

High Speed Quad SPST CMOS Analog Switch

ADG201S

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. This brochure may be found at: http://www.analog.com/aeroinfo.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at http://www.analog.com/ADG201.

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description

ADG201-803Q High speed quad SPST CMOS analog switch

2.1 <u>Case Outline</u>.

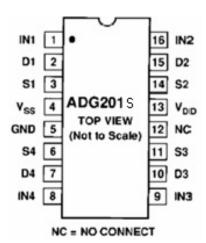


Figure 1 - Terminal connections.

ADG201S* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 ADG201S: High Speed Quad SPST CMOS Analog Switch Aerospace Data Sheet

REFERENCE MATERIALS -

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

DESIGN RESOURCES 🖵

- ADG201S Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG201S EngineerZone Discussions.

SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

ADG201S

3.0 <u>Absolute Maximum Ratings</u>. $1/(T_A = 25^{\circ}C)$, unless otherwise noted)

V _{DD} to V _{SS}	44V
V_{DD} to V_{SS}	0.3V, 25V
V _{SS} to GND <u>2/</u>	+0.3V, -25V
Analog Inputs 3/	,
Voltage at S, D	V_{SS} -2V to V_{DD} +2V
•	or 20mA, whichever comes first
Current at S, D	20mA
Continuous Current, S or D	20mA
Pulsed Current, S or D (1mS Duration, 10% duty cycle) .	70mA
Digital Inputs 3/	
Voltage at IN, WR	V_{SS} - 4V to V_{DD} +4V
-	or 20mA, whichever comes first
Current at IN	20mA
Power dissipation	470mW
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	
Junction Temperature (T _J)	+175°C

Notes:

3.1 Thermal Characteristics:

Thermal Resistance, cerdip (Q) Package Junction-to-Case (Θ_{JC}) = 35°C/W Max Junction-to-Ambient (Θ_{JA}) = 120°C/W Max

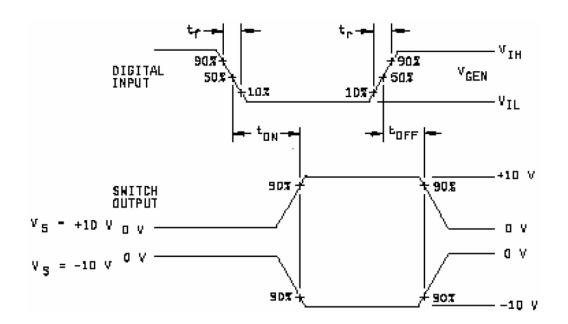
^{1/2} Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $[\]underline{2I}$ If V_{SS} is open circuited with V_{DD} and GND applied, the V_{SS} pin will be pulled positive, exceeding the Absolute Maximum Ratings. If this possibility exists, a Schottky diode from V_{SS} to GND (cathode end to GND) ensures that the Absolute Maximum Ratings will be observed.

^{3/} Overvoltage at IN, S, or D will be clamped by diodes. Current should be limited to 20mA (see above).

4.0 <u>Electrical Table</u>:

TABLE I						
Parameter	Symbol	Conditions <u>1/</u>	Subgroup	Limit <u>2</u> /		Units
		-55°C≤ TA ≤ +125°C		Min.	Max.	
Analog Signal range	Vs	<u>3/</u>	4		±15	V
On resistance	R _{DS (ON)}	$V_S = \pm 10V$, $I_D = 1$ mA, $V_{IN} = 0.8V$	1		50	Ohm
			2,3		75	
Source OFF leakage current	Is (OFF)	V _D =±14V, V _S =±14V, V _{IN} =2.4V	1		±1.0	
			2,3		±60	
Drain OFF leakage current	I _{D (OFF)}	$V_D = \pm 14V, V_S = \pm 14V, V_{IN} = 2.4V$	1		±1.0	nA
			2,3		±60	
Channel ON leakage current	I _{D (ON)}	$V_D = V_S = \pm 14V, V_{IN} = 0.8V$	1		±1.0	
			2,3		±60	
Low level input voltage <u>4/</u>	V _{IL}		7,8		0.8	V
High level input voltage <u>4/</u>	V _{IH}		7,8	2.4		
Input leakage current (low)	I _{IL}	V_{IN} under test = 1.0V, All other $V_{IN} = 16.5V$	1,2,3		±1.0	μА
Input leakage current (high)	Ін	V_{IN} under test = 16.5V, All other V_{IN} = 1.0V, V_S = ±17V	1,2,3		±1.0	
Positive supply current	I+	V _{IN} =3.0V or 0.8V for all switches	1,2,3		10	mA
Negative supply current	I-	V _{IN} =2.4V or 0.8V for all switches	1,2,3		-6	
Switch on time $t_{ON} \qquad R_L = 1K\Omega, C_L = 35pF, V_{IH} = +3V, V_{IL} = 0V_{IH} = \pm 10V \text{ see figure 3}$	$R_L = 1K\Omega$, $C_L=35pF$, $V_{IH}=+3V$, $V_{IL}=0V$, V_S	9		50	nS	
		= ±10V see figure 3	10,11		65	
Switch off time	toff	$R_L = 1K\Omega, C_L = 35pF, V_{IH} = +3V, V_{IL} = 0V, V_S$	9		50	
		= ±10V see figure 3	10,11		65	


TABLE I NOTES:

 $[\]underline{1/}$ V+ = +15V, V- = -15V, unless otherwise specified

 $[\]underline{2/}$ The limiting terms "min" (minimum) and "max" (maximum) shall be considered to apply to magnitudes only. Negative current shall be defined as conventional current flow out of a device terminal.

^{3/2} These parameters may not be tested, but shall be guaranteed to the limits specified in table I herein.

^{4/} Test not required if applied as a forcing function.

NOTE: Rise time and fall time ≤ 20 ns.

FIGURE 3. Switching waveforms.

4.1 <u>Electrical Test Requirements</u>:

TABLE II			
Test Requirements	Subgroups (in accordance with MIL- PRF-38535, Table III)		
Interim Electrical Parameters	1		
Final Electrical Parameters	1, 2, 3, 4, 7, 8 <u>1/ 2/</u>		
Group A Test Requirements	1, 2, 3, 4, 7, 8, 9, 10, 11		
Group C end-point electrical parameters	1,7 <u>2/</u>		
Group D end-point electrical parameters	1,7		
Group E end-point electrical parameters	na		

 $[\]underline{\text{1/}}\,\text{PDA}$ applies to subgroup 1. Exclude Deltas from PDA.

 $[\]underline{\textit{2/}}$ See Table III for delta measure parameters and limits.

4.2 <u>Table III. Life Test/Burn-In test delta limits</u>.

		TABLE III		
TEST TITLE	BURN-IN LIMIT	LIFE TEST LIMIT	DELTA LIMITS	UNITS
R _{DS(ON)}	50	65	±15	Ω
I _{D(OFF)}	±1	±2	±1	nA
I _{S(ON)} + I _{D(ON)}	±1	±2	±1	nA

5.0 <u>Life Test/Burn-In Circuit</u>:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

6.0 <u>MIL-STD-38535 QMLV exceptions:</u>

6.1 Full WLA per MIL-STD-883 TM 5007 is not available for this product fabricated in a QMLQ wafer process facility. SEM Inspection only is available per MIL-STD-883, TM2018.

ADG201S

Rev	Description of Change	Date
Α	Initiate	July 30, 2001
В	Update web address	Feb. 18, 2002
С	Update web address.	June 20, 2003
D	Clarify SEM vs. WLA availability for QMLQ fab process	Nov. 8, 2007
E	Update header/footer & add to 1.0 Scope description.	Feb. 26, 2008
F	Add Junction Temperature(TJ)175°C to 3.0 Absolute Max Rating, add -55°C≤ TA ≤ +125°C to Table I, remove Test circuit from FIGURE 3	March 28, 2008
G	Format document to current standard.	January 20, 2014
Н	Correct typo from ADG201HS to ADG201S	January 24, 2014