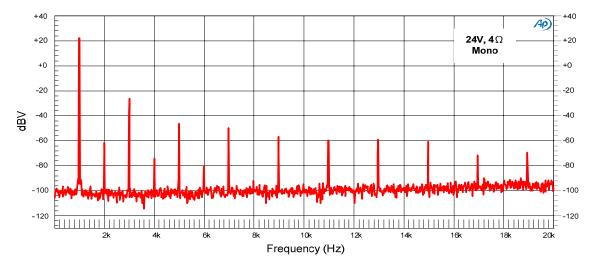
Electrical Characteristics and Specifications for Loudspeaker (cont.)

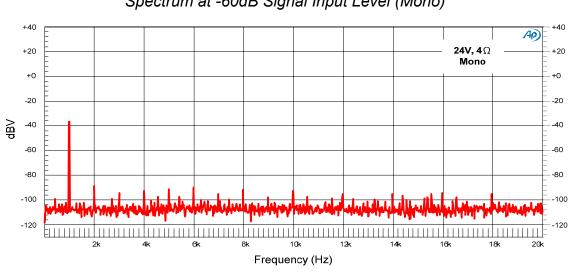
BTL output for mono


Condition: DVDD= 3.3V, VDDL=VDDR=24V, F_s =48kHz, Load=4 with passive LC lowpass filter (L=10µH with R_{DC} =0.12 Ω , C=470nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

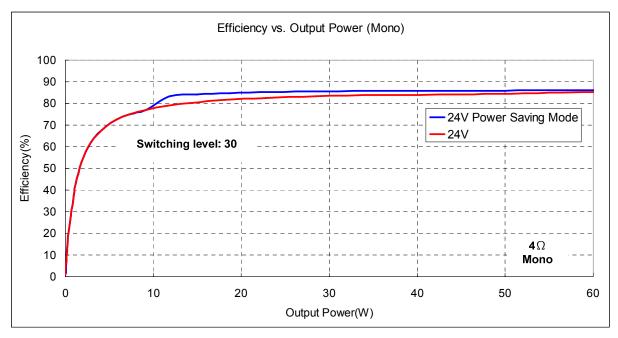

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=10%)	+8dB volume	-5.8dB		69		W
(Note 9)	RMS Output Power (THD+N=1%)	+8dB volume	-7.8dB		56		W
THD+N	Total Harmonic Distortion + Noise	P _o =44W	-1dB		0.4		%
SNR	Signal to Noise Ratio(Note 8)	P _o =44W	-1dB		97		dB
DR	Dynamic Range(Note 8)		-60dB		106		dB
PSRR	Power Supply Rejection Ratio		-60dB		60		dB
n	Efficiency	- THD+N=10% 0	0dB		86		%
η	Efficiency at Power Saving Mode				86.5		70


Note 8: Measured with A-weighting filter.


Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.


Total Harmonic Distortion + Noise vs. Output Power (Mono)



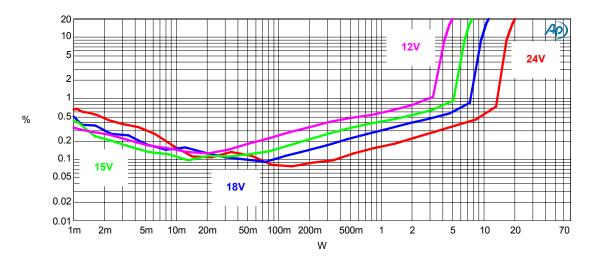


Efficiency (Mono)

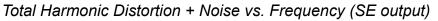
Efficiency (Mono) for Power Saving Mode

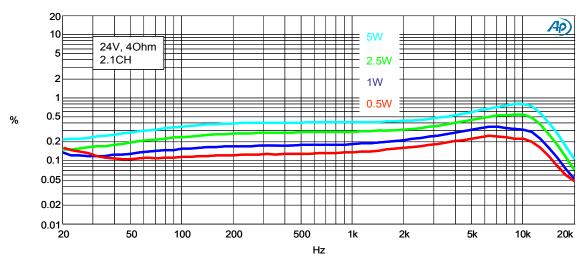
Electrical Characteristics and Specifications for Loudspeaker (cont.)

• SE output with 4ohm loading

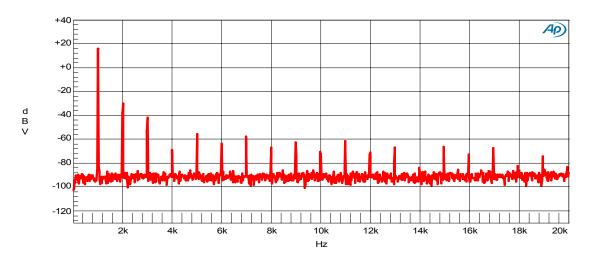

Condition: DVDD= 3.3V, VDDL=VDDR=24V, F_s =48kHz, Load=4 with passive LC lowpass filter (L=22µH km s) with pa

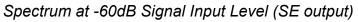
with R_{DC} =0.12 Ω , C=680nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

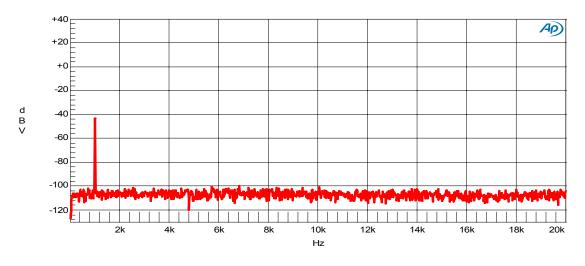

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=10%)	+8dB volume			18		W
(Note 9)	RMS Output Power (THD+N=1%)	+8dB volume			12.8		W
THD+N	Total Harmonic Distortion + Noise	P _o =10.8W	-1dB		0.6		%
SNR	Signal to Noise Ratio(Note 8)	P _o =10.8W	-1dB		82		dB
DR	Dynamic Range(Note 8)		-60dB		98		dB
PSRR	Power Supply Rejection Ratio		-60dB		60		dB
η	Efficiency	THD+N=10%	-6dB		86.1		%
	Efficiency at Power Saving Mode	100+N=10%			86.6		70

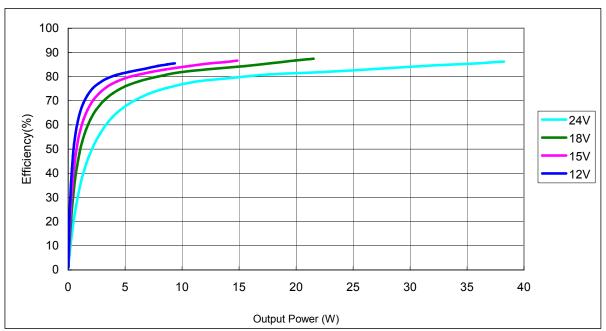

Note 8: Measured with A-weighting filter.

Total Harmonic Distortion + Noise vs. Output Power (SE output)




Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

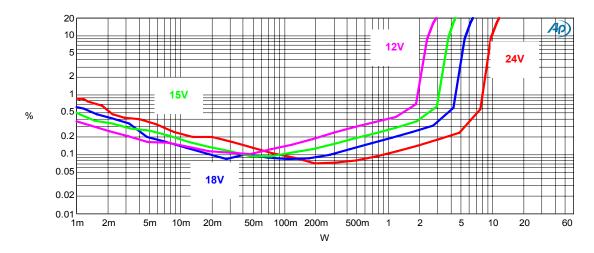


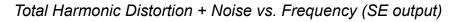


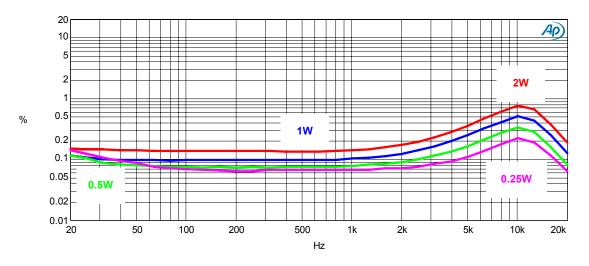
Electrical Characteristics and Specifications for Loudspeaker (cont.)

• SE output with 8ohm loading

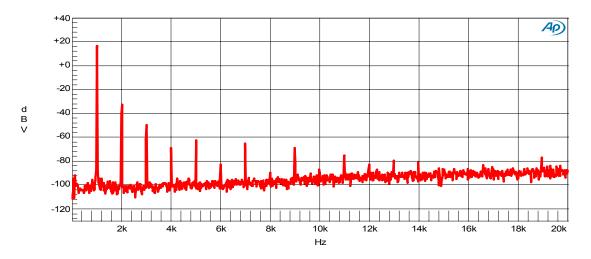
 $\label{eq:condition: DVDD= 3.3V, VDDL=VDDR= 24V, F_S= 48 \text{kHz}, \text{ Load}= 8 \quad \text{with passive LC lowpass filter (L= 22 \mu H)} = 1000 \text{ kHz}, \text{ and } 1000 \text{$

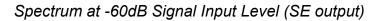

with R_{DC} =0.12 Ω , C=680nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

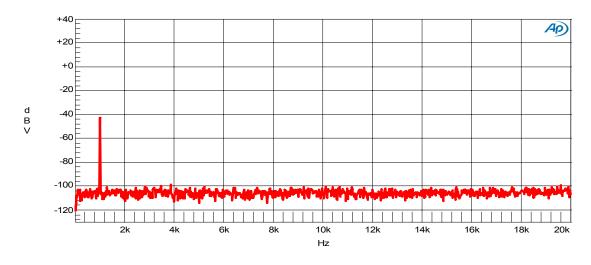

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=10%)	+8dB volume			10		W
(Note 9)	RMS Output Power (THD+N=1%)	+8dB volume			8		W
THD+N	Total Harmonic Distortion + Noise	P _o =6.1W	-1dB		0.3		%
SNR	Signal to Noise Ratio(Note 8)	P _o =6.1W	-1dB		85		dB
DR	Dynamic Range(Note 8)		-60dB		98		dB
PSRR	Power Supply Rejection Ratio		-60dB		60		dB
η	Efficiency	THD+N=10%	-6dB		89		%
	Efficiency at Power Saving Mode	100+N=10%	-006		89.9		70

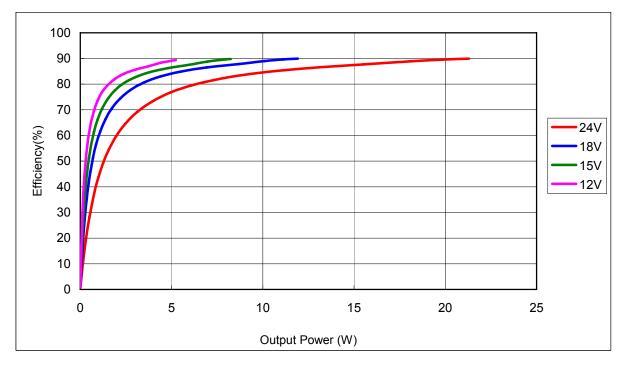

Note 8: Measured with A-weighting filter.

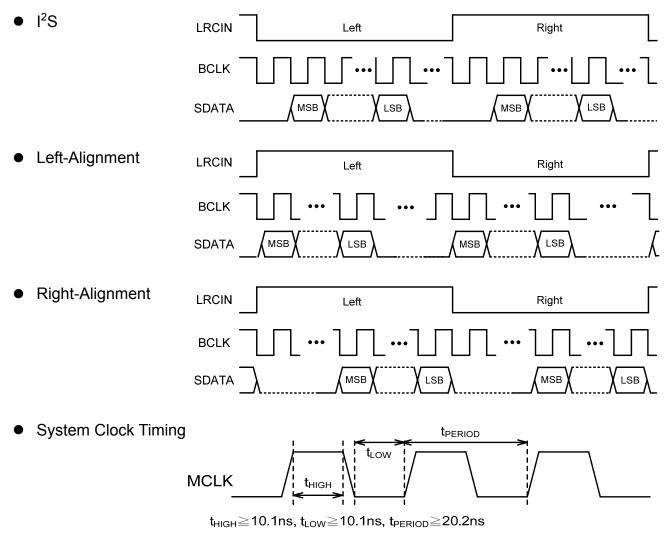
Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.


Total Harmonic Distortion + Noise vs. Output Power (SE output)

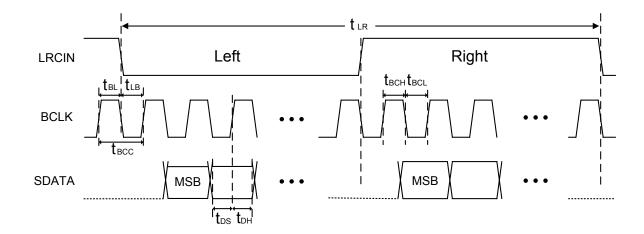






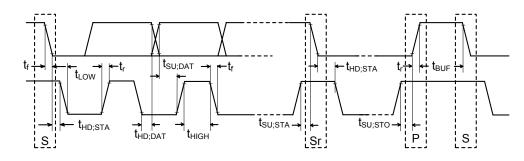


Efficiency for Single Chip 2.1CH (SE output with 8ohm loading)



Interface configuration

• Timing Relationship (Using I²S format as an example)



Preliminary

Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _s)	10.41		31.25	S
t _{BL}	BCLK Rising Edge to LRCIN Edge	50			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	50			ns
t _{BCC}	BCLK Period (1/64F _s)	162.76		488.3	ns
t _{BCH}	BCLK Pulse Width High	81.38		244	ns
t _{BCL}	BCLK Pulse Width Low	81.38		244	ns
t _{DS}	SDATA Set-Up Time	50			ns
t _{DH}	SDATA Hold Time	50			ns

• I²C Timing

Decomptor	Cumphal	Standard	d Mode	Fast Mo	de	Linit
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		S
LOW period of the SCL clock	t _{LOW}	4.7		1.3		s
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		s
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		S
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	s
Setup time for I ₂ C bus data	t _{SU;DAT}	250		100		ns
Rise time of both SDA and SDL signals	tr		1000	20+0.1Cb	300	ns
Fall time of both SDA and SDL signals	t _f		300	20+0.1Cb	300	ns
Setup time for STOP condition	t _{su;sто}	4.0		0.6		S
Bus free time between STOP and the next	+	4 7		1.3		
START condition	t _{BUF}	4.7		1.5		S
Capacitive load for each bus line	Cb		400		400	pF
Noise margin at the LOW level for each	V	0.11/		0.1V _{DD}		V
connected device (including hysteresis)	V _{nL}	$0.1V_{DD}$		U. I V _{DD}		v
Noise margin at the HIGH level for each	V _{nH}	0.2V _{DD}		0.2V _{DD}		V
connected device (including hysteresis)	∨nH	U.2VDD		U.ZVDD		v

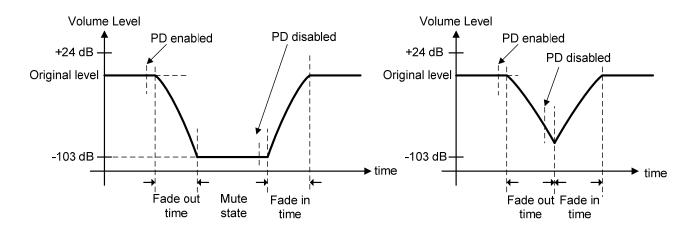
Operation Description

Operation modes

(i) Without I²C control

The default settings, Bass, Treble, EQ, Volume, DRC, PLL, Subwoofer Bandwidth, ..., and Sub-woofer gain are applied to register table content when using AD83582 without I²C control. The more information about default settings, please refer to the highlighted column of register table section.

(ii) With I²C control


When using I^2C control, user can program suitable parameters into AD83582 for their specific applications. Please refer to the register table section to get the more detail.

Reset

When the \overline{RESET} pin is lowered, AD83582 will clear the stored data and reset the register table to default values. AD83582 will exit reset state at the 256th MCLK cycle after the \overline{RESET} pin is raised to high.

• Power down control

AD83582 has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

AD83582 will detect \overrightarrow{PD} pin once an LRCIN cycle. When AD83582 detects 9 consecutive zeros, it will execute a fade-out procedure. The volume level will be decreased to -∞dB in several LRCIN cycles. Once the fade-out procedure is finished, AD83582 will turn off the power stages, clock signals (for digital circuits) and current (for analog circuits). After \overrightarrow{PD} pin is pulled low, AD83582 requires 256 LRCIN clocks to finish the forementioned work before entering power down state. Users can not program AD83582 during power down state. Also all settings in the registers will remain intact unless DVDD is removed.

Preliminary

When AD83582 detect 9 consecutive ones from \overrightarrow{PD} pin, the PD function will be disabled and a fade-in procedure is then executed. If the PD signal is removed during the fade-out procedure (above, right figure), AD83582 will still execute the fade-in procedure. In addition, AD83582 will establish the analog circuits' bias current and send the clock signals to digital circuits. Afterwards, AD83582 will return to its normal status.

• Internal PLL (PLL)

AD83582 has a built-in PLL internally. When the external MCLK clock is high quality enough, you can bypass the PLL function by pulling the PLL pin is high. Otherwise, the internal PLL with an external reference MCLK is highly recommended.

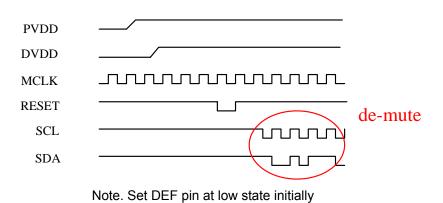
• Self-protection circuits

AD83582 has built-in protection circuits including thermal, short-circuit and under-voltage detection circuits.

- (i) When the internal junction temperature is higher than 160°C, power stages will be turned off and AD83582 will return to normal operation once the temperature drops to 120°C. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires which are connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 5Afor stereo configuration or less than 10A for mono configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state.

Once the over-temperature or short-circuit condition is removed, AD83582 will exit ERROR state when one of the following conditions is met: (1) $\overline{\text{RESET}}$ pin is pulled low, (2) $\overline{\text{PD}}$ pin is pulled low, (3) Master mute is enabled through the I²C interface.

(iii) Once the DVDD voltage is lower than 2.7V, AD83582 will turn off its loudspeaker power stages and cease the operation of digital processing circuits. When DVDD becomes larger than 2.8V, AD83582 will return to normal operation.


ESMT/EMP

• Anti-pop design

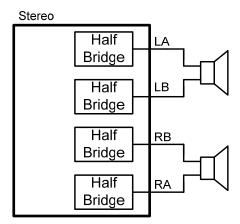
AD83582 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

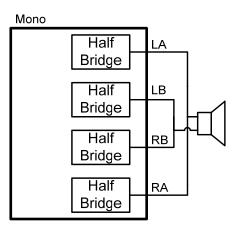
Power on sequence

Hereunder is AD82581's power on sequence. Please note that we suggested users set DEF pin at low state initially, and than give a de-mute command via l^2C when the whole system is stable.

•3D surround sound

AD83582 provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.


AD83582


• Output configuration

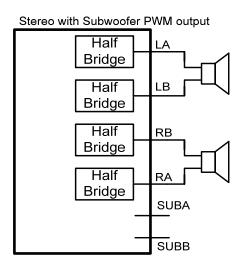
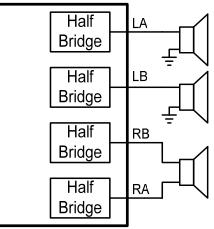

CFG0 and CFG1 define the configuration mode. AD83582 can be configured to stereo, mono, 2.1CH and stereo with subwoofer output mode. Table1 provides a reference of available configuration.

	Table 1.						
CFG1	CFG0	Configuration Mode					
0	0	Mono					
0	1	Stereo					
1	0	2.1CH					
1	1	Stereo with subwoofer output					


Configuration figures:

2.1CH

I²C-Bus Transfer Protocol

Introduction

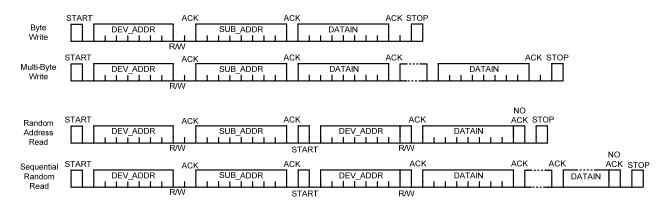
AD83582 employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD83582 is always an I²C slave device.

Protocol

START and STOP condition

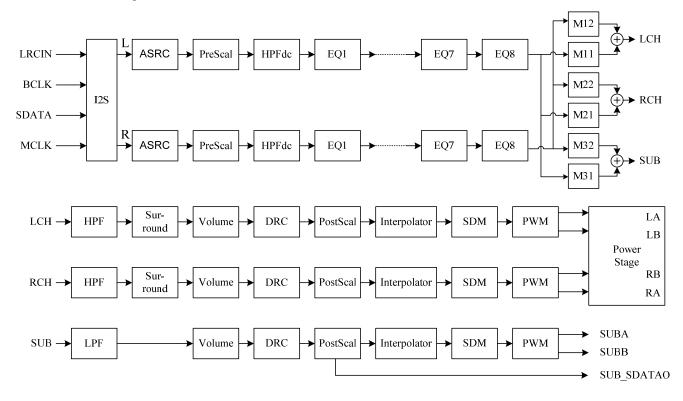
START is identified by a high to low transition of the SDA signal.. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD83582 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity


The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD83582 samples the SDA signal at the rising edge of SCL signal.

Device addressing

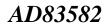
The master generates 7-bit address to recognize slave devices. When AD83582 receives 7-bit address matched with 0110x0y (where x and y can be selected by external SA0 and SA1 pins, respectively), AD83582 will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD83582 internal sub-addresses.


Data transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD83582 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.

Register Table

The AD83582's audio signal processing data flow is shown below. Users can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.


Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]		Rese	erved		LREXC
0X01	SCTL2	Rese	erved	FS[1]	FS[0]	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3	EN_CLKO		Reserved		MMUTE	CM1	CM2	CM3
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	BTONE		Reserved		BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X08	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X09	AUTO1		Rese	erved		XO[3]	XO[2]	XO[1]	XO[0]
0X0A	SCTL4	SRBP	BTE	Reserved	ZDE	EQL	PSL	DSPB	HPB
0X0B	C1CFG	Reserved				C1DRCBP	C1HPFBP	C1VBP	
0X0C	C2CFG		Reserved			C2DRCBP	C2HPFBP	C2VBP	
0X0D	C3CFG		Reserved				C3DRCBP	C3HPFBP	C3VBP

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

Publication Date: Sep. 2011 Revision: 0.2 30/57

Preliminary

NORELARLAISLA										
OX10 ERDLY Image: Control of the second se	0X0E	LAR	LA[3]	LA[2]	LA[1]	LA[0]	LR[3]	LR[2]	LR[1]	LR[0]
OX11 SCTL5 Resord SW_R5T Resord PS_MCLK_DET OT_EN PWM_SEL 0X12 HVUV Image: Strain St	0X0F	LATRT	LAT[3]	LAT[2]	LAT[1]	LAT[0]	LRT[3]	LRT[2]	LRT[1]	LRT[0]
NX12 HVUV Reserved Reserved Reserved RCAR Multical and	0X10	ERDLY				Rese	erved			
OX13ZDCFGImage: Second S	0X11	SCTL5	Rese	erved	SW_RSTB	Rese	erved	DIS_MCLK_DET	QT_EN	PWM_SEL
OX14 CFADDR Reserved CFA[6] CFA[5] CFA[4] CFA[2] CFA[2] CFA[1] CFA[2] 0X15 A1CF1 C18[23] C18[23] C18[21] C18[13] C18[19] C18[19] C18[19] C18[19] C18[11] C18[11] C18[11] C18[11] C18[11] C18[11] C18[13] C18[11] C18[13] C28[10] C38[10] C38[10] C38[10] C38[10] C38[10] C38[10] C38[10] C38[10]	0X12	HVUV		Rese	erved		HV_UVSEL [3]	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
OX15 AICF1 C18[23] C18[24] C18[27] C18[20] C18[19] C18[10] C18	0X13	ZDCFG		Rese	erved		ZD_LEVEL[1]	ZD_LEVEL[0]	ZD_GAIN[1]	ZD_GAIN[0]
OX16 A1CF2 C18[19] C18[14] C18[13] C18[12] C18[13] C28[13] C38[13] C38[13] C38[13] C38[13] C38[13] <thc38[13]< th=""> <thc38[13]< th=""> <thc38[13< td=""><td>0X14</td><td>CFADDR</td><td>Reserved</td><td>CFA[6]</td><td>CFA[5]</td><td>CFA[4]</td><td>CFA[3]</td><td>CFA[2]</td><td>CFA[1]</td><td>CFA[0]</td></thc38[13<></thc38[13]<></thc38[13]<>	0X14	CFADDR	Reserved	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
OX17 A1CF3 C18[7] C18[6] C18[3] C18[3] C18[2] C18[3] C18[2] C18[3] 0X18 A2CF1 C28[23] C28[22] C28[21] C28[20] C28[10] C28[10] C28[11] C28[13] C28[13] C28[13] C28[11] C28[11] C28[11] C28[13] C28[11] C28[11] C28[10] C28[10] C28[11] C28[11] C28[11] C28[11] C28[11] C28[11] C38[11] C48[11]	0X15	A1CF1	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
OX18 A2CF1 C2B[23] C2B[22] C2B[21] C2B[20] C2B[19] C2B[19] C2B[14] C2B[13] 0X19 A2CF2 C2B[15] C2B[14] C2B[13] C2B[13] C2B[14] C2B[13] C2B[14] C2B[13] C2B[14] C2B[14] C2B[13] C2B[14] C2B[14] C2B[13] C2B[14] C2B[14] C2B[13] C2B[14] C2B[13] C2B[14] C2B[13] C2B[14] C2B[14] C2B[14] C2B[15] C2B[14] C2B[15] C2B[14] C2B[14] C2B[15] C2B[15] C2B[15] C2B[15] C2B[15] C2B[15] C3B[12] C3B[14] C3B[15] C3B[0X16	A1CF2	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
OX19 A2CF2 C2B(15) C2B(14) C2B(13) C2B(12) C2B(11) C2B(10) C2B(9) C2B(9) OX1A A2CF3 C2B(7) C2B(6) C2B(3) C2B(1) C2B(3) C2B(3) C2B(3) C2B(3) C2B(1) C3B(1) C4B(1) C4B(1) C4B(1) C4B(1) C4B(1) C4B(1) C4B(1)	0X17	A1CF3	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
OX1A A2CF3 C2B[7] C2B[6] C2B[5] C2B[4] C2B[3] C2B[2] C2B[1] C2B[3] 0X1B B1CF1 C3B[23] C3B[22] C3B[21] C3B[20] C3B[19] C3B[19] C3B[10] C4B[10]	0X18	A2CF1	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
OX1B B1CF1 C3B[23] C3B[21] C3B[20] C3B[20] C3B[10] C3B[10] C3B[10] C3B[17] C3B[16] OX1C B1CF2 C3B[15] C3B[14] C3B[13] C3B[12] C3B[11] C3B[10] C4B[10]	0X19	A2CF2	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
OX1C B1CF2 C3B(15) C3B(14) C3B(13) C3B(12) C3B(11) C3B(10) C3B(9) C3B(9) C3B(9) OX1D B1CF3 C3B(7) C3B(6) C3B(5) C3B(4) C3B(3) C3B(1) C3B(9) C4B(1)	0X1A	A2CF3	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
OX1DB1CF3C3B(7)C3B(6)C3B(5)C3B(4)C3B(3)C3B(2)C3B(2)C3B(1)C3B(0)0X1EB2CF1C4B(23)C4B(22)C4B(21)C4B(20)C4B(10)C4B(13)C4B(11)C4B(13)C4B(11)C4B(13)C4B(11)C4B(11)C4B(10)C4B(9)C4B(9)C4B(9)0X1CB2CF2C4B(15)C4B(14)C4B(13)C4B(12)C4B(11)C4B(10)C4B(9)C4B(9)C4B(9)C4B(9)0X20B2CF3C4B(7)C4B(6)C4B(5)C4B(4)C4B(3)C4B(2)C4B(1)C4B(9)C4B(9)0X21A0CF1C5B(23)C5B(22)C5B(12)C5B(12)C5B(11)C5B(10)C5B(9)C5B(9)C5B(9)0X22A0CF2C5B(7)C5B(11)C5B(13)C5B(12)C5B(11)C5B(13)C5B(11)C5B(13)C5B(11)C5B(11)C5B(9)C5B(9)0X23A0CF3C5B(7)C5B(10)C5B(13)C5B(11)C5B(3)C5B(2)C5B(1)C5B(1)C5B(1)C5B(1)C5B(1)0X24CFUDC5B(7)C5B(10)C5B(1)C5B	0X1B	B1CF1	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
OX1E B2CF1 C4B[23] C4B[22] C4B[21] C4B[20] C4B[19] C4B[18] C4B[17] C4B[16] OX1F B2CF2 C4B[15] C4B[14] C4B[13] C4B[12] C4B[11] C4B[10] C4B[0X1C	B1CF2	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X1FB2CF2C4B[15]C4B[14]C4B[13]C4B[12]C4B[11]C4B[10]C4B[0]C4B[0]C4B[0]0X20B2CF3C4B[7]C4B[6]C4B[5]C4B[4]C4B[3]C4B[2]C4B[1]C4B[0]C4B[0]0X21A0CF1C5B[23]C5B[22]C5B[21]C5B[20]C5B[10	0X1D	B1CF3	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
OX20B2CF3C4B[7]C4B[6]C4B[5]C4B[4]C4B[3]C4B[2]C4B[1]C4B[1]C4B[0]0X21A0CF1C5B[23]C5B[23]C5B[21]C5B[20]C5B[19]C5B[19]C5B[18]C5B[17]C5B[16]0X22A0CF2C5B[15]C5B[14]C5B[13]C5B[13]C5B[12]C5B[11]C5B[10]C5B[10]C5B[10]C5B[10]0X23A0CF3C5B[17]C5B[16]C5B[6]C5B[6]C5B[4]C5B[3]C5B[2]C5B[10]C5B[10]0X24CFUDC5B[7]C5B[6]C5B[6]C5B[6]C5B[4]C5B[3]C5B[2]C5B[1]C5B[1]0X26MBISTC5B[7]C5B[6]C5B[7]FecureFecureFecureFecureFecure0X26MBISTC5B[6]C5B[7]FecureFecureFecureFecureFecureFecure0X27StatusCCFecureFecureFecureFecureFecureFecure0X28MBISTCFecureFecureFecureFecureFecureFecureFecure0X29M_LCTRCStatusCFecureG1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVE0X2AQ1_SW_LEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVEQ1_SW_LEVE	0X1E	B2CF1	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
OX21 A0CF1 C5B[23] C5B[22] C5B[21] C5B[20] C5B[19] C5B[18] C5B[17] C5B[16] 0X22 A0CF2 C5B[15] C5B[14] C5B[13] C5B[12] C5B[11] C5B[10]	0X1F	B2CF2	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
OX22AOCF2C5B[15]C5B[14]C5B[13]C5B[12]C5B[11]C5B[10]C5B[9]C5B[9]C5B[9]0X23AOCF3C5B[7]C5B[6]C5B[5]C5B[4]C5B[3]C5B[2]C5B[1]C5B[1]C5B[0]0X24CFUDReservedRAR1WAW10X25FDCFGReservedReserved0X26MBISTReservedReserved0X27StatusStatusStatusStatusPWM_CT RLReservedReservedStatus0X29TM_CTR LReservedQT_SW_LEVELQT_S	0X20	B2CF3	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
OX23AOCF3C5B[7]C5B[6]C5B[6]C5B[4]C5B[3]C5B[3]C5B[1]C5B[1]C5B[1]0X24CFUDReservedRAR1WAW10X25FDCFGFDCFGSet to the set to the s	0X21	A0CF1	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]
0X24CFUDReservedRAR1WAW10X25FDCFG $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	0X22	A0CF2	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]
OX25FDCFGReserved0X26MBISTReserved0X27StatusReserved0X28 PWM_CT RLReserved0X29 TM_CTR L TM_CTR R <td< td=""><td>0X23</td><td>A0CF3</td><td>C5B[7]</td><td>C5B[6]</td><td>C5B[5]</td><td>C5B[4]</td><td>C5B[3]</td><td>C5B[2]</td><td>C5B[1]</td><td>C5B[0]</td></td<>	0X23	A0CF3	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X26MBISTReserved0X27Status $C = C + C + C + C + C + C + C + C + C + $	0X24	CFUD		Rese	erved		RA	R1	WA	W1
OX27 Status Reserved 0X28 PWM_CT RL PWM_CT RL PWM_CT Reserved	0X25	FDCFG				Rese	erved			
OX28 PWM_CT RL Reserved 0X29 TM_CTR L Constant Constant<	0X26	MBIST				Rese	erved			
0X28 RL 0X29 TM_CTR L 0X29 TM_CTR L 0X24 0T_SW_LE 0X24 0T_SW_LE 0X25 0T_SW_LE 0X26 0T_SW_LE 0X27 0T_SW_LE 0X28 0T_SW_LE 0X29 0T_SW_LE 0X29 0T_SW_LE 0X20 0T_SW_LE	0X27	Status		Reserved						
RL RL DX29 TM_CTR L Reserved OX2A QT_SW_LE QT_SW_LEVEL	0728	PWM_CT	Pasariot							
0X29 Reserved L QT_SW_LE QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL 0X2A QT_SW_LE Reserved QT_SW_LEVEL QT_SW_LEVE	0720	RL	ĸeservea							
L QT_SW_LE QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL 0X2A QT Reserved QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL QT_SW_LEVEL	0820	TM_CTR	Reserved							
0X2A Reserved Contract Contrac	0//23	L	Reserved							
	0X2A	QT_SW_LE		Reserved		QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL
	577277	VEL						[2]	[1]	[0]

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

• Address 0 : State control 1

AD83582 supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats is selected by users via bit7~bit5 of address 0. The left/right channels can be exchanged to each other by programming to address 0/bit0, LREXC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	I ² S 16-24 bits
			001	Left-alignment 16-24 bits
D[7·5]		Input Format	010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
B[4]		Reserved		
B[3]		Reserved		
B[2]		Reserved		
B[1]		Reserved		
PI01	LREXC	Left/Right (L/R)	0	No exchanged
B[0]	B[0] LREXC	Channel exchanged	1	L/R exchanged

• Address 1 : State control 2

AD83582 has a built-in PLL which can be bypassed by pulling the PLL pin High. When PLL is bypassed, AD83582 only supports 1024x, 512x and 256x MCLK/Fs ratio for Fs is 32/44.1/48kHz, 64/88.2/96kHz, and 128/176.4/192kHz respectively. When PLL is enabled, multiple MCLK/Fs ratios are supported. Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:6]		Reserved		
			00	32/44.1/48kHz
B[5:4]	FS[1:0]	Sampling Frequency	01	64/88.2/96kHz
			1x	128/176.4/192kHz

Multiple MCLK/FS ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[5:4]=00	B[5:4]=01	B[5:4]=1x			
			0000	1024x	512x	256x			
			0001	64x	64x	64x			
			0010	128x	128x	128x			
		MCLK/Fs	0011	192x	192x	192x			
		setup when				0100	Reset Default	Reset Default	Reset Default
B[3:0]	PMF[3:0]		0100	(256x)	(256x)	(256x)			
			0101	384x	384x				
			0110	512x	512x				
			l		ļ	0111	576x		Reserved
			1000	768x	Reserved				
			1001	1024x					

• Address 2 : State control 3

AD83582 has mute function including master mute and channel mute. When master mute is enabled, all 3 processing channels are muted. User can mute these 3 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	EN_CLK_		0	Disabled
B[7]	OUT	PLL Clock Output	1	Enabled
B[6]		Reserved		
B[5]		Reserved		
B[4]		Reserved		
B[3]	MUTE	Master Mute	0	All channel not muted
Б[Э]	MOTE	Master Mute	1	All channel muted
D101	CM1	Channel 1 Mute	0	Ch1 not muted
B[2]	CIVIT	Charmer i Mute	1	Only Ch1 muted
B[1]	CM2	Channel 2 Mute	0	Ch2 not muted
D[1]	CIVIZ		1	Only Ch2 muted
PI01	CM3	Channel 3 Mute	0	Ch3 not muted
B[0]	CIVIS		1	Only Ch3 muted

• Address 3 : Master volume control

AD83582 supports both master-volume (Address 3) and channel-volume control (Address 4, 5 and 6) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			00000010	+11.0dB
			:	:
			00010111	+0.5dB
BIT[7:0]	MV[7:0]	Master Volume	00011000	0.0dB
			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

-103dB \leq Total volume (Level A + Level B) \leq +24dB.

• Address 4 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			00000010	+11.0dB
			:	:
		7:0] Channel1 Volume	00010111	+0.5dB
BIT[7:0]	C1V[7:0]		00011000	0.0dB
ыц7.0ј			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 5 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			00000010	+11.0dB
			:	:
			00010111	+0.5dB
BIT[7:0]	C2V[7:0]	Channel2 Volume	00011000	0.0dB
ы [7.0]	020[7.0]		00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 6 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
BIT[7:0]	C3V[7:0]	Channel3 Volume	00000000	+12.0dB
			00000001	+11.5dB
			00000010	+11.0dB
			:	:
			00010111	+0.5dB
			00011000	0.0dB
			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 7/8 : Bass/Treble tone boost and cut

Last two sets of EQ can be programmed as bass/treble tone boost and cut. When, register with address-10, bit-6, BTE is set to high, the EQ-7 and EQ-8 will perform as bass and treble respectively. The -3dB corner frequency of bass is 250Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12dB with 1dB per step.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
			00000	+12dB
			00100	+12dB
			00101	+11dB
			00110	+10dB
			01110	+2dB
	BTC[4:0]	The gin setting	01111	+1dB
B[4:0]	/	of	10000	0dB
	TTC[4:0]	boost and cut	10001	-1dB
			10010	-2dB
			11010	-10dB
			11011	-11dB
			11100	-12dB
			11111	-12dB

• Address 9 : Bass management crossover frequency

The AD83582 provides bass management crossover frequency selection. A 1st order high-pass filter (channel 1 and 2) and a 2nd order low-pass filter (channel 3) at selected frequency are performed.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
			0000	80Hz
			0001	100Hz
			0010	120Hz
			0011	140Hz
			0100	160Hz
			0101	180Hz
			0110	200Hz
012:01	VOI2:01	Bass management	0111	220Hz
B[3:0]	XO[3:0]	crossover frequency	1000	240Hz
			1001	260Hz
			1010	280Hz
			1011	300Hz
			1100	320Hz
		1101	340Hz	
			1110	360Hz
			1111	

• Address 10 : State control 4

The AD83582 provides this register to configure the audio processing enable or bypass and channel link. The DC blocking high pass and EQ can be enabled of bypass. During the link bit is set to logic high, the post-scale scaling factor or EQ for all of channel can be mapped to channel-1. This provides much simple audio sound processing setup. An automatic zeros detection mute is built-in. If a channel receives 2048 consecutive zero value sample, then this channel is muted when the function is enabled.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום	SRBP	Surround bypage	0	Surround enable
B[7]	SKDF	Surround bypass	1	Surround bypass
DIGI	BTE	Bass/Treble Selection	0	Bass/Treble Disable
B[6]	DIE	bypass	1	Bass/Treble Enable
B[5]		Reserved.		
D[4]	ZDE	Automatic zero	0	Zero detection disable
B[4]	ZDE	detection mute enable	1	Zero detection enable
B[3]	FQL	FQ Link	0	Each channel uses individual EQ
Б[3]	EQL		1	Use channel-1 EQ
			0	Each channel uses individual
B[2]	PSL	Post-scale link	0	post-scale
			1	Use channel-1 post-scale
B[1]	DSPB	Pre-scale and EQ	0	Pre-scale and EQ enable
D[1]	DOLD	bypass	1	Pre-scale and EQ bypass
B[0]	HPB	DC blocking HPF	0	HPF enable
D[0]		bypass	1	HPF bypass

• Address 11, 12 and 13 : Channel configuration registers

The AD83582 can configure each channel to enable or bypass EQ and channel volume and select the limiter set.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION	
B[7]		Reserved			
B[6]		Reserved			
B[5]		Reserved			
B[4]		Reserved			
DIO	OVDODD	Channel X Power	0	Channel PC Enable	
B[3]	CXPCBP	CXPCBP	Clipping Bypass	1	Channel PC Bypass
D[0]		Channel x DRC bypass	0	Channel x DRC enable	
B[2]	CXDRCDP		1	Channel x DRC bypass	
		Channel x bass	0	Channel x HPF enable	
B[1]	CxHPFBP	management HPF	1	Channel x HPF bypass	
		bypass	•		
B [0]	CxVBP	Channel x Volume	0	Channel x's master volume operation	
B[0]	GAVBP	bypass	1	Channel x's master volume bypass	

Address 11 and 12; where x=1 or 2

Address 13

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
B[4]		Reserved		
D[3]	C3PCBP	Channel 3 Power Clipping	0	Channel PC Enable
B[3]	C3PCBP	Bypass	1	Channel PC Bypass
PI31		P Channel 3 DRC bypass	1	Channel3 DRC bypass
נצו	CODRODE		1	Channel3 DRC bypass
D [1]		Channel 3 bass	0	Channel3 LPF enable
ניןם	USHFEDP	management LPF bypass	1	Channel3 LPF bypass
			0	Channel3 master volume
BIUI		Channel 3 Volume	0	operation
БГОЈ	CJVDF	bypass	1	Channel3 master volume
			I	bypass
B[2] B[1] B[0]	C3DRCBP C3HPFBP C3VBP	Channel 3 DRC bypass Channel 3 bass management LPF bypass Channel 3 Volume	1 1 0	Channel3 DRC bypass Channel3 DRC bypass Channel3 LPF enable Channel3 LPF bypass Channel3 master volum operation Channel3 master volum

• Address 14 : DRC limiter attack/release rate

The AD83582 defines a set of limiter. The attack/release rates are defines as following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	3 dB/ms
			0001	2.667 dB/ms
			0010	2.182 dB/ms
			0011	1.846 dB/ms
			0100	1.333 dB/ms
			0101	0.889 dB/ms
			0110	0.4528 dB/ms
D[7·6]	1 4 [2.0]	DBC attack rate	0111	0.2264 dB/ms
B[7:5]	LA[3:0]	DRC attack rate	1000	0.15 dB/ms
			1001	0.1121 dB/ms
			1010	0.0902 dB/ms
			1011	0.0752 dB/ms
			1100	0.0645 dB/ms
			1101	0.0563 dB/ms
			1110	0.0501 dB/ms
			1111	0.0451 dB/ms
			0000	0.5106 dB/ms
			0001	0.1371 dB/ms
			0010	0.0743 dB/ms
			0011	0.0499 dB/ms
			0100	0.0360 dB/ms
			0101	0.0299 dB/ms
			0110	0.0264 dB/ms
D[2:0]		DRC release rate	0111	0.0208 dB/ms
B[3:0]	LR[3:0]	DRC release rate	1000	0.0198 dB/ms
			1001	0.0172 dB/ms
			1010	0.0147 dB/ms
			1011	0.0137 dB/ms
			1100	0.0134 dB/ms
			1101	0.0117 dB/ms
			1110	0.0112 dB/ms
				0.0104 dB/ms

• Address 15 : DRC limiter attack/release threshold

The AD83582 defines a set of limiter. The attack/release threshold are defines as following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	-31 dB
			0001	-29 dB
			0010	-27 dB
			0011	-25 dB
			0100	-23 dB
			0101	-21 dB
			0110	-19 dB
B[7:4]	LAT[3:0]	DRC attack threshold	0111	-17 dB
D[7.4]	LA1[3.0]		1000	-16 dB
			1001	-15 dB
			1010	-14 dB
			1011	-13 dB
			1100	-12 dB
			1101	-10 dB
			1110	-7 dB
		1111	-4 dB	
		0000	Infinite	
			0001	-38 dB
			0010	-36 dB
			0011	-33 dB
			0100	-31 dB
			0101	-30 dB
			0110	-28 dB
B[3:0]	LRT[3:0]	DRC release threshold	0111	-26 dB
Б[3.0]		DRC Telease tilleshold	1000	-24 dB
			1001	-22 dB
			1010	-20 dB
			1011	-18 dB
			1100	-15 dB
			1101	-12 dB
			1110	-9 dB
			1111	-6 dB

• Address 17 : State control 5

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]	SW RSTB	Software reset	0	Reset
Б[3]	300_0316	Soltware reset	1	Normal operation
B[4]		Reserved		
B[3]		Reserved		
D [2]	DIS_MCLK_DET	Disable MCLK detect	0	Enable MCLK detect circuit
B[2]		circuit	1	Disable MCLK detect circuit
D[1]	QT_EN	Power equipa mode	0	Disable
B[1]		Power saving mode	1	Enable
B[0]	PWM SEL	PWM modulation	0	Qua-ternary
B[0]	F VVIVI_SEL		1	Ternary

• Address 18 : PVDD under voltage selection

The AD83582 defines four sets of under voltage level.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[3:0] HV_UV SEL U		0000	8.2V
			0001	9.7V
D[2:0]		UV detection level	0011	13.2 V
Б[3.0]			0100	15.5 V
			1100	19.5 V
			Others	9.7V

ESMT/EMP

• Address 19 : Zero detection level selection

This register is to define zero detection level selection.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
B[4]		Reserved		
			00	signal = 0
B[3:2]		Zero detection level	01	signal <-110dB
Б[3.2]	ZD_LEVEL[1:0]		10	Signal < -100dB
			11	Signal < -90dB
			00	x1/8
B[1:0]	ZD GAIN[1:0]	Zero detection gain	01	x1/4
Б[1.0]		level	10	x1/2
			11	Mute

• Address 20~36 : User-defined coefficients registers

An on-chip RAM in AD83582 stores user-defined EQ and mixing coefficients. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 20), five sets of registers (address 21 to 35) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 36) to control access of the coefficients in the RAM..

Address 20

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6:0]	CFA[6:0]	Coefficient RAM base	0000000	
Б[0.0]		address	0000000	

Address 21, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	DIZ:01 C4DI22:461	Top 8-bits of		
B[7:0]	C1B[23:16]	coefficients A1		

Address 22, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
012.01	C1D[15:0]	Middle 8-bits of		
B[7:0]	C1B[15:8]	coefficients A1		

Address 23, A1cf3

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0]	C1B[23:16]	Bottom 8-bits of		
			coefficients A1		

Address 24, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2B[23:16]	Top 8-bits of		
		coefficients A2		

Address 25, A2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2B[15:8]	Middle 8-bits of		
		coefficients A2		

Address 26, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2B[7:0]	Bottom 8-bits of		
		coefficients A2		

Address 27, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C3B[23:16]	Top 8-bits of		
		coefficients B1		

Address 28, B1cf2

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0]	C3B[15:8]	Middle 8-bits of		
			coefficients B1		

Address 29, B1cf3

E	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
Б	B[7:0]	C3B[7:0]	Bottom 8-bits of		
В			coefficients B1		

Address 30, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	C4B[23:16]	Top 8-bits of		
B[7:0]		coefficients B2		

Address 31, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C4B[15:8]	Middle 8-bits of		
		coefficients B2		

Address 32, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C4B[7:0]	Bottom 8-bits of		
		coefficients B2		

Address 33, A0cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C5B[23:16]	Top 8-bits of		
B[7:0]		coefficients A0		

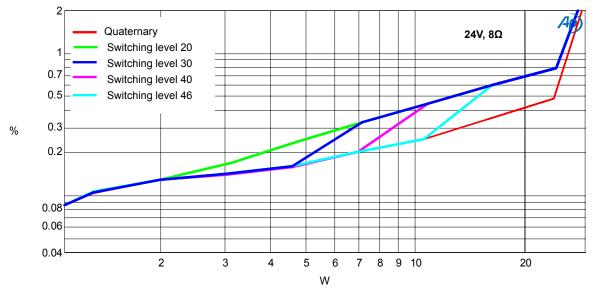
Address 34, A0cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C5B[15:8]	Middle 8-bits of		
		coefficients A0		

Address 35, A0cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C5B[7:0]	Bottom 8-bits of		
B[7:0]		coefficients A0		

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
נגום	RA	Enable of reading a set of	0	Read complete
B[3]		coefficients from RAM	1	Read enable
B[2]	R1	Enable of reading a single	0	Read complete
		coefficients from RAM	1	Read enable
D[4]	WA	Enable of writing a set of	0	Write complete
B[1]		coefficients to RAM	1	Write enable
DIOI	W1	Enable of writing a single	0	Write complete
B[0]		coefficient to RAM	1	Write enable


Address 36, CfRW

• Address 42 : Power saving mode switching level

If the PWM exceeds the programmed switching power level (default 26*40ns), the modulation algorithm will change from quaternary into power saving mode. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level, the modulation algorithm will change back to quaternary modulation.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
		Switching level	11111	62
	QT_SW_LEVEL		11110	60
			:	:
			01111	30
D[4:0]			01110	28
B[4:0]			01101	26
			:	:
			00010	4
			00001	4
			00000	4

Total Harmonic Distortion + Noise vs. Output Power

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-20
- 2. Write 1 to R1 bit in address-36
- 3. Read top 8-bits of coefficient in I2C address-21
- 4. Read middle 8-bits of coefficient in I2C address-22
- 5. Read bottom 8-bits of coefficient in I2C address-23

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-20
- 2. Write 1 to RA bit in address-36
- 3. Read top 8-bits of coefficient in I2C address-21
- 4. Read middle 8-bits of coefficient in I2C address-22
- 5. Read bottom 8-bits of coefficient in I2C address-23
- 6. Read top 8-bits of coefficient A2 in I2C address-24
- 7. Read middle 8-bits of coefficient A2 in I2C address-25
- 8. Read bottom 8-bits of coefficient A2 in I2C address-26
- 9. Read top 8-bits of coefficient B1 in I2C address-27
- 10. Read middle 8-bits of coefficient B1 in I2C address-28
- 11. Read bottom 8-bits of coefficient B1 in I2C address-29
- 12. Read top 8-bits of coefficient B2 in I2C address-30
- 13. Read middle 8-bits of coefficient B2 in I2C address-31
- 14. Read bottom 8-bits of coefficient B2 in I2C address-32
- 15. Read top 8-bits of coefficient A0 in I2C address-33
- 16. Read middle 8-bits of coefficient A0 in I2C address-34
- 17. Read bottom 8-bits of coefficient A0 in I2C address-35

Write a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-20
- 2. Write top 8-bits of coefficient in I2C address-21
- 3. Write middle 8-bits of coefficient in I2C address-22
- 4. Write bottom 8-bits of coefficient in I2C address-23
- 5. Write 1 to W1 bit in address-36

Write a set of coefficients from RAM:

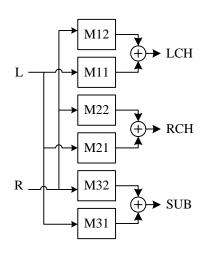
- 1. Write 7-bits of address to I2C address-20
- 2. Write top 8-bits of coefficient in I2C address-21
- 3. Write middle 8-bits of coefficient in I2C address-22
- 4. Write bottom 8-bits of coefficient in I2C address-23
- 5. Write top 8-bits of coefficient A2 in I2C address-24
- 6. Write middle 8-bits of coefficient A2 in I2C address-25
- 7. Write bottom 8-bits of coefficient A2 in I2C address-26
- 8. Write top 8-bits of coefficient B1 in I2C address-27
- 9. Write middle 8-bits of coefficient B1 in I2C address-28
- 10. Write bottom 8-bits of coefficient B1 in I2C address-29
- 11. Write top 8-bits of coefficient B2 in I2C address-30
- 12. Write middle 8-bits of coefficient B2 in I2C address-31
- 13. Write bottom 8-bits of coefficient B2 in I2C address-32
- 14. Write top 8-bits of coefficient A0 in I2C address-33
- 15. Write middle 8-bits of coefficient A0 in I2C address-34
- 16. Write bottom 8-bits of coefficient A0 in I2C address-35
- 17. Write 1 to WA bit in address-36

Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address-36 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

User-defined equalizer

The AD83582 has built-in 8-bands parametric EQ for each channel. Each EQ, Users can program suitable coefficients via I^2C control interface to get the required audio band frequency response. The transfer function of EQ is:

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$


The data format of 2's complement binary code for EQ coefficient is 4.20. i.e., 4-bits for integer (MSB is sign bit) and 20-bits for mantissa. The each coefficient range is from 0x800000 (-8) to 0x7FFFFF (+7.999999046325684). These coefficients are stored in User Defined RAM and are referenced in following manner:

CHxEQyA0 = A0CHxEQyA1 = A1CHxEQyA2 = A2CHxEQyB1 = -B1CHxEQyB2 = -B2

where x and y represents the number of channel and the band number of EQ biquard respectively. By default, all user-defined filters are path-through where all coefficients are set to 0, except the A0 is set to 0x100000 (represents 1).

Mixer

The AD83582 provides mixers to generate the extra audio source from input left/right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:

• Pre-scale

The AD83582 provides a multiplication stage for each channel for the purpose of scaling signal prior to EQ. The pre-scale is realized with a 24-bit signed fractional multiplier, with 0x800000=-1 and 0x7FFFFF=0.9999998808. The scaling factor for this multiply is loaded into RAM using the same I2C registers as the biquad coefficients and mixing scaling factors. By default, the pre-scale factors are set to 0x7FFFFF. All channels can use the channel-1 pre-scale factor by setting the biquad-scale link.

Post-scale

The AD83582 provides an additional multiplication before interpolation stage and the distortion compensation on each channel. The postscale is realized with a 24-bit signed fractional multiplier, with 0x800000=-1 and 0x7FFFF=0.9999998808. The scaling factor for this multiplication is loaded into RAM using the same I2C registers as the biquad coefficients and mixing scaling factors. By default, the pre-scale factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link.

• The user defined RAM

The contents of user defined RAM is represented in following table.

Address	NAME	Coefficient	Default
0x00		CH1EQ1A1	0x000000
0x01		CH1EQ1A2	0x000000
0x02	Channel-1 EQ1	CH1EQ1B1	0x000000
0x03		CH1EQ1B2	0x000000
0x04		CH1EQ1A0	0x100000
0x05		CH1EQ2A1	0x000000
0x06		CH1EQ2A2	0x000000
0x07	Channel-1 EQ2	CH1EQ2B1	0x000000
0x08		CH1EQ2B2	0x000000
0x09		CH1EQ2A0	0x100000
0x0A		CH1EQ3A1	0x000000
0x0B		CH1EQ3A2	0x000000
0x0C	Channel-1 EQ3	CH1EQ3B1	0x000000
0x0D		CH1EQ3B2	0x000000
0x0E		CH1EQ3A0	0x100000

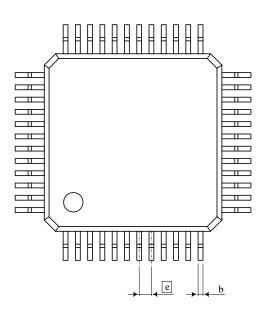
ESMT/EMP

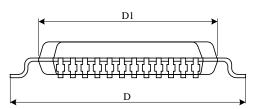
Address	NAME	Coefficient	Default
0x0F		CH1EQ4A1	0x000000
0x10		CH1EQ4A2	0x000000
0x11	Channel-1 EQ4	CH1EQ4B1	0x000000
0x12		CH1EQ4B2	0x000000
0x13		CH1EQ4A0	0x100000
0x14		CH1EQ5A1	0x000000
0x15		CH1EQ5A2	0x000000
0x16	Channel-1 EQ5	CH1EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000
0x18		CH1EQ5A0	0x100000
0x19		CH1EQ6A1	0x000000
0x1A		CH1EQ6A2	0x000000
0x1B	Channel-1 EQ6	CH1EQ6B1	0x000000
0x1C	-	CH1EQ6B2	0x000000
0x1D		CH1EQ6A0	0x100000
0x1E		CH1EQ7A1	0x000000
0x1F		CH1EQ7A2	0x000000
0x20	Channel-1 EQ7	CH1EQ7B1	0x000000
0x21		CH1EQ7B2	0x000000
0x22		CH1EQ7A0	0x100000
0x23		CH1EQ8A1	0x000000
0x24		CH1EQ8A2	0x000000
0x25	Channel-1 EQ8	CH1EQ8B1	0x000000
0x26		CH1EQ8B2	0x000000
0x27		CH1EQ8A0	0x100000
0x28	Reserved		
0x29	Reserved		
0x2A	Reserved		
0x3B	Reserved		
0x2C	Reserved		

ESMT/EMP

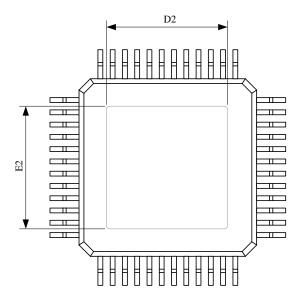
Address	NAME	Coefficient	Default
0x2D		CH2EQ1A1	0x000000
0x2E		CH2EQ1A2	0x000000
0x2F	Channel-2 EQ1	CH2EQ1B1	0x000000
0x30		CH2EQ1B2	0x000000
0x31		CH2EQ1A0	0x100000
0x32		CH2EQ2A1	0x000000
0x33		CH2EQ2A2	0x000000
0x34	Channel-2 EQ2	CH2EQ2B1	0x000000
0x35		CH2EQ2B2	0x000000
0x36		CH2EQ2A0	0x100000
0x37		CH2EQ3A1	0x000000
0x38		CH2EQ3A2	0x000000
0x39	Channel-2 EQ3	CH2EQ3B1	0x000000
0x3A		CH2EQ3B2	0x000000
0x3B		CH2EQ3A0	0x100000
0x3C		CH2EQ4A1	0x000000
0x3D		CH2EQ4A2	0x000000
0x3E	Channel-2 EQ4	CH2EQ4B1	0x000000
0x3F		CH2EQ4B2	0x000000
0x40		CH2EQ4A0	0x100000
0x41		CH2EQ5A1	0x000000
0x42		CH2EQ5A2	0x000000
0x43	Channel-2 EQ5	CH2EQ5B1	0x000000
0x44		CH2EQ5B2	0x000000
0x45		CH2EQ5A0	0x100000
0x46		CH2EQ6A1	0x000000
0x47		CH2EQ6A2	0x000000
0x48	Channel-2 EQ6	CH2EQ6B1	0x000000
0x49		CH2EQ6B2	0x000000
0x4A		CH2EQ6A0	0x100000

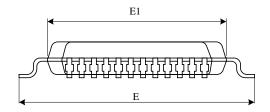
ESMT/EMP

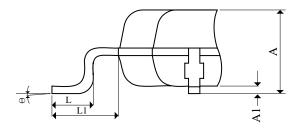

Address	NAME	Coefficient	Default
0x4B		CH2EQ7A1	0x000000
0x4C	Channel-2 EQ7	CH2EQ7A2	0x000000
0x4D		CH2EQ7B1	0x000000
0x4E		CH2EQ7B2	0x000000
0x4F		CH2EQ7A0	0x100000
0x50		CH2EQ8A1	0x000000
0x51		CH2EQ8A2	0x000000
0x52	Channel-2 EQ8	CH2EQ8B1	0x000000
0x53		CH2EQ8B2	0x000000
0x54		CH2EQ8A0	0x100000
0x55	Reserved		
0x56	Reserved		
0x57	Reserved		
0x58	Reserved		
0x59	Reserved		
0x5A	Channel-1 Mixer1	M11	0x7FFFFF
0x5B	Channel-1 Mixer2	M12	0x000000
0x5C	Channel-2 Mixer1	M21	0x000000
0x5D	Channel-2 Mixer2	M22	0x7FFFFF
0x5E	Channel-3 Mixer1	M31	0x400000
0x5F	Channel-3 Mixer2	M32	0x400000
0x60	Channel-1 Prescale	C1PRS	0x7FFFFF
0x61	Channel-2 Prescale	C2PRS	0x7FFFFF
0x62	Channel-1 Postscale	C1POS	0x7FFFFF
0x63	Channel-2 Postscale	C2POS	0x7FFFFF
0x64	Channel-3 Postscale	C3POS	0x7FFFFF
0x65	Channel-1 Power	DC4	0x200000
COXU	clipping	PC1	0.200000
0x66	Channel-2 Power	PC2	0x200000
	clipping		07200000
0x67	Channel-3 Power	PC3	0x200000
0.07	clipping	PUS	07200000



Preliminary


Package Dimensions


7mm x 7mm 48-pin E-LQFP



Symbols	DIMENSIONS IN MILLIMETERS			
Symbols	MIN.	NOM.	MAX.	
А			1.60	
A1	0.05		0.15	
b	0.17	0.22	0.27	
D	9.00 BSC			
D1	7.00 BSC			
D2	4.5	5.0	5.5	
E	9.00 BSC			
E1	7.00 BSC			
E2	4.5	5.0	5.5	
e	0.50 BSC			
L	0.45	0.60	0.75	
L1	1.00 BSC			
θ	0 °	3.5°	7°	

Revision History

Revision	Date	Description
0.1	2011.06.09	Original
0.2	2011.09.26	 Changed PVDD range from 12V~24V to 10V~26V. Changed PVDD absolute maximum rating from 26V to 30V. Updated the application circuit that the snubber circuit can be removed while the PVDD <=18V for stereo. Added the application circuit for economic type, moderate EMI suppression. Added power on sequence flow. Updated MPQ description.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.