

ADVANCE INFORMATION

February 2007

ADC12DS065/ADC12DS080/ADC12DS095/ADC12DS105 Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs

General Description

NOTE: This is Advance Information for products currently in development. ALL specifications are design targets and are subject to change.

The ADC12DS065, ADC12DS080, ADC12DS095, and AD-C12DS105 are high-performance CMOS analog-to-digital converters capable of converting two analog input signals into 12-bit digital words at rates up to 65/80/95/105 Mega Samples Per Second (MSPS) respectively. The digital outputs are serialized and provided on differential LVDS signal pairs. These converters use a differential, pipelined architecture with digital error correction and an on-chip sample-and-hold circuit to minimize power consumption and the external component count, while providing excellent dynamic performance. A unique sample-and-hold stage yields a full-power bandwidth of 1 GHz. The ADC12DS065/080/095/105 may be operated from a single +3.3V power supply and consumes low power. A power-down feature reduces the power consumption to very low levels while still allowing fast wake-up time to full operation. The differential inputs provide a 2V full scale differential input swing. A stable 1.2V internal voltage reference is provided, or the ADC12DS065/080/095/105 can be operated with an external 1.2V reference. Output data format (offset binary versus 2's complement) and duty cycle stabilizer are pin-selectable. The duty cycle stabilizer maintains performance over a wide range of clock duty cycles.

The ADC12DS065/080/095/105 is available in a 60-lead LLP package and operates over the industrial temperature range of -40° C to $+85^{\circ}$ C.

Features

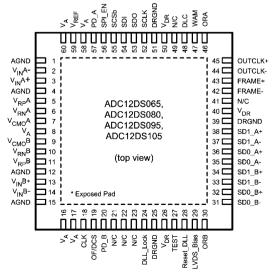
- 1 GHz Full Power Bandwidth
- Internal sample-and-hold circuit and precision reference
- Low power consumption
- Clock Duty Cycle Stabilizer
- Single +3.3V supply operation
- Offset binary or 2's complement output data format
- Serial LVDS Outputs
- 60-pin LLP package, (9x9x0.8mm, 0.5mm pin-pitch)

Key Specifications

■ For ADC12DS105

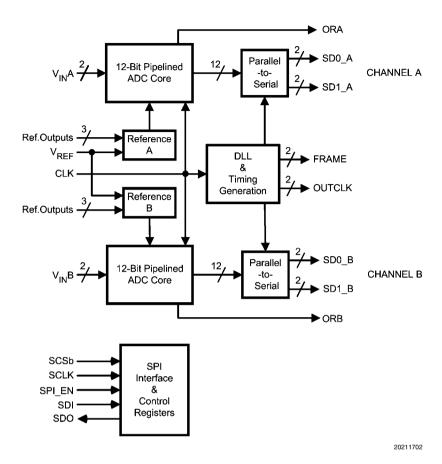
Resolution	12 Bits
Conversion Rate	105 MSPS
SNR $(f_{IN} = 240 \text{ MHz})$	67 dBFS (typ)
SFDR (f _{IN} = 240 MHz)	83 dBFS (typ)

■ Full Power Bandwidth


1 GHz (typ)
■ Power Consumption

1060 mW (typ)

Applications


- High IF Sampling Receivers
- Wireless Base Station Receivers
- Test and Measurement Equipment
- Communications Instrumentation
- Portable Instrumentation

Connection Diagram

20211701

Block Diagram

Ordering Information

Package
60 Pin LLP

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description
NALOG I/O			
3 13	V _{IN} A+ V _{IN} B+	Ŷ	
2 14	V _{IN} A- V _{IN} B-	AGND	Differential analog input pins. The differential full-scale input signal level is $2V_{P-P}$ with each input pin signal centered on a common mode voltage, V_{CM} .
5 11 7 9	V _{RP} A V _{RP} B V _{CMO} A V _{CMO} B	VÔ	These pins should each be bypassed to AGND with a low ESL (equivalent series inductance) 1 μ F capacitor placed very close to the pin to minimize stray inductance. An 0201 size 0.1 μ F capacitor should be placed between V _{RP} and V _{RN} as close to the pins as possible, and a 1 μ F capacitor should be placed in parallel.
6 10	V _{RN} A V _{RN} B	V _A V _A V _{AGND}	V_{RP} and V_{RN} should not be loaded. V_{CMO} may be loaded to 1mA for use as a temperature stable 1.5V reference. It is recommended to use V_{CMO} to provide the common mode voltage, V_{CM} , for the differential analog inputs.
59	V _{REF}	▼A	Reference Voltage. This device provides an internally developed 1.2V reference. When using the internal reference, V_{REF} should be decoupled to AGND with a 0.1 μ F and a 1 μ F, low equivalent series inductance (ESL) capacitor. This pin may be driven with an external 1.2V reference voltage. This pin should not be used to source or sink current.
29	LVDS_Bias	AGND	LVDS Driver Bias Resistor is applied from this pin to Analog Ground. The nominal value is $3.6 \mathrm{K}\Omega$
IGITAL I/O			
18	CLK	V _A	The clock input pin. The analog inputs are sampled on the rising edge of the clock input
28	Reset_DLL	AGND	Reset_DLL input. This pin is normally low. If the input clock frequency is changed abruptly, the internal timing circuits may become unlocked. Cycle this pin high for 1 microsecond to re-lock the DLL. The DLL will lock in several microseconds after Reset_DLL is asserted.
19	OF/DCS	VA AGND	This is a four-state pin controlling the input clock mode and output data format. $ \text{OF/DCS} = V_A, \text{ output data format is 2's complement without duty cycle stabilization applied to the input clock } \text{OF/DCS} = \text{AGND}, \text{ output data format is offset binary, without duty cycle stabilization applied to the input clock.} \\ \text{OF/DCS} = (2/3)*V_A, \text{ output data is 2's complement with duty cycle stabilization applied to the input clock} \\ \text{OF/DCS} = (1/3)*V_A, \text{ output data is offset binary with duty cycle stabilization applied to the input clock.} $

Pin No.	Symbol	Equivalent Circuit	Description
57 20	PD_A PD_B		This is a two-state input controlling Power Down. PD = V _A , Power Down is enabled and power dissipation is reduced. PD = AGND, Normal operation.
27	TEST	V _a	Test Mode. When this signal is asserted high, a fixed test pattern (101001100011 msb->lsb) is sourced at the data outputs. With this signal deasserted low, the device is in normal operation mode. Note: This signal has no effect when SPI_EN is high and the SPI interface is enabled.
47	WAM	AGND	Word Alignment Mode. In single-lane mode this pin must be set to logic-0. In dual-lane mode only, when this signal is at logic-0 the serial data words are offset by half-word. With this signal at logic-1 the serial data words are aligned with each other. Note: This signal has no effect when SPI_EN is high and the SPI interface is enabled.
48	DLC		Dual-Lane Configuration. The dual-lane mode is selected when this signal is at logic-0. With this signal at logic-1, all data is sourced on a single lane (SD1_x) for each channel. Note: This signal has no effect when SPI_EN is high and the SPI interface is enabled.
45 44	OUTCLK+ OUTCLK-	V _{DR}	Serial Clock. This pair of differential LVDS signals provides the serial clock that is synchronous with the Serial Data outputs. A bit of serial data is provided on each of the active serial data outputs with each falling and rising edge of this clock. The user has the ability to set the position of the clock edges at either the data-bit-cell boundries (0-degree phase) or at the center of the data-bit-cell boundries (180-degree phase). This differential output is always enabled while the device is powered up. In power-down mode this output is held in logic-low state. A 100-ohm termination resistor must always be used between this pair of signals at the far end of the transmission line.
43 42	FRAME+ FRAME-	+ Ja A Ja L L L L L L L L L L L L L L L L L L	Serial Data Frame. This pair of differential LVDS signals transitions at the serial data word boundries. The SD1_A+/- and SD1_B+/- output words always begin with the rising edge of the Frame signal. The falling edge of the Frame signal defines the start of the serial data word presented on the SD0_A+/- and SD0_B+/- signal pairs in the Dual-Lane mode. This differential output is always enabled while the device is powered up. In power-down mode this output is held in logic-low state. A 100-ohm termination resistor must always be used between this pair of signals at the far end of the transmission line.

Pin No.	Symbol	Equivalent Circuit	Description
38 37	SD1_A+ SD1_A-		Serial Data Output 1 for Channel A. This is a differential LVDS pair of signals that carries channel A ADC's output in serialized form. The serial data is provided synchronous with the OUTCLK output. In Single-Lane mode each sample's output is provided in succession. In Dual-Lane mode every other sample output is provided on this output. This differential output is always enabled while the device is powered up. In power-down mode this output holds the last logic state. A 100-ohm termination resistor must always be used between this pair of signals at the far end of the transmission line.
34 33	SD1_B+ SD1_B-	V _{DR}	Serial Data Output 1 for Channel B. This is a differential LVDS pair of signals that carries channel B ADC's output in serialized form. The serial data is provided synchronous with the OUTCLK output. In Single-Lane mode each sample's output is provided in succession. In Dual-Lane mode every other sample output is provided on this output. This differential output is always enabled while the device is powered up. In power-down mode this output holds the last logic state. A 100-ohm termination resistor must always be used between this pair of signals at the far end of the transmission line.
36 35	SD0_A+ SD0_A-	+ J A A A A A A A A A A A A A A A A A A	Serial Data Output 0 for Channel A. This is a differential LVDS pair of signals that carries channel A ADC's alternating samples' output in serialized form in Dual-Lane mode. The serial data is provided synchronous with the OUTCLK output. In Single-Lane mode this differential output is held in high impedance state. This differential output is always enabled while the device is powered up. In power-down mode this output holds the last logic state. A 100-ohm termination resistor must always be used between this pair of signals at the far end of the transmission line.
32 31	SD0_B+ SD0_B-		Serial Data Output 0 for Channel B. This is a differential LVDS pair of signals that carries channel B ADC's alternating samples' output in serialized form in Dual-Lane mode. The serial data is provided synchronous with the OUTCLK output. In Single-Lane mode this differential output is held in high impedance state. This differential output is always enabled while the device is powered up. In power-down mode this output holds the last logic state. A 100-ohm termination resistor must always be used between this pair of signals at the far end of the transmission line.
56	SPI_EN	V,	SPI Enable: The SPI interface is enabled when this signal is asserted high. In this case the direct control pins have no effect. When this signal is deasserted, the SPI interface is disabled and the direct control pins are enabled.
55	SCSb		Serial Chip Select: While this signal is asserted SCLK is used to accept serial data present on the SDI input and to source serial data on the SDO output. When this signal is deasserted, the SDI input is ignored and the SDO output is in tri-state mode.
52	SCLK	AGND	Serial Clock: Serial data are shifted into and out of the device synchronous with this clock signal.
54	SDI		Serial Data-In: Serial data are shifted into the device on this pin while SCSb signal is asserted.

Pin No.	Symbol	Equivalent Circuit	Description
53	SDO	^V DR	Serial Data-Out: Serial data are shifted out of the device on this pill while SCSb signal is asserted. This output is in tri-state mode when SCSb is deasserted.
46 30	ORA ORB		Overrange. These CMOS outputs are asserted logic-high when their respective channel's data output is out-of-range in either high or low direction.
24	DLL_Lock	DRGND DGND	DLL_Lock Output. When the internal DLL is locked to the input CLK, this pin outputs a logic high. If the input CLK is changed abruptly, the internal DLL may become unlocked and this pin will output a logic low. Cycle Reset_DLL (pin 28) to re-lock the DLL to the input CLK.
ANALOG POV	VER		•
8, 16, 17, 58, 60	V _A		Positive analog supply pins. These pins should be connected to a quiet source and be bypassed to AGND with 0.1 µF capacitors located close to the power pins.
1, 4, 12, 15, Exposed Pad	AGND		The ground return for the analog supply.
DIGITAL POW	/ER		
26, 40, 49, 50	V_{DR}		Positive driver supply pin for the output drivers. This pin should be connected to a quiet voltage source and be bypassed to DRGND with a 0.1 µF capacitor located close to the power pin.
25, 39, 51	DRGND		The ground return for the digital output driver supply. This pins should be connected to the system digital ground, but not be connected in close proximity to the ADC's AGND pins.

Absolute Maximum Ratings (Notes 1, 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Rating

Human Body Model (Note 6) 2500V

Machine Model (Note 6) 250V

Storage Temperature -65°C to +150°C

Soldering process must comply with National Semiconductor's Reflow Temperature Profile specifications. Refer to www.national.com/packaging. (Note 7)

Operating Ratings (Notes 1, 3)

Operating Temperature $-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$

Supply Voltage (V_A=V_{DR})

(ADC12DS065,ADC12DS080) +2.7V to +3.6V (ADC12DS095,ADC12DS105) +3.0V to +3.6V

Clock Duty Cycle

 V_{CM}

(DCS Enabled) 30/70 % (DCS disabled) 45/55 % 1.4V to 1.6V

IAGND-DRGNDI ≤100mV

ADC12DS065 Converter Electrical Characteristics

This product is currently under development. As such, the parameters specified are DESIGN TARGETS. The specifications cannot be guaranteed until device characterization has taken place.

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 65$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Co	onditions	Typical (Note 10)	Limits	Units (Limits)
STATIC (CONVERTER CHARACTERISTICS			•		
	Resolution with No Missing Codes				12	Bits (min)
INL	Integral Non Linearity (Note 11)			±0.5		LSB (max)
IINL	Integral Nort Emeanty (Note 11)			±0.5		LSB (min)
DNL	Differential Non Linearity			±0.25		LSB (max)
DINL	Differential Nort Effeatily			±0.25		LSB (min)
	Under Range Output Code			0	0	
	Over Range Output Code			4095	4095	
REFERE	NCE AND ANALOG INPUT CHARACTER	RISTICS				
V_{CMO}	Common Mode Output Voltage			1.5	1.45	V (min)
V CMO	Common wode Output Voltage			1.5	1.55	V (max)
V_{CM}	Analog Input Common Mode Voltage			1.5	1.4	V (min)
* CM	Analog input common wode voltage			1.5	1.6	V (max)
C	V _{IN} Input Capacitance (each pin to GND)	V _{IN} = 1.5 Vdc	(CLK LOW)	8.5		pF
C _{IN}	(Note 12)	± 0.5 V	(CLK HIGH)	3.5		pF
V	External Reference Voltage			1.20	1.176	V (min)
V _{REF}	LAGITIAI METETETICE VOITAGE			1.20	1.224	V (max)

ADC12DS065 Dynamic Converter Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 65$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin, . Typical values are for $T_A = 25^{\circ}$ C. Boldface limits apply for $T_{MIN} \le T_A \le T_{MAX}$. All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits) (Note 2)
DYNAMI	CONVERTER CHARACTERISTICS,	A _{IN} = -1dBFS			
FPBW	Full Power Bandwidth	-1 dBFS Input, -3 dB Corner	1.0		GHz
		f _{IN} = 10 MHz	71.3		dBFS
SNR	Signal-to-Noise Ratio	f _{IN} = 70 MHz	70		dBFS
		f _{IN} = 170 MHz	68		dBFS
		f _{IN} = 10 MHz	90		dBFS
SFDR	Spurious Free Dynamic Range	f _{IN} = 70 MHz	88		dBFS
		f _{IN} = 170 MHz	83		dBFS
ENOB	Effective Number of Bits	f _{IN} = 10 MHz	11.5		Bits
		f _{IN} = 70 MHz	11.3		Bits
		f _{IN} = 170 MHz	11		Bits
		f _{IN} = 10 MHz	-88		dBFS
THD	Total Harmonic Disortion	f _{IN} = 70 MHz	-85		dBFS
		f _{IN} = 170 MHz	-80		dBFS
		f _{IN} = 10 MHz	-100		dBFS
H2	Second Harmonic Distortion	f _{IN} = 70 MHz	-95		dBFS
		f _{IN} = 170 MHz	-85		dBFS
		f _{IN} = 10 MHz	-90		dBFS
НЗ	Third Harmonic Distortion	f _{IN} = 70 MHz	-88		dBFS
		f _{IN} = 170 MHz	-83		dBFS
		f _{IN} = 10 MHz	71.2		dBFS
SINAD	Signal-to-Noise and Distortion Ratio	f _{IN} = 70 MHz	69.9		dBFS
		f _{IN} = 170 MHz	67.7		dBFS

ADC12DS065 Logic and Power Supply Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 65$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
DIGITAL	INPUT CHARACTERISTICS (CLK, PD	_A,PD_B,SCSb,SPI_EN,SCLK,SDI,TES	ST,WAM,DLC)	•	
V _{IN(1)}	Logical "1" Input Voltage	$V_D = 3.6V$		2.0	V (min)
V _{IN(0)}	Logical "0" Input Voltage	$V_D = 3.0V$		0.8	V (max)
I _{IN(1)}	Logical "1" Input Current	V _{IN} = 3.3V	10		μA
I _{IN(0)}	Logical "0" Input Current	V _{IN} = 0V	-10		μΑ
C _{IN}	Digital Input Capacitance		5		pF
DIGITAL	OUTPUT CHARACTERISTICS (ORA,C	ORB,SDO)		•	
V _{OUT(1)}	Logical "1" Output Voltage	$I_{OUT} = -0.5 \text{ mA}$, $V_{DR} = 1.8 \text{V}$		1.2	V (min)
V _{OUT(0)}	Logical "0" Output Voltage	I _{OUT} = 1.6 mA, V _{DR} = 1.8V		0.4	V (max)
+I _{SC}	Output Short Circuit Source Current	V _{OUT} = 0V	-10		mA
-I _{sc}	Output Short Circuit Sink Current	$V_{OUT} = V_{DR}$	10		mA
C _{OUT}	Digital Output Capacitance		5		pF
POWER	SUPPLY CHARACTERISTICS	•		'	

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
I _A	Analog Supply Current	Full Operation	180		mA (max)
I _{DR}	Digital Output Supply Current	Full Operation	53		mA
	Power Consumption		700		mW (max)
	Power Down Power Consumption		30		mW

ADC12DS065 Timing and AC Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 65$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symb	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
	Maximum Clock Frequency	In Single-Lane Mode In Dual-Lane Mode		65	MHz (max)
	Minimum Clock Frequency	In Single-Lane Mode In Dual-Lane Mode		25 52.5	MHz (min)
t _{CONV}	Conversion Latency	Single-Lane Mode Dual-Lane, Offset Mode Dual-Lane, Word Aligned Mode		7.5 8 9	Clock Cycles
t _{AD}	Aperture Delay		0.6		ns
t _{AJ}	Aperture Jitter		0.1		ps rms

ADC12DS065 LVDS Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 65$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
LVDS DC	CHARACTERISTICS				
V _{OD}	Output Differential Voltage (SDO+) - (SDO-)	$R_L = 100\Omega$	350	250 450	mV (min) mV (max)
delta V _{OD}	Output Differential Voltage Unbalance	$R_L = 100\Omega$		±25	mV (max)
V _{os}	Offset Voltage	R _L = 100Ω	1.25	1.125 1.375	V (min) V (max)
delta V _{OS}	Offset Voltage Unbalance	$R_L = 100\Omega$		±25	mV (max)
IOS	Output Short Circuit Current	DO = 0V, V _{IN} = 1.1V,	-10		mA (max)
LVDS OU	TPUT TIMING AND SWITCHING CHARA	ACTERISTICS			
t _{DP}	Output Data Bit Period	Single-Lane Mode Dual-Lane Mode	1.28 2.56		ns
t _{HO}	Output Data Edge to Output Clock Edge Hold Time (Note 13)	Single-Lane Mode Dual-Lane Mode	440 1080		ps
t _{SUO}	Output Data Edge to Output Clock Edge Set-Up Time(Note 13)	Single-Lane Mode Dual-Lane Mode	440 1080		ps
t _{FP}	Frame Period	Single-Lane Mode Dual-Lane Mode	15.4 30.8		ns
t _{FDC}	Frame Clock Duty Cycle(Note 13)		50	45 55	% (min) % (max)
t _{DFS}	Data Edge to Frame Edge Skew	50% to 50%	TBD		ps (max)
t _R , t _F	LVDS Rise/Fall Time	C_L =5pF to GND, R_{OUT} =100 Ω	TBD		ps (max)
t _{ODOR}	Output Delay of OR output	From rising edge of CLKL to ORA/ORB valid	4		ns

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
t _{DLD}	Serializer DLL Lock Time		TBD		μs
t _{SD}	Serializer Delay	$R_L=100\Omega$	TBD		ns

ADC12DS080 Converter Electrical Characteristics

This product is currently under development. As such, the parameters specified are DESIGN TARGETS. The specifications cannot be guaranteed until device characterization has taken place.

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 80$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Co	nditions	Typical (Note 10)	Limits	Units (Limits)				
STATIC (TATIC CONVERTER CHARACTERISTICS									
	Resolution with No Missing Codes				12	Bits (min)				
INL	Integral Non Linearity (Note 11)			±0.5		LSB (max) LSB (min)				
DNL	Differential Non Linearity			±0.25		LSB (max) LSB (min)				
	Under Range Output Code			0	0					
	Over Range Output Code			4095	4095					
REFERE	NCE AND ANALOG INPUT CHARACTE	RISTICS								
V_{CMO}	Common Mode Output Voltage			1.5	1.45 1.55	V (min) V (max)				
V _{CM}	Analog Input Common Mode Voltage			1.5	1.4 1.6	V (min) V (max)				
C _{IN}	V _{IN} Input Capacitance (each pin to	V _{IN} = 1.5 Vdc	(CLK LOW)	8.5		pF				
	GND) (Note 12)	± 0.5 V	(CLK HIGH)	3.5		pF				
V _{REF}	External Reference Voltage		•	1.20	1.176 1.224	V (min) V (max)				

ADC12DS080 Dynamic Converter Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 80$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin, . Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits) (Note 2)
DYNAMIC	C CONVERTER CHARACTERISTICS	, A _{IN} = -1dBFS		•	
FPBW	Full Power Bandwidth	-1 dBFS Input, -3 dB Corner	1.0		GHz
		f _{IN} = 10 MHz	71.2		dBFS
SNR	Signal-to-Noise Ratio	f _{IN} = 70 MHz	70		dBFS
		f _{IN} = 170 MHz	68		dBFS
	Spurious Free Dynamic Range	f _{IN} = 10 MHz	90		dBFS
SFDR		f _{IN} = 70 MHz	88	Ì	dBFS
		f _{IN} = 170 MHz	83		dBFS
	Effective Number of Bits	f _{IN} = 10 MHz	11.5		Bits
ENOB		f _{IN} = 70 MHz	11.3		Bits
		f _{IN} = 170 MHz	11		Bits
		f _{IN} = 10 MHz	-88		dBFS
THD	Total Harmonic Disortion	f _{IN} = 70 MHz	-85		dBFS
		f _{IN} = 170 MHz	-80	Ì	dBFS
		f _{IN} = 10 MHz	-100	Ì	dBFS
H2	Second Harmonic Distortion	f _{IN} = 70 MHz	-95		dBFS
		f _{IN} = 170 MHz	-85		dBFS

11

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits) (Note 2)
	Third Harmonic Distortion	f _{IN} = 10 MHz	-90		dBFS
H3		f _{IN} = 70 MHz	-88		dBFS
		f _{IN} = 170 MHz	-83		dBFS
	Signal-to-Noise and Distortion Ratio	f _{IN} = 10 MHz	71.1		dBFS
SINAD		f _{IN} = 70 MHz	69.8		dBFS
		f _{IN} = 170 MHz	67.7		dBFS

ADC12DS080 Logic and Power Supply Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 80$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)					
DIGITAL	DIGITAL INPUT CHARACTERISTICS (CLK, PD_A,PD_B,SCSb,SPI_EN,SCLK,SDI,TEST,WAM,DLC)									
$V_{IN(1)}$	Logical "1" Input Voltage	$V_{D} = 3.6V$		2.0	V (min)					
$V_{IN(0)}$	Logical "0" Input Voltage	$V_D = 3.0V$		8.0	V (max)					
I _{IN(1)}	Logical "1" Input Current	V _{IN} = 3.3V	10		μΑ					
I _{IN(0)}	Logical "0" Input Current	$V_{IN} = 0V$	-10		μΑ					
C _{IN}	Digital Input Capacitance		5		pF					
DIGITAL	OUTPUT CHARACTERISTICS (ORA,O	RB,SDO)								
V _{OUT(1)}	Logical "1" Output Voltage	$I_{OUT} = -0.5 \text{ mA}, V_{DR} = 1.8V$		1.2	V (min)					
V _{OUT(0)}	Logical "0" Output Voltage	I _{OUT} = 1.6 mA, V _{DR} = 1.8V		0.4	V (max)					
+I _{SC}	Output Short Circuit Source Current	V _{OUT} = 0V	-10		mA					
-I _{SC}	Output Short Circuit Sink Current	$V_{OUT} = V_{DR}$	10		mA					
C _{OUT}	Digital Output Capacitance		5		pF					
POWER:	SUPPLY CHARACTERISTICS									
I _A	Analog Supply Current	Full Operation	200		mA (max)					
I _{DR}	Digital Output Supply Current	Full Operation	56		mA					
	Power Consumption		845		mW (max)					
	Power Down Power Consumption		30		mW					

ADC12DS080 Timing and AC Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 80$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symb	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
	Maximum Clock Frequency	In Single-Lane Mode In Dual-Lane Mode		65 80	MHz (max)
	Minimum Clock Frequency	In Single-Lane Mode In Dual-Lane Mode		25 52.5	MHz (min)
t _{CONV}	Conversion Latency	Single-Lane Mode Dual-Lane, Offset Mode Dual-Lane, Word Aligned Mode		7.5 8 9	Clock Cycles
t _{AD}	Aperture Delay		0.6		ns
t _{AJ}	Aperture Jitter		0.1		ps rms

ADC12DS080 LVDS Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.0V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 80$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. Timing measurements are taken at 50% of the signal amplitude. Boldface limits apply for $T_{MIN} \le T_A \le T_{MAX}$. All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
LVDS DC	CHARACTERISTICS				
V _{OD}	Output Differential Voltage (SDO+) - (SDO-)	$R_L = 100\Omega$	350	250 450	mV (min) mV (max)
delta V _{OD}	Output Differential Voltage Unbalance	R _L = 100Ω		±25	mV (max)
V _{OS}	Offset Voltage	R _L = 100Ω	1.25	1.125 1.375	V (min) V (max)
delta V _{OS}	Offset Voltage Unbalance	$R_L = 100\Omega$		±25	mV (max)
IOS	Output Short Circuit Current	DO = 0V, V _{IN} = 1.1V,	-10		mA (max)
LVDS OU	TPUT TIMING AND SWITCHING CHARA	ACTERISTICS			
t _{DP}	Output Data Bit Period	Single-Lane Mode	1.04		ns
'DP	Output Bata Bit I chod	Dual-Lane Mode	2.08		
t _{HO}	Output Data Edge to Output Clock Edge	I -	320		ps
TIO	Hold Time(Note 13)	Dual-Lane Mode	840		
+	Output Data Edge to Output Clock Edge	Single-Lane Mode	320		ps
t _{suo}	Set-Up Time(Note 13)	Dual-Lane Mode	840		μs
	France Basical	Single-Lane Mode	12.5		
t _{FP}	Frame Period	Dual-Lane Mode	25		ns
	5 01 1 5 1 0 1 (1)			45	% (min)
t _{FDC}	Frame Clock Duty Cycle(Note 13)		50	55	% (max)
t _{DFS}	Data Edge to Frame Edge Skew	50% to 50%	TBD		ps (max)
t _R , t _F	LVDS Rise/Fall Time	C_L =5pF to GND, R_{OUT} =100 Ω	TBD		ps (max)
t _{odor}	Output Delay of OR output	From rising edge of CLKL to ORA/ORB valid	4		ns
t _{DLD}	Serializer DLL Lock Time		TBD		μs
t _{SD}	Serializer Delay	R ₁ =100Ω	TBD		ns

ADC12DS095 Converter Electrical Characteristics

This product is currently under development. As such, the parameters specified are DESIGN TARGETS. The specifications cannot be guaranteed until device characterization has taken place.

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 95$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symbol	Parameter	Со	nditions	Typical (Note 10)	Limits	Units (Limits)
STATIC (CONVERTER CHARACTERISTICS					
	Resolution with No Missing Codes				12	Bits (min)
INL	Integral Non Linearity (Note 11)			±0.5		LSB (max)
IINL	Integral Non Lineality (Note 11)			₩ ±0.5		LSB (min)
DNL	Differential Non Linearity			±0.25		LSB (max)
DINL	Differential Nort Efficantly			±0.25		LSB (min)
	Under Range Output Code			0	0	
	Over Range Output Code			4095	4095	
REFERE	NCE AND ANALOG INPUT CHARACTER	RISTICS		· ·		
	Common Mode Output Voltage			1.5	1.45	V (min)
V _{CMO}	Common wode Odiput Voltage			1.5	1.55	V (max)
V_{CM}	Analog Input Common Mode Voltage			1.5	1.4	V (min)
V СМ	Analog input Common Mode Voltage			1.5	1.6	V (max)
C	V _{IN} Input Capacitance (each pin to GND)	V _{IN} = 1.5 Vdc	(CLK LOW)	8.5		pF
C _{IN}	(Note 12)	± 0.5 V	(CLK HIGH)	3.5		pF
	External Reference Voltage			1.20	1.176	V (min)
V_{REF}	External reference voltage			1.20	1.224	V (max)

ADC12DS095 Dynamic Converter Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 95$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin, . Typical values are for $T_A = 25^{\circ}$ C. Boldface limits apply for $T_{MIN} \le T_A \le T_{MAX}$. All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits) (Note 2)
DYNAMI	C CONVERTER CHARACTERISTICS, A	A _{IN} = -1dBFS			
FPBW	Full Power Bandwidth	-1 dBFS Input, -3 dB Corner	1.0		GHz
		f _{IN} = 10 MHz	71		dBFS
SNR	Signal-to-Noise Ratio	f _{IN} = 70 MHz	70		dBFS
		f _{IN} = 240 MHz	67		dBFS
	Spurious Free Dynamic Range	f _{IN} = 10 MHz	90		dBFS
SFDR		f _{IN} = 70 MHz	88		dBFS
		f _{IN} = 240 MHz	83		dBFS
	Effective Number of Bits	f _{IN} = 10 MHz	11.5		Bits
ENOB		f _{IN} = 70 MHz	11.3		Bits
		f _{IN} = 240 MHz	10.8		Bits
		f _{IN} = 10 MHz	-88		dBFS
THD	Total Harmonic Disortion	f _{IN} = 70 MHz	-85		dBFS
		f _{IN} = 240 MHz	-80		dBFS
		f _{IN} = 10 MHz	-95		dBFS
H2	Second Harmonic Distortion	f _{IN} = 70 MHz	-90		dBFS
		f _{IN} = 240 MHz	-85		dBFS

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits) (Note 2)
		f _{IN} = 10 MHz	-90		dBFS
H3	Third Harmonic Distortion	f _{IN} = 70 MHz	-88		dBFS
		f _{IN} = 240 MHz	-83		dBFS
	Signal-to-Noise and Distortion Ratio	f _{IN} = 10 MHz	70.9		dBFS
SINAD		f _{IN} = 70 MHz	69.8		dBFS
		f _{IN} = 240 MHz	66.8		dBFS

ADC12DS095 Logic and Power Supply Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 95$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)					
DIGITAL	DIGITAL INPUT CHARACTERISTICS (CLK, PD_A,PD_B,SCSb,SPI_EN,SCLK,SDI,TEST,WAM,DLC)									
V _{IN(1)}	Logical "1" Input Voltage	V _D = 3.6V		2.0	V (min)					
V _{IN(0)}	Logical "0" Input Voltage	V _D = 3.0V		0.8	V (max)					
I _{IN(1)}	Logical "1" Input Current	V _{IN} = 3.3V	10		μΑ					
I _{IN(0)}	Logical "0" Input Current	$V_{IN} = 0V$	-10		μA					
C _{IN}	Digital Input Capacitance		5		pF					
DIGITAL	OUTPUT CHARACTERISTICS (ORA,O	RB,SDO)	•							
V _{OUT(1)}	Logical "1" Output Voltage	$I_{OUT} = -0.5 \text{ mA}$, $V_{DR} = 1.8 \text{V}$		1.2	V (min)					
V _{OUT(0)}	Logical "0" Output Voltage	I _{OUT} = 1.6 mA, V _{DR} = 1.8V		0.4	V (max)					
+I _{SC}	Output Short Circuit Source Current	V _{OUT} = 0V	-10		mA					
-I _{SC}	Output Short Circuit Sink Current	$V_{OUT} = V_{DR}$	10		mA					
C _{OUT}	Digital Output Capacitance		5		pF					
POWER	SUPPLY CHARACTERISTICS		,							
I _A	Analog Supply Current	Full Operation	235		mA (max)					
I _{DR}	Digital Output Supply Current	Full Operation	68	_	mA					
	Power Consumption		1000		mW (max)					
	Power Down Power Consumption		33		mW					

ADC12DS095 Timing and AC Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 95$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for** $T_{MIN} \le T_A \le T_{MAX}$. All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symb	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
	Maximum Clock Frequency	In Single-Lane Mode		65	MHz (max)
	Maximum Clock Frequency	In Dual-Lane Mode		95	IVIDZ (IIIax)
	Minimum Clock Froguency	In Single-Lane Mode		25	MUz (min)
	Minimum Clock Frequency	In Dual-Lane Mode		52.5	MHz (min)
		Single-Lane Mode		7.5	
t _{CONV}	Conversion Latency	Dual-Lane, Offset Mode		8	Clock Cycles
		Dual-Lane, Word Aligned Mode		9	
t _{AD}	Aperture Delay		0.6		ns
t _{AJ}	Aperture Jitter		0.1	·	ps rms

ADC12DS095 LVDS Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 95$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25$ °C. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25$ °C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
LVDS DC	CHARACTERISTICS				
V_{OD}	Output Differential Voltage (SDO+) - (SDO-)	$R_L = 100\Omega$	350	250 450	mV (min) mV (max)
delta V _{OD}	Output Differential Voltage Unbalance	$R_L = 100\Omega$		±25	mV (max)
V _{OS}	Offset Voltage	R _L = 100Ω	1.25	1.125 1.375	V (min) V (max)
delta V _{OS}	Offset Voltage Unbalance	$R_L = 100\Omega$		±25	mV (max)
IOS	Output Short Circuit Current	DO = 0V, V _{IN} = 1.1V,	-10		mA (max)
LVDS OU	TPUT TIMING AND SWITCHING CHARA	ACTERISTICS			
t _{DP}	Output Data Bit Period	Single-Lane Mode Dual-Lane Mode	0.88 1.75		ns
t _{HO}	Output Data Edge to Output Clock Edge Hold Time(Note 13)	Single-Lane Mode Dual-Lane Mode	240 675		ps
t _{SUO}	Output Data Edge to Output Clock Edge Set-Up Time(Note 13)	Single-Lane Mode Dual-Lane Mode	240 675		ps
t _{FP}	Frame Period	Single-Lane Mode Dual-Lane Mode	10.53 21.05		ns
t _{FDC}	Frame Clock Duty Cycle(Note 13)		50	45 55	% (min) % (max)
t _{DFS}	Data Edge to Frame Edge Skew	50% to 50%	TBD		ps (max)
t _R , t _F	LVDS Rise/Fall Time	C_L =5pF to GND, R_{OUT} =100 Ω	TBD		ps (max)
t _{ODOR}	Output Delay of OR output	From rising edge of CLKL to ORA/ORB valid	4		ns
t _{DLD}	Serializer DLL Lock Time		TBD		μs
t _{SD}	Serializer Delay	R _L =100Ω	TBD		ns

ADC12DS105 Converter Electrical Characteristics

This product is currently under development. As such, the parameters specified are DESIGN TARGETS. The specifications cannot be guaranteed until device characterization has taken place.

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 105$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Cor	Typical (Note 10)	Limits	Units (Limits)	
STATIC (CONVERTER CHARACTERISTICS			<u> </u>	,	
	Resolution with No Missing Codes				12	Bits (min)
INL	Integral Non Linearity (Note 11)			±0.5		LSB (max) LSB (min)
DNL	Differential Non Linearity			±0.25		LSB (max) LSB (min)
	Under Range Output Code			0	0	
	Over Range Output Code		4095	4095		
REFERE	NCE AND ANALOG INPUT CHARACTER	RISTICS				
V _{CMO}	Common Mode Output Voltage				1.45 1.55	V (min) V (max)
V _{CM}	Analog Input Common Mode Voltage			1.5	1.4 1.6	V (min) V (max)
	V _{IN} Input Capacitance (each pin to GND)	V _{IN} = 1.5 Vdc	(CLK LOW)	8.5		pF
C _{IN}	(Note 12)	± 0.5 V	(CLK HIGH)	3.5		pF
V _{REF}	External Reference Voltage		•	1.20	1.176 1.224	V (min) V (max)

ADC12DS105 Dynamic Converter Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 105$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin, . Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits) (Note 2)					
DYNAMIC CONVERTER CHARACTERISTICS, A _{IN} = -1dBFS										
FPBW	Full Power Bandwidth	-1 dBFS Input, -3 dB Corner	1.0		GHz					
		f _{IN} = 10 MHz	70.1		dBFS					
SNR	Signal-to-Noise Ratio	f _{IN} = 70 MHz	69.1		dBFS					
		f _{IN} = 240 MHz	67		dBFS					
SFDR	Spurious Free Dynamic Range	f _{IN} = 10 MHz	88		dBFS					
		f _{IN} = 70 MHz	85	Ì	dBFS					
		f _{IN} = 240 MHz	83		dBFS					
	Effective Number of Bits	f _{IN} = 10 MHz	11.3		Bits					
ENOB		f _{IN} = 70 MHz	11.2		Bits					
		f _{IN} = 240 MHz	10.8	Ì	Bits					
		f _{IN} = 10 MHz	-86		dBFS					
THD	Total Harmonic Disortion	f _{IN} = 70 MHz	-85		dBFS					
		f _{IN} = 240 MHz	-80		dBFS					
		f _{IN} = 10 MHz	-95		dBFS					
H2	Second Harmonic Distortion	f _{IN} = 70 MHz	-90		dBFS					
		f _{IN} = 240 MHz	-85		dBFS					

Symbol	Parameter	Parameter Conditions Typical (Note 10)		Limits	Units (Limits) (Note 2)
	Third Harmonic Distortion	f _{IN} = 10 MHz	-88		dBFS
H3		f _{IN} = 70 MHz	-85		dBFS
		f _{IN} = 240 MHz	-83		dBFS
	Signal-to-Noise and Distortion Ratio	f _{IN} = 10 MHz	70		dBFS
SINAD		f _{IN} = 70 MHz	69		dBFS
		f _{IN} = 240 MHz	66.8		dBFS

ADC12DS105 Logic and Power Supply Electrical Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 105$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)					
DIGITAL INPUT CHARACTERISTICS (CLK, PD_A,PD_B,SCSb,SPI_EN,SCLK,SDI,TEST,WAM,DLC)										
$V_{IN(1)}$	Logical "1" Input Voltage	$V_{D} = 3.6V$		2.0	V (min)					
V _{IN(0)}	Logical "0" Input Voltage	$V_D = 3.0V$		0.8	V (max)					
I _{IN(1)}	Logical "1" Input Current	V _{IN} = 3.3V	10		μΑ					
I _{IN(0)}	Logical "0" Input Current	$V_{IN} = 0V$	-10		μΑ					
C _{IN}	Digital Input Capacitance		5		pF					
DIGITAL	OUTPUT CHARACTERISTICS (ORA,O	RB,SDO)								
V _{OUT(1)}	Logical "1" Output Voltage	$I_{OUT} = -0.5 \text{ mA}$, $V_{DR} = 1.8 \text{V}$		1.2	V (min)					
V _{OUT(0)}	Logical "0" Output Voltage	I _{OUT} = 1.6 mA, V _{DR} = 1.8V		0.4	V (max)					
+I _{SC}	Output Short Circuit Source Current	V _{OUT} = 0V	-10		mA					
-I _{SC}	Output Short Circuit Sink Current	$V_{OUT} = V_{DR}$	10		mA					
C _{OUT}	Digital Output Capacitance		5		pF					
	SUPPLY CHARACTERISTICS									
I _A	Analog Supply Current	Full Operation	250		mA (max)					
I _{DR}	Digital Output Supply Current	Full Operation	71		mA					
	Power Consumption		1060		mW (max)					
	Power Down Power Consumption	Clock disabled	33		mW					

ADC12DS105 Timing and AC Characteristics

Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 105$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}C$. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}C$ (Notes 8, 9)

Symb	Parameter	Parameter Conditions		Limits	Units (Limits)
	Maximum Clock Frequency	In Single-Lane Mode In Dual-Lane Mode		65 105	MHz (max)
	Minimum Clock Frequency	In Single-Lane Mode In Dual-Lane Mode		25 52.5	MHz (min)
t _{CONV}	Conversion Latency	Single-Lane Mode Dual-Lane, Offset Mode Dual-Lane, Word Aligned Mode		7.5 8 9	Clock Cycles
t _{AD}	Aperture Delay		0.6		ns
t _{AJ}	Aperture Jitter		0.1		ps rms

ADC12DS105 LVDS Electrical Characteristics

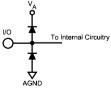
Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, $V_A = V_{DR} = +3.3V$, Internal $V_{REF} = +1.2V$, $f_{CLK} = 105$ MHz, $V_{CM} = V_{CMO}$, $C_L = 5$ pF/pin. Typical values are for $T_A = 25^{\circ}$ C. Timing measurements are taken at 50% of the signal amplitude. **Boldface limits apply for T_{MIN} \le T_A \le T_{MAX}.** All other limits apply for $T_A = 25^{\circ}$ C (Notes 8, 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits	Units (Limits)
LVDS DC	CHARACTERISTICS				
V _{OD}	Output Differential Voltage (SDO+) - (SDO-)	R _L = 100Ω	350	250 450	mV (min) mV (max)
delta V _{OD}	Output Differential Voltage Unbalance	R _L = 100Ω		±25	mV (max)
V _{OS}	Offset Voltage	R _L = 100Ω	1.25	1.125 1.375	V (min) V (max)
delta V _{OS}	Offset Voltage Unbalance	$R_L = 100\Omega$		±25	mV (max)
IOS	Output Short Circuit Current	DO = 0V, V _{IN} = 1.1V,	-10		mA (max)
LVDS OL	TPUT TIMING AND SWITCHING CHARA	ACTERISTICS			
t _{DP}	Output Data Bit Period	Single-Lane Mode Dual-Lane Mode	0.79 1.59		ns
t _{HO}	Output Data Edge to Output Clock Edge Hold Time(Note 13)	Single-Lane Mode Dual-Lane Mode	195 595		ps
t _{SUO}	Output Data Edge to Output Clock Edge Set-Up Time(Note 13)	Single-Lane Mode Dual-Lane Mode	195 595		ps
t _{FP}	Frame Period	Single-Lane Mode Dual-Lane Mode	9.52 19.05		ns
t _{FDC}	Frame Clock Duty Cycle(Note 13)		50	45 55	% (min) % (max)
t _{DFS}	Data Edge to Frame Edge Skew	50% to 50%	TBD		ps (max)
t _R , t _F	LVDS Rise/Fall Time	C_L =5pF to GND, R_{OUT} =100 Ω	TBD		ps (max)
t _{ODOR}	Output Delay of OR output	From rising edge of CLKL to ORA/ORB valid	4		ns
t _{DLD}	Serializer DLL Lock Time		TBD		μs
t _{SD}	Serializer Delay	R _L =100Ω	TBD		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is guaranteed to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the maximum Operating Ratings is not recommended.

Note 2: This parameter is specified in units of dBFS - indicating the value that would be attained with a full-scale input signal.

Note 3: All voltages are measured with respect to GND = AGND = DRGND = 0V, unless otherwise specified.


Note 4: When the input voltage at any pin exceeds the power supplies (that is, V_{IN} < AGND, or V_{IN} > V_{A}), the current at that pin should be limited to ±5 mA. The ±50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of ±5 mA to 10.

Note 5: The maximum allowable power dissipation is dictated by $T_{J,max}$, the junction-to-ambient thermal resistance, (θ_{JA}) , and the ambient temperature, (T_A) , and can be calculated using the formula $P_{D,max} = (T_{J,max} - T_A)/\theta_{JA}$. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.

Note 6: Human Body Model is 100 pF discharged through a 1.5 k Ω resistor. Machine Model is 220 pF discharged through 0 Ω

Note 7: Reflow temperature profiles are different for lead-free and non-lead-free packages.

Note 8: The inputs are protected as shown below. Input voltage magnitudes above V_A or below GND will not damage this device, provided current is limited per (Note 4). However, errors in the A/D conversion can occur if the input goes above 2.6V or below GND as described in the Operating Ratings section.

20211711

Note 9: With a full scale differential input of $2V_{\text{P-P}}$, the 12-bit LSB is 488 $\mu V.$

Ion Linearity is defined as the deviation of the analog v	value, expressed in LSBs, from the straight line that passes through positive and negat
t capacitance is the sum of the package/pin capacitar tmeter is guaranteed by design and/or characterizatio	

Specification Definitions

APERTURE DELAY is the time after the falling edge of the clock to when the input signal is acquired or held for conversion.

APERTURE JITTER (APERTURE UNCERTAINTY) is the variation in aperture delay from sample to sample. Aperture jitter manifests itself as noise in the output.

CLOCK DUTY CYCLE is the ratio of the time during one cycle that a repetitive digital waveform is high to the total time of one period. The specification here refers to the ADC clock input signal.

COMMON MODE VOLTAGE (V_{CM}) is the common DC voltage applied to both input terminals of the ADC.

CONVERSION LATENCY is the number of clock cycles between initiation of conversion and when that data is presented to the output driver stage. Data for any given sample is available at the output pins the Pipeline Delay plus the Output Delay after the sample is taken. New data is available at every clock cycle, but the data lags the conversion by the pipeline delay.

CROSSTALK is coupling of energy from one channel into the other channel.

DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB.

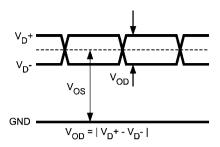
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion Ratio or SINAD. ENOB is defined as (SINAD - 1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.

FULL POWER BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input.

GAIN ERROR is the deviation from the ideal slope of the transfer function. It can be calculated as:

Gain Error = Positive Full Scale Error - Negative Full Scale Error

It can also be expressed as Positive Gain Error and Negative Gain Error, which are calculated as:


PGE = Positive Full Scale Error - Offset Error NGE = Offset Error - Negative Full Scale Error

INTEGRAL NON LINEARITY (INL) is a measure of the deviation of each individual code from a line drawn from negative full scale (½ LSB below the first code transition) through positive full scale (½ LSB above the last code transition). The deviation of any given code from this straight line is measured from the center of that code value.

INTERMODULATION DISTORTION (IMD) is the creation of additional spectral components as a result of two sinusoidal frequencies being applied to the ADC input at the same time. It is defined as the ratio of the power in the intermodulation products to the total power in the original frequencies. IMD is usually expressed in dBFS.

LSB (LEAST SIGNIFICANT BIT) is the bit that has the smallest value or weight of all bits. This value is $V_{FS}/2^n$, where " V_{FS} " is the full scale input voltage and "n" is the ADC resolution in bits.

LVDS Differential Output Voltage (V_{OD}) is the absolute value of the difference between the differential output pair voltages (V_D + and V_D -), each measured with respect to ground.

MISSING CODES are those output codes that will never appear at the ADC outputs. The ADC12DS065 is guaranteed not to have any missing codes.

MSB (MOST SIGNIFICANT BIT) is the bit that has the largest value or weight. Its value is one half of full scale.

NEGATIVE FULL SCALE ERROR is the difference between the actual first code transition and its ideal value of ½ LSB above negative full scale.

OFFSET ERROR is the difference between the two input voltages $[(V_{IN}^+) - (V_{IN}^-)]$ required to cause a transition from code 2047 to 2048.

OUTPUT DELAY is the time delay after the falling edge of the clock before the data update is presented at the output pins. **PIPELINE DELAY (LATENCY)** See CONVERSION LATENCY

POSITIVE FULL SCALE ERROR is the difference between the actual last code transition and its ideal value of 1½ LSB below positive full scale.

POWER SUPPLY REJECTION RATIO (PSRR) is a measure of how well the ADC rejects a change in the power supply voltage. PSRR is the ratio of the Full-Scale output of the ADC with the supply at the minimum DC supply limit to the Full-Scale output of the ADC with the supply at the maximum DC supply limit, expressed in dB.

SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB, of the rms value of the input signal to the rms value of the sum of all other spectral components below one-half the sampling frequency, not including harmonics or DC.

SIGNAL TO NOISE PLUS DISTORTION (S/N+D or SINAD) Is the ratio, expressed in dB, of the rms value of the input signal to the rms value of all of the other spectral components below half the clock frequency, including harmonics but excluding d.c.

SPURIOUS FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB, between the rms values of the input signal and the peak spurious signal, where a spurious signal is any signal present in the output spectrum that is not present at the input.

TOTAL HARMONIC DISTORTION (THD) is the ratio, expressed in dB, of the rms total of the first nine harmonic levels at the output to the level of the fundamental at the output. THD is calculated as

THD = 20 x log
$$\sqrt{\frac{f_2^2 + \dots + f_{10}^2}{f_1^2}}$$

where f_1 is the RMS power of the fundamental (output) frequency and f_2 through f_{10} are the RMS power of the first 9 harmonic frequencies in the output spectrum.

SECOND HARMONIC DISTORTION (2ND HARM) is the difference expressed in dB, between the RMS power in the input

	_
Ц	9
C	
7	_
U	2
۲	1
C	V
Ť	-
C	3
7	ξ
•	
5	Į
L	ò
6	'n
Č	3
Č	ń
ř	
5	
2	•
ċ	•
>	₹
L	-
<	1
2	3
ò	ř
č	Š
ŏ	ń
7	÷
-	
Ç	V
7	,
5	2
C	
<	1
1	=
Ü	_
č	×
ŏ	ř
×	4
ř	
C	٧
7	
۷	2
C	1
<	1
	-

frequency at the output and the power in its 2nd harmonic level at the output.	input frequency at the output and the power in its 3rd harmoni level at the output.
THIRD HARMONIC DISTORTION (3RD HARM) is the difference, expressed in dB, between the RMS power in the	

Timing Diagrams

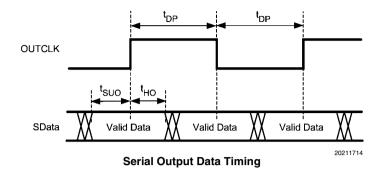
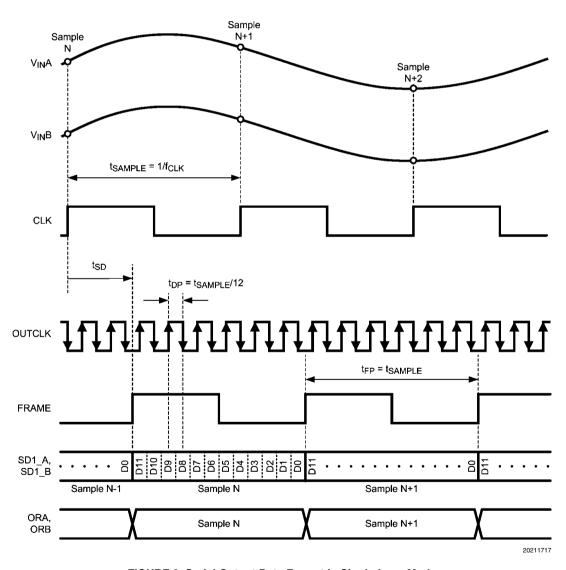
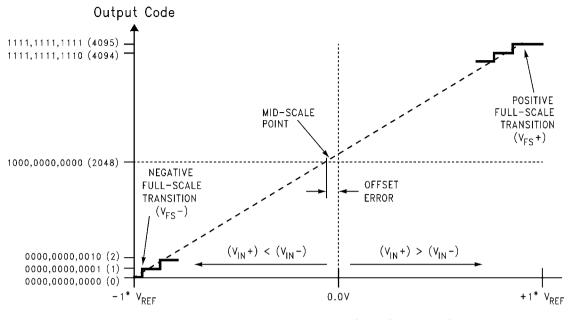


FIGURE 1.




FIGURE 2. Serial Output Data Format in Single-Lane Mode

23

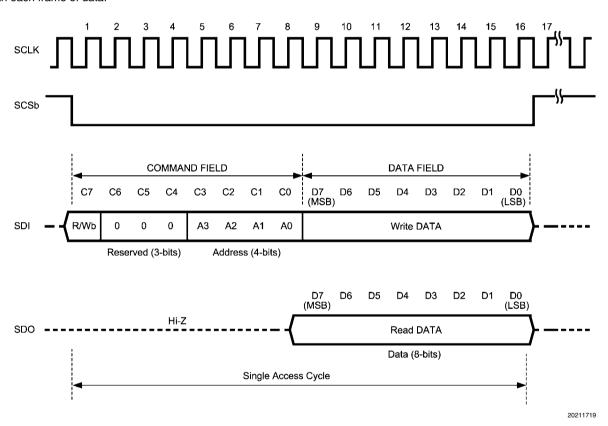
FIGURE 3. Serial Output Data Format in Dual-Lane Mode

Transfer Characteristic

Analog Input Voltage $(V_{|N} +) - V_{|N} -)$

20211710

FIGURE 4. Transfer Characteristic


Functional Description

Operating on a single +3.3V supply, the AD-C12DS065/080/095/105 digitizes two differential analog input signals to 12 bits, using a differential pipelined architecture with error correction circuitry and an on-chip sample-and-hold circuit to ensure maximum performance.

Serial Output Data Format: The digital data for each channel is provided in a serial format. Two modes of operation are available for the serial data format. Single-lane serial format (shown in Figure 2) uses one set of differential data signals per channel. Dual-lane serial format (shown in Figure 3) uses two sets of differential data signals per channel in order to slow down the data and clock frequency by a factor of 2. At slower rates of operation (typically below 65 Msps) the single-lane mode may the most efficient to use. At higher rates the user may want to employ the dual-lane scheme. In either case DDR-type clocking is used. For each data channel, an overrange indication is also provided. The OR signal is updated with each frame of data.

Serial Control Interface

The ADC12DS065/080/095/105 has a serial interface that allows access to the control registers. The serial interface is a generic 4-wire synchronous interface that is compatible with SPI type interfaces that are used on many microcontrollers and DSP controllers. Each serial interface access cycle is exactly 16 bits long. A register-write can be accomplished in one cycle - with the data field returning the contents of the register addressed in the command field of the same cycle. A random access register-read requires 2 cycles - one to load the address and the second to read the register addressed in the previous cycle. Register space supported by this interface is 16, although only a subset is implemented in this device. Figure 5 shows the access protocol used by this interface. Each signal's function is described below.

FIGURE 5. Serial Interface Protocol

SIGNAL DESCRIPTIONS

SCLK: Used to register the input data (SDI) on the rising edge; and to source the output data (SDO) on the falling edge. User may disable clock and hold it in the low-state, as long as clock pulse-width min spec is not violated when clock is enabled or disabled.

SCSb: Serial Interface Chip Select. Each assertion starts a new register access - i.e., the SDATA field protocol is required. The user is required to deassert this signal after the 16th clock. If the SCSb is deasserted before the 16th clock, no address or data write will occur. The rising edge captures the address just shifted-in and, in the case of a write opera-

tion, writes the addressed register. There is a minimum pulsewidth requirement for the deasserted pulse - which is specified in the Electrical Specifications section.

SDI: Serial Data. Must observe setup/hold requirements with respect to the SCLK. Each cycle is 16-bits long.

R/Wb: A value of '1' indicates a read operation, while a

value of '0' indicates a write operation.

Reserved: Reserved for future use. Must be set to 0.

ADDR: Up to 16 registers can be addressed.

DATA: In a write operation the value in this field will be

written to the register addressed in this cycle when SCSb is deasserted. In a read operation

this field is ignored.

SDO: This output is normally tri-stated and is driven only when SCSb is asserted. Upon SCSb assertion, contents of the register addressed during the first byte are shifted out with the second 8 SCLK falling edges. Upon power-up, the default register address is 00h.

Device Control Register, Address 0h

7 6	5	4	3	2	1	0
МО	DLE	DCS	DF	WAM	PD_A	PD_B

Bits (7:6) Operational Mode

0 0 Normal Operation.

0 1 Test Output mode. A fixed test pattern (101001100011 msb->lsb) is sourced at the data outputs.

1 0 Test Output mode. Data pattern defined by user in registers 01h and 02h is sourced at data outputs.

1 1 Reserved.

Bit 5 Data Lane Configuration. When this bit is set to '0', the serial data interface is configured for dual-lane mode where the data words are output on two data outputs (SD1 and SD0) at half the rate of the single-lane interface. When this bit is set to '1', serial data is output on the SD1 output only and the SD0 outputs are held in a high-impedance

Bit 4 Duty Cycle Stabilizer. When this bit is set to '0' the DCS is off. When this bit is set to '1', the DCS is on.

Bit 3 Data Format. When this bit is set to '1' the data output is in the "twos complement" form. When this bit is set to '0' the data output is in the "offset binary" form.

Bit 2 Word Alignment Mode.

This bit must be set to '0' in the single-lane mode of operation.

In dual-lane mode, when this bit is set to '0' the serial data words are offset by half-word. This gives the least latency through the device. When this bit is set to '1' the serial data words are in word-aligned mode. In this mode the serial data on the SD1 lane is additionally delayed by one CLK cycle. (Refer to).

Bit 1 Power-Down Channel A. When this bit is set to '1', Channel A is in power-down state and Normal operation is suspended.

Bit 0 Power-Down Channel B. When this bit is set to '1', Channel B is in power-down state and Normal operation is suspended.

Reset State: 08h

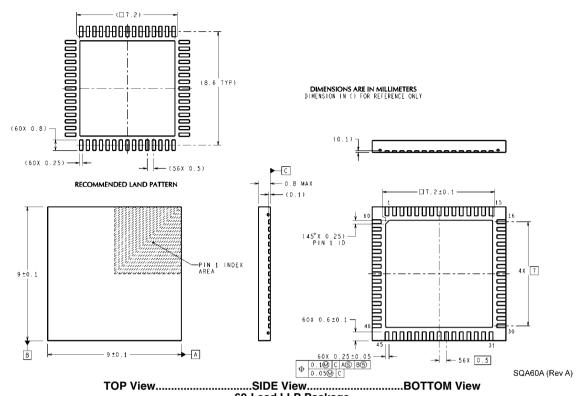
User Test Pattern Register 0, Address 1h

7	6	5	4	3	2	1	0
Reserved			ed	User	Test P	attern	(11:8)

Bits (7:6) Reserved. Must be set to '0'.

Bits (5:0) User Test Pattern. Most-significant 6 bits of the 12-bit pattern that will be sourced out of the data outputs in Test Output Mode.

Reset State: 00h


User Test Pattern Register 1. Address 2h

٦.								
	7	6	5	4	3	2	1	0
	Us	er Test Pattern (7:0)						

Bits (7:0) User Test Pattern. Least-significant 8 bits of the 12-bit pattern that will be sourced out of the data outputs in Test Output Mode.

Reset State: 00h

Physical Dimensions inches (millimeters) unless otherwise noted

TOP View......SIDE View......BOTTOM View
60-Lead LLP Package
Ordering Numbers:
ADC12DS065CISQ / ADC12DS080CISQ / ADC12DS095CISQ / ADC12DS105CISQ
NS Package Number SQA60A

ADC12DS065/ADC12DS080/ADC12DS095/ADC12DS105

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560