

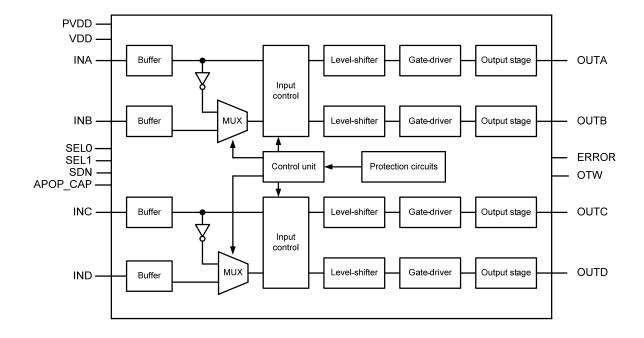
DIGITAL AMPLIFIER POWER STAGE

Features

- PVDD range from 10.8V to 26.4V
- Support single-ended input audio PWM (AD) modulated signal
- Support differential input audio PWM (AD & BD) modulated signal
- Loudspeaker output power for stereo (BTL)
 - 10W x 2CH @ THD+N=0.15% into 8Ω at 24V
 - 10W x 2CH @ THD+N=0.23% into 8Ω at 18V
 - 10W x 2CH @ THD+N=0.5% into 8Ω at 15V
 - 8W x 2CH @ THD+N=5.6% into 8Ω at 12V
- Loudspeaker output power for mono (BTL)
 - 20W x 1CH @ THD+N=0.09% into 8Ω at 24V
 - 20W x 1CH @ THD+N=0.12% into 8Ω at 18V
 - 20W x 1CH @ THD+N=0.3% into 8Ω at 15V
- Over-temperature protection
- Over-current protection
- Under-voltage detection
- Error report
- Built-in anti-pop function
- Support both of 24-pin E-TSSOP and 48-pin
 7x7mm E-LQFP thermally-enhanced package

Applications

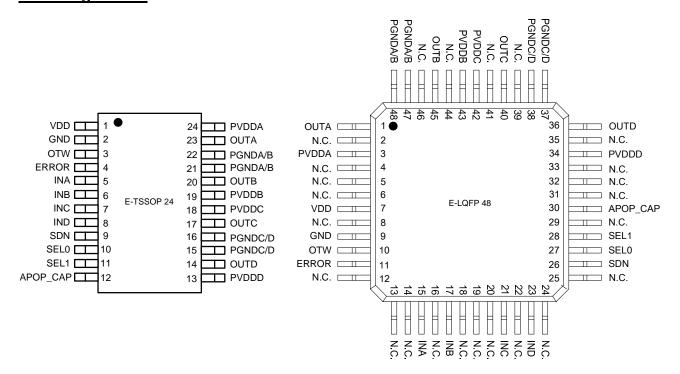
- TV audio
- DVD Receiver
- Home Theaters


Description

The AD92580 is a high performance stereo digital amplifier power stage. It can deliver 10W x 2CH output power into 8Ω loudspeaker for stereo or 20W x 1ch output power into 4Ω loudspeaker for mono in BTL configuration within <1% THD+N at 15V ~ 24V supply.

A patented, built-in anti-pop function can reduce the speaker's pop noise without requiring complex anti-pop sequence in PWM input.

The AD92580's chip is integrated with over-temperature, over-current, and under-voltage protection circuits. These additions safeguard the AD92580 against fault conditions that could damage the chip and system catastrophically.


Functional Block Diagram

Publication Date: Apr. 2011 Revision: 1.2 1/25

Pin Assignments

Pin Description

NAME	PIN		T)/D	DEGODIPTION	
	E-TSSOP 24	E-LQFP 48	TYP	DESCRIPTION	
VDD	1	7	Р	Power supply for digital circuit	
GND	2	9	Р	Ground for digital circuit	
OTW	3	10	0	Over temperature warning	
ERROR	4	11	0	Error pointer	
INA	5	15	ı	PWM input A	
INB	6	17	ı	PWM input B	
INC	7	21	ı	PWM input C	
IND	8	23	ı	PWM input D	
SDN	9	26	ı	Shutdown (active-low) with soft pulled resistor 100kohm to ground	
SEL0	10	27	-	Mode select pin 0	
SEL1	11	28	I	Mode select pin 1	
APOP_CAP	12	30	0	Anti-pop capacitor	
PVDDD	13	34	Р	Power supply for half bridge D	
OUTD	14	36	0	Half-bridge output D	
PGNDC/D	15	37	Р	Ground for half bridge C/D	
PGNDC/D	16	38	Р	Ground for half bridge C/D	
OUTC	17	40	0	Half-bridge output C	

Elite Semiconductor Memory Technology Inc./Elite MicroPower Inc.

Publication Date: Apr. 2011 Revision: 1.2 2/25

3/25

PVDDC	18	42	Р	Power supply for half bridge C	
PVDDB	19	43	Р	Power supply for half bridge B	
OUTB	20	45	0	Half-bridge output B	
PGNDA/B	21	47	Р	Ground for half bridge A/B	
PGNDA/B	22	48	Р	Ground for half bridge A/B	
OUTA	23	1	0	Half-bridge output A	
PVDDA	24	3	Р	Power supply for half bridge A	
N.C.	N/A	2, 4, 5, 6			
		8, 12, 13, 14			
		16, 18, 19, 20			
		22, 24, 25, 29			
		31, 32, 33, 35			
		39, 41, 44, 46			

Ordering Information

Product ID	Package	Packing	Comments
AD92580-QE24NAT	E-TSSOP 24L	6.2K units / Box Tube	Green
AD92580-LE48NAY	E-LQFP-48L 7x7 mm	2.5K Units / Box Tray	Green

Available Package

Package Type	Device No.	θ _{ja} (°C/W)	Ψ _{jt} (°C/W)	$\theta_{jc}(^{\circ}C/W)$	Exposed Thermal Pad
E-TSSOP 24L	AD92580	31.5	2.16	7.5	Yes (Note 1)
E-LQFP 7x7 48L	AD32300	29.9	1.33	6.0	

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.
- θ_{ja} is measured on a room temperature (T_A=25 $^{\circ}$ C), natural convection environment test Note 1.2: board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The measurement is tested using the JEDEC51-5 thermal measurement standard.
- $\theta_{\it ic}$ represents the heat resistance for the heat flow between the chip and the package's Note 1.3: top surface.
- Ψ_{jt} represents the heat resistance for the heat flow between the chip and the exposed Note 1.4: pad's center.