

Low Capacitance, Low Charge Injection, $\pm 15 \text{ V/} + 12 \text{ V}$, 4:1 *i*CMOS Multiplexer

Data Sheet

FEATURES

1.5 pF off source capacitance
<1 pC charge injection
33 V supply range
120 Ω on resistance
Fully specified at ±15 V, +12 V
No V_L supply required
3 V logic-compatible inputs
Rail-to-rail operation
14-lead TSSOP and 12-lead LFCSP
Typical power consumption < 0.03 µW

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Audio signal routing Video signal routing Communication systems


GENERAL DESCRIPTION

The ADG1204 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels designed on an *i*CMOS (industrial CMOS) process. *i*CMOS* is a modular manufacturing process that combines high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of this multiplexer makes it an ideal solution for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth makes the device suitable for video signal switching. *i*CMOS construction ensures ultralow power dissipation, making the device ideally suited for portable and battery-powered instruments.

ADG1204

FUNCTIONAL BLOCK DIAGRAM

The ADG1204 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines: A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit breakbefore-make switching action.

PRODUCT HIGHLIGHTS

- 1. 1.5 pF off capacitance (±15 V supply).
- 2. <1 pC charge injection.
- 3. 3 V logic-compatible digital inputs: VIH = 2.0 V, VIL = 0.8 V.
- 4. No VL logic power supply required.
- 5. Ultralow power dissipation: $<0.03 \mu$ W.
- 6. 14-lead TSSOP and 12-lead, 3 mm × 3 mm LFCSP packages.

Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG1204* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Documentation 🖵

Application Notes

- AN-1024: How to Calculate the Settling Time and Sampling Rate of a Multiplexer
- AN-874: Operating the ADG12xx Series of Parts with 5 V Supplies and the Impact on Performance

Data Sheet

• ADG1204: Low Capacitance, Low Charge Injection, ±15 V/±12 V 4:1 *i*CMOS Multiplexer Data Sheet

Reference Designs

• CN0292

Reference Materials

Informational

• iCMOS Technology Enabling the +/-10V World

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- · Data-acquisition system uses fault protection

Design Resources 🖵

- ADG1204 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- · Symbols and Footprints

Discussions 🖵

View all ADG1204 EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

Features 1	L
Applications 1	L
Functional Block Diagram 1	L
General Description 1	L
Product Highlights 1	L
Revision History 2	2
Specifications	3
Dual Supply	3
Single Supply5	;
Absolute Maximum Ratings7	7

REVISION HISTORY

3/16-Rev. B to Rev. C

Changed LFCSP_VQ to LFCSP	. Throughout
Changes to Figure 3	
Updated Outline Dimensions	
Changes to Ordering Guide	

2/09—Rev. A to Rev. B

Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 1 4
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 2
Updated Outline Dimensions15

7/06—Rev. 0 to Rev. A

Updated Format	Universal
Changes to Table 1	3
Changes to Table 2	5
Changes to the Terminology Section	

7/05—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	Y Version ¹ –40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH	25 C	+05 C	+125 C	Unit	
Analog Signal Range			VDD to Vss	v	
On Resistance (RoN)	120		V DD CO VSS	ν Ω typ	$V_{s} = \pm 10 V$, $I_{s} = -1 mA$; see Figure 21
On Resistance (RON)	120	230	260	$\Omega \max$	$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
On Resistance Match Between	3.5	250	200	Ωtyp	$V_{bb} = \pm 10.5$ V, $V_{ss} = -1$ mA
Channels (ΔR_{ON})	6	10	12	$\Omega \max$	$v_{5} = \pm 10 v_{7} v_{5} = -1 m A$
On Resistance Flatness (R _{FLAT(ON)})	20	10	12	Ωtyp	$V_s = -5 V, 0 V, +5 V; I_s = -1 mA$
Of hesistance hatness (helar(ON))	57	72	79	Ω max	$v_5 = -5 v_7 v_7 v_7 + 5 v_7 v_5 = -1 m_A$
LEAKAGE CURRENTS	57	72	15	3211107	$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (OFF)	±0.02			n A two	
Source OII Leakage, IS (OFF)				nA typ	$V_s = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 22}$
	±0.1	±0.6	±1	nA max	
Drain Off Leakage, I _D (OFF)	±0.02			nA typ	$V_s = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 22}$
	±0.1	±0.6	±1	nA max	
Channel On Leakage, I _D , I _S (ON)	±0.02			nA typ	$V_s = V_D = \pm 10 V$; see Figure 23
	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{NH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	2.5			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANS}	120			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	150	180	200	ns max	$V_s = 10 V$; see Figure 24
t _{on} (EN)	70			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	85	100	110	ns max	Vs = 10 V; see Figure 26
t _{off} (EN)	90			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	110	135	155	ns max	$V_s = 10 V$; see Figure 26
Break-Before-Make Time Delay, t _D	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{s1} = V_{s2} = 10 V$; see Figure 25
Charge Injection	-0.7			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, f = 20 Hz to 20 kHz; see Figure 31
Bandwidth –3 dB	800			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
Cs (OFF)	1.2			pF typ	$f = 1 MHz$, $V_s = 0 V$
	1.5			pF max	$f = 1 \text{ MHz}, V_s = 0 \text{ V}$
C _D (OFF)	3.6			pF typ	$f = 1 \text{ MHz}, V_s = 0 \text{ V}$
	4.2			pF max	$f = 1 \text{ MHz}, V_s = 0 \text{ V}$
C _D , C _s (ON)	5.5			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	6.5			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$ $f = 1 \text{ MHz}, V_S = 0 \text{ V}$

		Y Version ¹				
Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments	
POWER REQUIREMENTS					$V_{DD} = +16.5 V, V_{SS} = -16.5 V$	
ldd	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$	
			1.0	μA max		
ldd	170			μA typ	Digital inputs = 5 V	
			285	μA max		
Iss	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$	
			1.0	μA max		
I _{SS}	0.001			μA typ	Digital inputs = 5 V	
			1.0	μA max		

 1 Y version temperature range is $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Y Version ¹								
-40°C to -40°C to								
Parameter	25°C	+85°C	+125°C	Unit	Test Conditions/Comments			
ANALOG SWITCH								
Analog Signal Range			0 V to V _{DD}	V				
On Resistance (R _{ON})	300			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -1 mA$; see Figure 21			
	475	567	625	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$			
On Resistance Match Between Channels	5			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -1 mA$			
(ΔR _{on})	16	26	27	Ωmax				
On Resistance Flatness (R _{FLAT(ON)})	60			Ωtyp	$V_s = 3 V, 6 V, 9 V; I_s = -1 mA$			
LEAKAGE CURRENTS					$V_{DD} = 13.2 V$			
Source Off Leakage, Is (OFF)	±0.02			nA typ	$V_{S} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V};$			
	±0.1	±0.6	±1	nA max	see Figure 22			
Drain Off Leakage, I _D (OFF)	±0.02			nA typ	$V_{S} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V};$			
	±0.1	±0.6	±1	nA max	see Figure 22			
Channel On Leakage, I _D , Is (ON)	±0.02			nA typ	$V_{S} = V_{D} = 1 V \text{ or } 10 V$; see Figure 23			
	±0.2	±0.6	±1	nA max				
DIGITAL INPUTS								
Input High Voltage, V _{INH}			2.0	V min				
Input Low Voltage, VINL			0.8	V max				
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$			
			±0.1	μA max				
Digital Input Capacitance, C _{IN}	2.5			pF typ				
DYNAMIC CHARACTERISTICS ²								
Transition Time, t _{TRANS}	150			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$			
	190	240	265	ns max	Vs = 8 V; see Figure 24			
ton (EN)	95			ns typ	$R_L = 300 \Omega, C_L = 35 pF$			
	120	150	170	ns max	Vs = 8 V; see Figure 26			
t _{off} (EN)	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$			
	125	155	170	ns max	Vs = 8 V; see Figure 26			
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$			
			10	ns min	$V_{S1} = V_{S2} = 8 V$; see Figure 25			
Charge Injection	-0.4			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27			
Off Isolation	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28			
Channel-to-Channel Crosstalk	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30			
Bandwidth –3 db	550			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29			
Cs (OFF)	1.2			pF typ	$f = 1 MHz; V_s = 6 V$			
	1.5			pF max	$f = 1 MHz; V_s = 6 V$			
C _D (OFF)	3.6			pF typ	$f = 1 MHz; V_s = 6 V$			
	4.2			pF max	$f = 1 MHz; V_s = 6 V$			
C _D , C _S (ON)	5.5			pF typ	$f = 1 MHz; V_s = 6 V$			
	6.5			pF max	$f = 1 MHz; V_s = 6 V$			

		Y Version ¹			
Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = 13.2 V$
ldd	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	
DD	170			μA typ	Digital inputs = 5 V
			285	μA max	

 1 Y version temperature range is $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

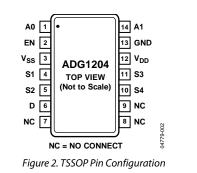
 $T_A = 25^{\circ}C$, unless otherwise noted.

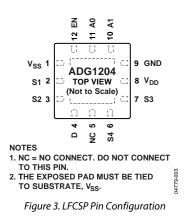
Table 3.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
V _{ss} to GND	+0.3 V to -25 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current	45 mA
Operating Temperature Range	
Automotive (Y Version)	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
14-Lead TSSOP, θ _{JA} Thermal Impedance (4-Layer Board)	112°C/W
12-Lead LFCSP,	80°C/W
θ_{JA} Thermal Impedance	
Reflow Soldering Peak	260°C
Temperature, Pb Free	

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.


Only one absolute maximum rating can be applied at any one time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin	No.		
TSSOP	LFCSP	Mnemonic	Description
1	11	A0	Logic Control Input.
2	12	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	Vss	Most Negative Power Supply Potential.
4	2	S1	Source Terminal. Can be an input or an output.
5	3	S2	Source Terminal. Can be an input or an output.
6	4	D	Drain Terminal. Can be an input or an output.
7 to 9	5	NC	No Connection.
10	6	S4	Source Terminal. Can be an input or an output.
11	7	S3	Source Terminal. Can be an input or an output.
12	8	V _{DD}	Most Positive Power Supply Potential.
13	9	GND	Ground (0 V) Reference.
14	10	A1	Logic Control Input.

TRUTH TABLE

Table 5.

10010 01									
EN	A1	A0	S1	S2	S3	S4			
0	Х	Х	Off	Off	Off	Off			
1	0	0	On	Off	Off	Off			
1	0	1	Off	On	Off	Off			
1	1	0	Off	Off	On	Off			
1	1	1	Off	Off	Off	On			

TYPICAL PERFORMANCE CHARACTERISTICS

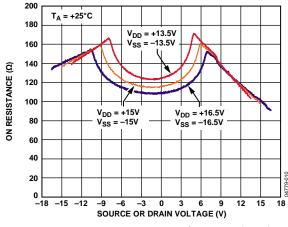


Figure 4. On Resistance as a Function of V_{D} (Vs), Dual Supply

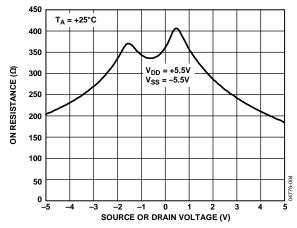


Figure 5. On Resistance as a Function of V_D (V_S), Dual Supply

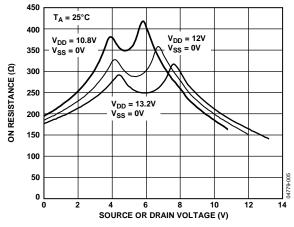


Figure 6. On Resistance as a Function of V_D (V_s), Single Supply

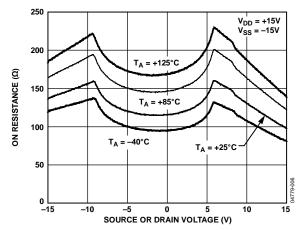


Figure 7. On Resistance as a Function of V_D (V_s) for Different Temperatures, Dual Supply

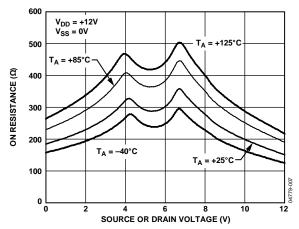


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

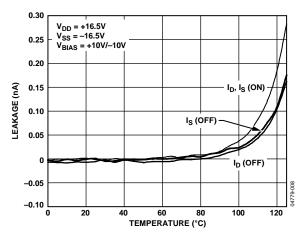


Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

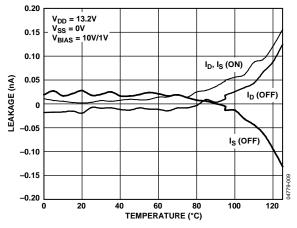
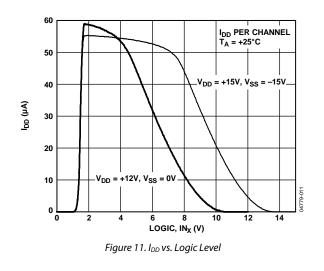



Figure 10. Leakage Currents as a Function of Temperature, Single Supply

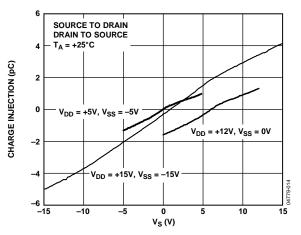
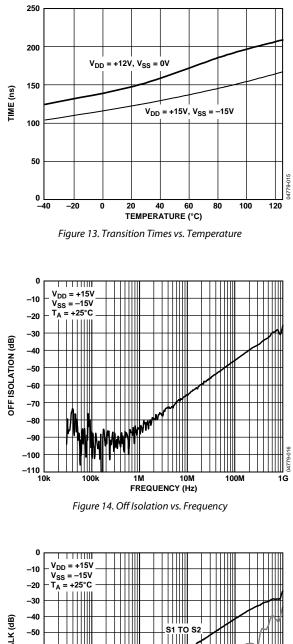



Figure 12. Charge Injection vs. Source Voltage

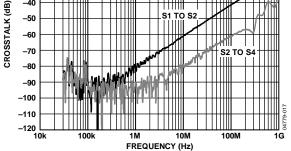
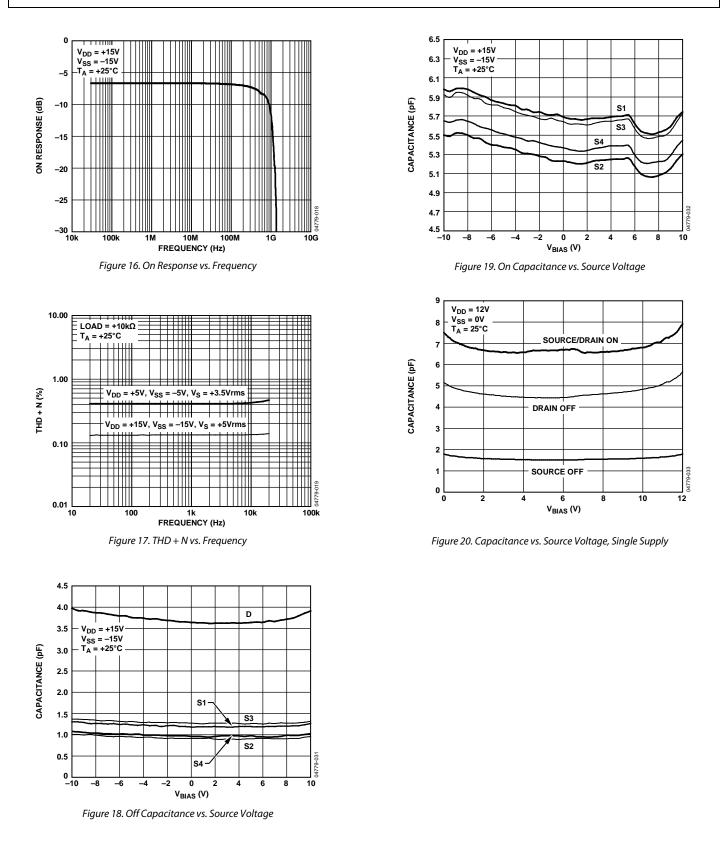



Figure 15. Crosstalk vs. Frequency

TEST CIRCUITS

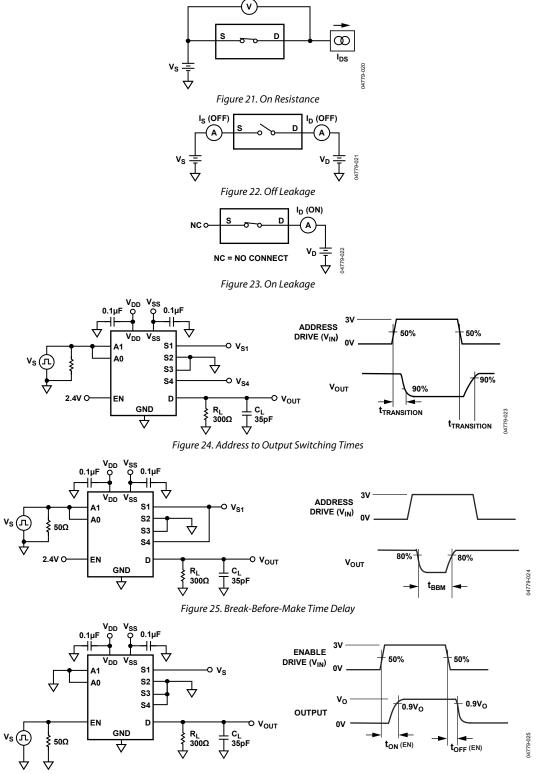


Figure 26. Enable-to-Output Switching Delay

Data Sheet

V_{DD} Q Vss ¥ Ŷ V_{OUT} ΔV_{OUT} V_{DD} V_{SS} $Q_{INJ} = C_L \times \Delta V_{OUT}$ ¥ Rs <u>م</u> -ov_{out} VIN ⊥ c_L ↓ ^{1nF} SW OFF SW OFF ٧s SW ON DECODER GND SW ON Ą SW OFF SW OFF л VIN 04779-026 Figure 27. Charge Injection

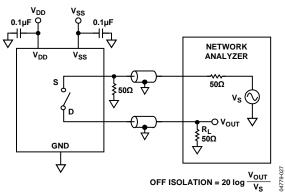


Figure 28. Off Isolation

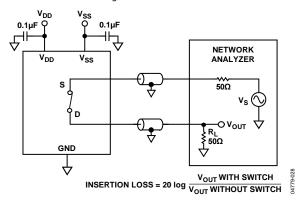


Figure 29. Bandwidth

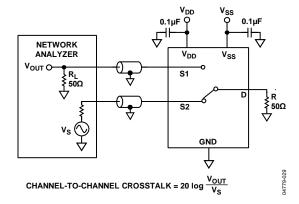
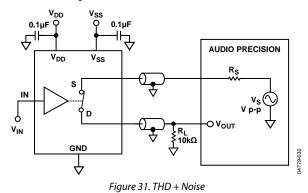



Figure 30. Channel-to-Channel Crosstalk

ADG1204

TERMINOLOGY

IDD

The positive supply current.

Iss

The negative supply current.

$V_D (V_s)$

The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (OFF)

The source leakage current with the switch off.

 \mathbf{I}_{D} (OFF) The drain leakage current with the switch off.

 $I_{\rm D}, I_{\rm S} \left(ON \right)$ The channel leakage current with the switch on.

 \mathbf{V}_{INL} The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

 $I_{\rm INL} \left(I_{\rm INH} \right)$ The input current of the digital input.

Cs (OFF)

The off switch source capacitance, which is measured with reference to ground.

C_D (OFF)

The off switch drain capacitance, which is measured with reference to ground.

$C_D, C_S(On)$

The on switch capacitance, measured with reference to ground. $C_{\rm IN}$

The digital input capacitance.

ton (EN)

The delay between applying the digital control input and the output switching on.

toff (EN)

The delay between applying the digital control input and the output switching off.

t_{TRANS}

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by -3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

OUTLINE DIMENSIONS

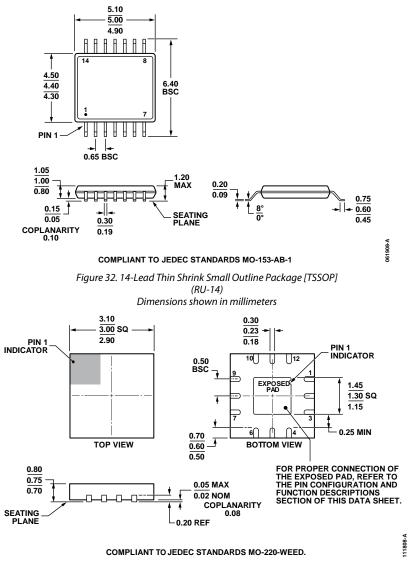


Figure 33. 12-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-12-4) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1204YRUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YRUZ-REEL	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YRUZ-REEL7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YCPZ-500RL7	–40°C to +125°C	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4
ADG1204YCPZ-REEL7	-40°C to +125°C	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4

¹ Z = RoHS Compliant Part.

Data Sheet

NOTES

www.analog.com

©2005–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04779-0-3/16(C)

Rev. C | Page 16 of 16