

User Defined Fault Protection and Detection, 0.8 pC Q_{INJ}, 8:1/Dual 4:1 Multiplexers

Data Sheet

ADG5248F/ADG5249F

FEATURES

User defined secondary supplies set overvoltage level
Overvoltage protection up to -55 V and +55 V
Power-off protection up to -55 V and +55 V
Overvoltage detection on source pins
Minimum secondary supply level: 4.5 V single-supply
Interrupt flags indicate fault status
Low charge injection (Q_{INJ}): 0.8 pC
Low drain/source on capacitance

ADG5248F: 19 pF ADG5249F: 14 pF

Latch-up immune under any circumstance Known state without digital inputs present V_{SS} to V_{DD} analog signal range ± 5 V to ± 22 V dual supply operation 8 V to 44 V single-supply operation Fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V

APPLICATIONS

Analog input/output modules
Process control/distributed control systems
Data acquisition
Instrumentation
Avionics
Automatic test equipment
Communication systems
Relay replacement

GENERAL DESCRIPTION

The ADG5248F and ADG5249F are 8:1 and dual 4:1 analog multiplexers. The ADG5248F switches one of eight inputs to a common output, and the ADG5249F switches one of four differential inputs to a common differential output. Each channel conducts equally well in both directions when on, and each channel has an input signal range that extends to the supplies. The primary supply voltages define the on-resistance profile, whereas the secondary supply voltages define the voltage level at which the overvoltage protection engages.

When no power supplies are present, the channel remains in the off condition, and the switch inputs are high impedance. Under normal operating conditions, if the analog input signal levels on any Sx pin exceed positive fault voltage (POSFV) or negative fault voltage (NEGFV) by a threshold voltage (V_T), the channel turns off and that Sx pin becomes high impedance. If the switch on, the drain pin is pulled to the secondary supply voltage that was exceeded. Input signal levels up to +55 V or –55 V relative to ground are blocked, in both the powered and unpowered conditions.

Rev. 0

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

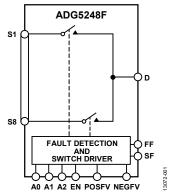


Figure 1. ADG5248F Functional Block Diagram

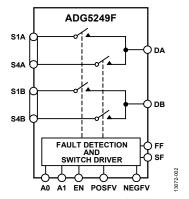


Figure 2. ADG5249F Functional Block Diagram

The low capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch switching and fast settling times are required.

Note that, throughout this data sheet, multifunction pins, such as A0/F0, are referred to either by the entire pin name or by a single function of the pin, for example, A0, when only that function is relevant.

PRODUCT HIGHLIGHTS

- 1. Source pins are protected against voltages greater than the secondary supply rails, up to −55 V and +55 V.
- Source pins are protected against voltages between −55 V and +55 V in an unpowered state.
- 3. Overvoltage detection with digital output indicates operating state of switches.
- 4. Trench isolation guards against latch-up.
- 5. Optimized for low charge injection and on capacitance.
- The ADG5248F/ADG5249F can be operated from a dual supply of ±5 V to ±22 V or a single power supply of 8 V to 44 V.

ADG5248F/ADG5249F

Data Sheet

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagrams	. 1
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
±15 V Dual Supply	. 3
±20 V Dual Supply	. 5
12 V Single Supply	. 7
36 V Single Supply	. 9
Continuous Current per Channel, Sx, D, or Dx	12
Absolute Maximum Ratings	13
ESD Caution	13
Pin Configurations and Function Descriptions	14
Typical Performance Characteristics	18

Test Circuits
Terminology
Theory of Operation
Switch Architecture
User Defined Fault Protection
Applications Information
Power Supply Rails31
Power Supply Sequencing Protection31
Signal Range31
Power Supply Recommendations31
High Voltage Surge Suppression31
Intelligent Fault Detection
Large Voltage, High Frequency Signals
Outline Dimensions
Ordering Guide

REVISION HISTORY

4/15—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, $C_{DECOUPLING}$ = 0.1 μF , unless otherwise noted.

Table 1.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			V _{DD} to V _{SS}	V	_
On Resistance, R _{ON}	250			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
•	270	335	395	Ω max	
	250			Ωtyp	$V_S = \pm 9 \text{ V, } I_S = -1 \text{ mA}$
	270	335	395	Ω max	
On-Resistance Match Between	2.5		373	Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
Channels, ΔR _{ON}				71	
	6	12	13	Ωmax	
	2.5			Ωtyp	$V_S = \pm 9 \text{ V, } I_S = -1 \text{ mA}$
	6	12	13	Ωmax	
On-Resistance Flatness, RFLAT(ON)	6.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
	8	9	9	Ω max	
	1.5			Ωtyp	$V_S = \pm 9 \text{ V, } I_S = -1 \text{ mA}$
	3.5	4	4	Ω max	15 =1 1,15
Threshold Voltage, V _T	0.7			V typ	See Figure 28
LEAKAGE CURRENTS				7 17 1	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 34}$
Jource on Leakage, 13 (On)	±1	±2	±5	nA max	vs = ±10 v, vb = 110 v, see rigule 54
Drain Off Leakage, I _D (Off)	±0.1	12	-3	nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 34}$
Dialit Off Leakage, ib (Off)		ı.E	+10	/ /	V _S = ±10 V, V _D = +10 V, see Figure 34
Channel On Lastrana I (On) I (On)	±1	±5	±10	nA max	V V 10V Firms 25
Channel On Leakage, I _D (On), I _S (On)	±0.3 ±1.5	±20	±25	nA typ nA max	$V_S = V_D = \pm 10 \text{ V}$, see Figure 35
FAULT	±1.5	±20	±23	IIA IIIax	
Source Leakage Current, Is			. 70		V .165VV 165V CND 0VV .55V
With Overvoltage	±66		±78	μA typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
Power Supplies Grounded or	±25		±40	μA typ	$V_{DD} = 0 \text{ V}$ or floating, $V_{SS} = 0 \text{ V}$ or floating, $GND = 0 \text{ V}$,
Floating					$Ax = 0 \text{ V or floating}, V_s = \pm 55 \text{ V, see Figure } 32$
Drain Leakage Current, I _D					
With Overvoltage	±10			nA typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
	±50	±70	±90	nA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{Ax} = 0 \text{ V}, \text{see Figure 32}$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_S = ±55 V,
11 3				. ,	Ax = 0 V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = GND \text{ or } V_{DD}$
	±1.1		±1.2	μA max	
Digital Input Capacitance, C _{IN}	5.0			pF typ	

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Output Voltage					
High, V _{он}	2.0			V min	
Low, V _{OL}	0.8			V max	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	210			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	290	305	310	ns max	V _s = 10 V, see Figure 48
t _{on} (EN)	200			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	280	295	315	ns max	$V_S = 10 \text{ V}$, see Figure 47
t _{OFF} (EN)	105			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	120	160	160	ns max	$V_S = 10 \text{ V}$, see Figure 47
Break-Before-Make Time Delay, t _D	155			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
			90	ns min	$V_S = 10 \text{ V}$, see Figure 46
Overvoltage Response Time, tresponse	90			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
	115	130	130	ns max	
Overvoltage Recovery Time, trecovery	745			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
	945	965	970	ns max	
Interrupt Flag Response Time, t _{DIGRESP}	90			ns typ	$C_L = 12 \text{pF}$, see Figure 43
Interrupt Flag Recovery Time, tdigrec	65			μs typ	$C_L = 12 pF$, see Figure 44
	900			ns typ	$C_L = 12 \text{ pF, } R_{PULLUP} = 1 \text{ k}\Omega, \text{ see Figure 45}$
Charge Injection, Q _{INJ}	-0.8			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 49}$
Off Isolation	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39, worst case channel
Channel-to-Channel Crosstalk					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Adjacent Channels	-75			dB typ	
Nonadjacent Channels	-88			dB typ	
Total Harmonic Distortion Plus Noise, THD + N	0.005			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 15 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, see Figure 37
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 40
ADG5248F	190			MHz typ	
ADG5249F	320			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
C _s (Off)	4			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D (Off)					$V_S = 0 V, f = 1 MHz$
ADG5248F	13			pF typ	
ADG5249F	8			pF typ	
C_D (On), C_S (On)					$V_S = 0 V, f = 1 MHz$
ADG5248F	19			pF typ	
ADG5249F	14			pF typ	
POWER REQUIREMENTS					$V_{DD} = POSFV = +16.5 \text{ V}; V_{SS} = NEGFV = -16.5 \text{ V};$ $GND = 0 \text{ V}; digital inputs = 0 \text{ V}, 5 \text{ V}, or V_{DD}$
Normal Mode					
I_{DD}	1.15			mA typ	
Iposfv	0.15			mA typ	
$I_{DD} + I_{POSFV}$	2		2	mA max	
Ignd	0.75			mA typ	
	1.25		1.25	mA max	
Iss	0.45			mA typ	
I _{NEGFV}	0.2			mA typ	
Iss + I _{NEGFV}	0.8		0.85	mA max	

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Fault Mode					$V_S = \pm 55 \text{ V}$
I_{DD}	1.4			mA typ	
I_{POSFV}	0.2			mA typ	
I _{DD} + I _{POSFV}	2.2		2.3	mA max	
I _{GND}	0.9			mA typ	
	1.6		1.7	mA max	
I _{SS}	0.45			mA typ	
I _{NEGFV}	0.2			mA typ	
Iss + Inegfv	1.0		1.1	mA max	
V_{DD}/V_{SS}			±5	V min	GND = 0 V
			±22	V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 $V_{\text{DD}} = 20 \text{ V} \pm 10\%, V_{\text{SS}} = -20 \text{ V} \pm 10\%, GND = 0 \text{ V}, C_{\text{DECOUPLING}} = 0.1 \text{ } \mu\text{F}, unless otherwise noted.}$

Table 2.

-		−40°C to	−40°C to		
Parameter	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{ON}	260			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -1 \text{ mA}$
	280	345	405	Ω max	
	250			Ωtyp	$V_S = \pm 13.5 \text{ V}, I_S = -1 \text{ mA}$
	270	335	395	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	2.5			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$
	6	12	13	Ω max	
	2.5			Ωtyp	$V_S = \pm 13.5 \text{ V}, I_S = -1 \text{ mA}$
	6	12	13	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	12.5			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -1 \text{ mA}$
	14	15	15	Ω max	
	1.5			Ωtyp	$V_S = \pm 13.5 \text{ V}, I_S = -1 \text{ mA}$
	3.5	4	4	Ω max	
Threshold Voltage, V_T	0.7			V typ	See Figure 28
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 34}$
	±1	±2	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 34}$
	±1	±5	±10	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.3			nA typ	$V_S = V_D = \pm 15 \text{ V, see Figure 35}$
	±1.5	±20	±25	nA max	
FAULT					
Source Leakage Current, Is					
With Overvoltage	±66			μA typ	$V_{DD} = 22 \text{ V}, V_{SS} = -22 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
Power Supplies Grounded or Floating	±25			μA typ	$V_{DD} = 0 \text{ V}$ or floating, $V_{SS} = 0 \text{ V}$ or floating, $GND = 0 \text{ V}$, $Ax = 0 \text{ V}$ or floating, $V_S = \pm 55 \text{ V}$, see Figure 32

ADG5248F/ADG5249F

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Drain Leakage Current, I _D					
With Overvoltage	±10			nA typ	$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}, GND = 0 \text{ V}, V_{S} = \pm 55 \text{ V}$ see Figure 33
	±2	±2	±2	μA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{Ax} = 0 \text{ V}, \text{see Figure 32}$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ± 55 V, Ax = 0 V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = GND \text{ or } V_{DD}$
	±1.1		±1.2	μA max	
Digital Input Capacitance, C _{IN}	5.0			pF typ	
Output Voltage					
High, V _{он}	2.0			V min	
Low, V _{OL}	0.8			V max	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	230			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
The state of the s	335	340	340	ns max	$V_S = 10 \text{ V}$, see Figure 48
t _{on} (EN)	225			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
(a) (a) (b)	325	340	340	ns max	V _s = 10 V, see Figure 47
t _{OFF} (EN)	100	3 10	3 10	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
COFF (L. V)	135	155	155	ns max	$V_s = 10 \text{ V}$, see Figure 47
Break-Before-Make Time Delay, t _D	175	133	133	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
break before wake fille belay, to	1/3		95	ns min	$V_S = 10 \text{ V}$, see Figure 46
Overvoltage Response Time, t _{RESPONSE}	75		95	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
Overvoitage nesponse fille, tresponse	105	105	105	ns max	1 1 1 1 2, C _L = 3 β1, 3ee 1 gule +1
Overvoltage Recovery Time, trecovery	820	103	103		$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
Overvoitage necovery Time, trecovery	1100	1250	1400	ns typ	h _L = 1 kt2, c _L = 3 pr, see Figure 42
Interrupt Flag Response Time, tdigresp	75	1230	1400	ns max	$C_L = 12 \text{ pF, see Figure 43}$
				ns typ	_
Interrupt Flag Recovery Time, tdigrec	65			μs typ	$C_L = 12 \text{ pF, see Figure 44}$ $C_L = 12 \text{ pF, } R_{\text{PULLUP}} = 1 \text{ k}\Omega, \text{ see Figure 45}$
Chave a laineting O	1000			ns typ	, ,
Charge Injection, Q _{INJ} Off Isolation	-1.2 -75			pC typ dB typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 49}$ $R_L = 50 \Omega, C_L = 5 \text{ pF, f} = 1 \text{ MHz, see Figure 39,}$ worst case channel
Channel-to-Channel Crosstalk					worst case channel $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
	–75			dR tur	$n_L = 30.22$, $n_L = 3$ pr, $n_L = 1$ ivinz, see rigure 38
Adjacent Channels Nonadjacent Channels				dB typ	
Total Harmonic Distortion Plus Noise,	-88 0.005			dB typ	P = 10 kO V = 20 V = 5 f = 20 kJ = 5 20 kJ =
THD + N	0.005			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 20 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, see Figure 37
-3 dB Bandwidth	105				$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 40
ADG5248F	190			MHz typ	
ADG5249F	320			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
C _s (Off)	4			pF typ	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)					$V_S = 0 V, f = 1 MHz$
ADG5248F	13			pF typ	
ADG5249F	8			pF typ	

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
C _D (On), C _S (On)					$V_S = 0 V, f = 1 MHz$
ADG5248F	19			pF typ	
ADG5249F	14			pF typ	
POWER REQUIREMENTS					$V_{DD} = POSFV = +22 \text{ V}; V_{SS} = NEGFV = -22 \text{ V};$
					digital inputs = 0 V , 5 V , or V_{DD}
Normal Mode					
I _{DD}	1.15			mA typ	
l _{POSFV}	0.15			mA typ	
I _{DD} + I _{POSFV}	2		2	mA max	
Ignd	0.75			mA typ	
	1.25		1.25	mA max	
Iss	0.45			mA typ	
I _{NEGFV}	0.2			mA typ	
Iss + I _{NEGFV}	0.8		0.85	mA max	
Fault Mode					$V_S = \pm 55 \text{ V}$
I_{DD}	1.4			mA typ	
I POSFV	0.2			mA typ	
$I_{DD} + I_{POSFV}$	2.2		2.3	mA max	
I _{GND}	0.9			mA typ	
	1.6		1.7	mA max	
Iss	0.45			mA typ	
I _{NEGFV}	0.2			mA typ	
Iss + Inegfy	1.0		1.1	mA max	
V_{DD}/V_{SS}			±5	V min	GND = 0 V
			±22	V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, $C_{\text{DECOUPLING}}$ = 0.1 μF , unless otherwise noted.

Table 3.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = 10.8 \text{V}, V_{SS} = 0 \text{V}, \text{ see Figure 36}$
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	630			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
	690	710	730	Ω max	
	270			Ωtyp	$V_S = 3.5 \text{ V to } 8.5 \text{ V, } I_S = -1 \text{ mA}$
	290	355	410	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	6			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
	17	19	19	Ω max	
	3			Ωtyp	$V_S = 3.5 \text{ V to } 8.5 \text{ V, } I_S = -1 \text{ mA}$
	6.5	11	12	Ω max	
On-Resistance Flatness, RFLAT(ON)	380			Ωtyp	$V_S = 0 V \text{ to } 10 V, I_S = -1 \text{ mA}$
	440	460	460	Ω max	
	25			Ωtyp	$V_S = 3.5 \text{ V to } 8.5 \text{ V, } I_S = -1 \text{ mA}$
	27	28	28	Ω max	
Threshold Voltage, V_T	0.7			V typ	See Figure 28
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
	±1	±2	±5	nA max	

ADG5248F/ADG5249F

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
	±1	±5	±10	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.3			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$, see Figure 35
	±1.5	±20	±25	nA max	
FAULT					
Source Leakage Current, Is					
With Overvoltage	±63			μA typ	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
Power Supplies Grounded or Floating	±25			μA typ	$V_{DD} = 0 \text{ V}$ or floating, $V_{SS} = 0 \text{ V}$ or floating, $GND = 0 \text{ V}$, $Ax = 0 \text{ V}$ or floating, $V_S = \pm 55 \text{ V}$, see Figure 32
Drain Leakage Current, I _D					
With Overvoltage	±10			nA typ	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
	±50	±70	±90	nA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{ Ax} = 0 \text{ V}, \text{ see Figure 32}$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ± 55 V, Ax = 0 V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = GND \text{ or } V_{DD}$
	±1.1		±1.2	μA max	
Digital Input Capacitance, C _{IN}	5.0			pF typ	
Output Voltage					
High, V _{он}	2.0			V min	
Low, V _{OL}	0.8			V max	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	165			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	205	215	230	ns max	$V_S = 8 V$, see Figure 48
ton (EN)	160			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	200	215	230	ns max	$V_s = 8 V$, see Figure 47
toff (EN)	125			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	150	155	155	ns max	$V_S = 8 V$, see Figure 47
Break-Before-Make Time Delay, t _D	100			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
			60	ns min	$V_S = 8 V$, see Figure 46
Overvoltage Response Time, tresponse	110			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
	145	145	145	ns max	
Overvoltage Recovery Time, trecovery	500			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
·	655	720	765	ns max	
Interrupt Flag Response Time, tDIGRESP	95			ns typ	$C_L = 12 \text{ pF, see Figure 43}$
Interrupt Flag Recovery Time, t _{DIGREC}	65			μs typ	$C_L = 12 \text{ pF, see Figure 44}$
	900			ns typ	$C_L = 12 \text{ pF, } R_{PULLUP} = 1 \text{ k}\Omega, \text{ see Figure 45}$
Charge Injection, Q _{INJ}	0.2			pC typ	$V_S = 6 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 49
Off Isolation	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39, worst case channel
Channel-to-Channel Crosstalk					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Adjacent Channels	-75			dB typ	
Nonadjacent Channels	-88			dB typ	
Total Harmonic Distortion Plus Noise,	0.044			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 6 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$,
THD + N					see Figure 37

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 40
ADG5248F	175			MHz typ	
ADG5249F	290			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
C _s (Off)	4			pF typ	$V_S = 6 V, f = 1 MHz$
C _D (Off)					$V_S = 6 V, f = 1 MHz$
ADG5248F	14			pF typ	
ADG5249F	8			pF typ	
C_D (On), C_S (On)					$V_S = 6 V, f = 1 MHz$
ADG5248F	20			pF typ	
ADG5249F	14			pF typ	
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$; $V_{SS} = 0 \text{ V}$; digital inputs = 0 V, 5 V, or V_{DD}
Normal Mode					
I_{DD}	1.15			mA typ	
I _{POSFV}	0.15			mA typ	
I _{DD} + I _{POSFV}	2		2	mA max	
I_{GND}	0.75			mA typ	
	1.4		1.4	mA max	
I _{SS}	0.3			mA typ	
I _{NEGFV}	0.2			mA typ	
$I_{SS} + I_{NEGFV}$	0.65		0.7	mA max	
Fault Mode					$V_S = \pm 55 \text{ V}$
I_{DD}	1.4			mA typ	
I POSFV	0.2			mA typ	
$I_{DD} + I_{POSFV}$	2.2		2.3	mA max	
I _{GND}	0.9			mA typ	
	1.6		1.7	mA max	
Iss	0.45			mA typ	Digital inputs = 5 V
I _{NEGFV}	0.2			mA typ	
Iss + Inegfv	1.0		1.1	mA max	$V_S = \pm 55 \text{ V}, V_D = 0 \text{ V}$
V_{DD}			8	V min	GND = 0 V
			44	V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, $C_{\text{DECOUPLING}}$ = 0.1 μF , unless otherwise noted.

Table 4.

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	310			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V}, I_S = -1 \text{ mA}$
	335	415	480	Ω max	
	250			Ωtyp	$V_S = 4.5 \text{ V to } 28 \text{ V}, I_S = -1 \text{ mA}$
	270	335	395	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	3			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
	7	16	18	Ω max	
	3			Ωtyp	$V_S = 4.5 \text{ V to } 28 \text{ V}, I_S = -1 \text{ mA}$
	6.5	11	12	Ω max	

ADG5248F/ADG5249F

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
On-Resistance Flatness, R _{FLAT(ON)}	62			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
	70	85	100	Ωmax	
	1.5			Ωtyp	$V_s = 4.5 \text{ V to } 28 \text{ V}, I_s = -1 \text{ mA}$
	3.5	4	4	Ω max	
Threshold Voltage, V _T	0.7	'	-	V typ	See Figure 28
LEAKAGE CURRENTS				1 196	$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I_S (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
Source Off Leakage, is (Off)	±1	±2	±5	nA max	vs = 1 v/30 v, vb = 30 v/1 v, see1 igure 34
Drain Officialisms I (Off)		_ <u>_</u>	Ξ5		V 1V/20VVV 20V/1V 202 Figure 24
Drain Off Leakage, I_D (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
	±1	±5	±10	nA max	
Channel On Leakage, I_D (On), I_S (On)	±0.3			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V}$, see Figure 35
	±1.5	±20	±25	nA max	
FAULT					
Source Leakage Current, Is					
With Overvoltage	±58			μA typ	$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}, GND = 0 \text{ V}, V_{S} = +55 \text{ V}, -40 \text{ V}, see Figure 33}$
Power Supplies Grounded or	±25			μA typ	$V_{DD} = 0 \text{ V or floating, } V_{SS} = 0 \text{ V or floating, } GND = 0 V or floati$
Floating					0 V, $Ax = 0 V$ or floating, $V_S = \pm 55 V$, see Figure 32
Drain Leakage Current, I _D					
With Overvoltage	±10			nA typ	$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = +55 \text{ V}, -40 \text{ V}, \text{ see Figure 33}$
	±50	±70	±90	nA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{Ax} = 0 \text{ V}, \text{see Figure 32}$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ±55 V, $Ax = 0$ V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
pat can enty int or init	±1.1		±1.2	μA max	THE TOTAL OF THE
Digital Input Capacitance, C _{IN}	5.0		-1.2	pF typ	
Output Voltage					
High, V _{он}	2.0			V min	
Low, V _{OL}	0.8			V max	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	195			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	255	275	285	ns max	$V_s = 18 \text{ V}$, see Figure 48
ton (EN)	190			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	245	270	280	ns max	V _s = 18 V, see Figure 47
t _{OFF} (EN)	105			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	135	145	145	ns max	V _s = 18 V, see Figure 47
Break-Before-Make Time Delay, t _D	110			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
			60	ns min	$V_S = 18 \text{ V}$, see Figure 46
Overvoltage Response Time, tresponse	60			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
overvoitage nesponse title, tresponse	80	85	85		n _L = 1 κ ₂ 2, c _L = 3 μ1, see Figure 41
Overwelte as Deserver There t		ره	٥٥	ns max	D 110 C 5 p5 pp 52
Overvoltage Recovery Time, trecovery	1400	2406	2225	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
	1900	2100	2200	ns max	
Interrupt Flag Response Time, t _{DIGRESP}	85			ns typ	$C_L = 12 pF$, see Figure 43
Interrupt Flag Recovery Time, t _{DIGREC}	65			μs typ	$C_L = 12 pF$, see Figure 44
	1600			ns typ	$C_L = 12 \text{ pF, } R_{\text{PULLUP}} = 1 \text{ k}\Omega, \text{ see Figure 45}$

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
Charge Injection, Q _{INJ}	-1.2			pC typ	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 49}$
Off Isolation	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39, worst case channel
Channel-to-Channel Crosstalk					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Adjacent Channels	-75			dB typ	
Nonadjacent Channels	-88			dB typ	
Total Harmonic Distortion Plus Noise, THD + N	0.007			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 18 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, see Figure 37
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 40
ADG5248F	200			MHz typ	
ADG5249F	320			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
C _s (Off)	4			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)					$V_S = 18 \text{V}, f = 1 \text{MHz}$
ADG5248F	13			pF typ	
ADG5249F	7			pF typ	
C_D (On), C_S (On)					$V_S = 18 \text{V, f} = 1 \text{MHz}$
ADG5248F	18			pF typ	
ADG5249F	12			pF typ	
POWER REQUIREMENTS					$V_{DD} = 39.6 \text{ V}$; $V_{SS} = 0 \text{ V}$; digital inputs = 0 V, 5 V, or V_{E}
Normal Mode					
I _{DD}	1.15			mA typ	
I POSFV	0.15			mA typ	
I _{DD} + I _{POSFV}	2		2	mA max	
Ignd	0.75			mA typ	
	1.4		1.4	mA max	
I _{ss}	0.3			mA typ	
I _{NEGFV}	0.2			mA typ	
$I_{SS} + I_{NEGFV}$	0.65		0.7	mA max	
Fault Mode					$V_S = +55 \text{ V}, -40 \text{ V}$
I_{DD}	1.4			mA typ	
I POSFV	0.2			mA typ	
$I_{DD} + I_{POSFV}$	2.2		2.3	mA max	
I _{GND}	0.9			mA typ	
	1.6		1.7	mA max	
Iss	0.45			mA typ	
Inegfy	0.2			mA typ	
Iss + Inegry	1.0		1.1	mA max	
V _{DD}			8	V min	GND = 0 V
			44	V max	GND = 0 V

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx,¹ D, OR Dx

Table 5.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
ADG5248F, $\theta_{JA} = 112.6$ °C/W	27	16	8	mA max	$V_S = V_{SS}$ to $V_{DD} - 4.5$ V
	16	11	7	mA max	$V_S = V_{SS}$ to V_{DD}
ADG5249F, $\theta_{JA} = 112.6$ °C/W	20	13	8	mA max	$V_S = V_{SS}$ to $V_{DD} - 4.5$ V
	12	8	6	mA max	$V_S = V_{SS}$ to V_{DD}

 $^{^{\}rm 1}$ Sx is the S1 to S8 pins on the ADG5248F, and the S1A to S4A and S1B to S4B pins on the ADG5249F.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Table 0.	
Parameter	Rating
V_{DD} to V_{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V _{SS} to GND	-48 V to +0.3 V
POSFV to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
NEGFV to GND	$V_{SS} - 0.3 \text{ V to} + 0.3 \text{ V}$
Sx Pins	−55 V to +55 V
Sx to V _{DD} or V _{SS}	80 V
V_S to V_D	80 V
D or Dx Pins ¹	NEGFV – 0.7 V to POSFV + 0.7 V or 30 mA, whichever occurs first
Digital Inputs	GND – 0.7 V to 48 V or 30 mA, whichever occurs first
Peak Current, Sx, D, or Dx Pins	72.5 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx, D, or Dx Pins	Data ² + 15%
Digital Outputs	GND – 0.7 V to 6 V or 30 mA, whichever occurs first
D or Dx Pins, Overvoltage State, Load Current	1 mA
Operating Temperature Range	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA} (4-Layer Board)	112.6°C/W
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020

¹ Overvoltages at the D or Dx pins are clamped by internal diodes. Limit the current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

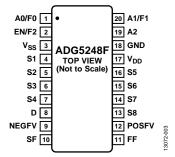


Figure 3. ADG5248F Pin Configuration

Table 7. ADG5248F Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0/F0	Logic Control Input (A0). See Table 8.
		Decoder Pin (F0). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 9.
2	EN/F2	Active High Digital Input (EN). When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
		Decoder Pin (F2). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 9.
3	V_{SS}	Most Negative Power Supply Potential.
4	S1	Overvoltage Protected Source Terminal 1. This pin can be an input or an output.
5	S2	Overvoltage Protected Source Terminal 2. This pin can be an input or an output.
6	S3	Overvoltage Protected Source Terminal 3. This pin can be an input or an output.
7	S4	Overvoltage Protected Source Terminal 4. This pin can be an input or an output.
8	D	Drain Terminal. This pin can be an input or an output.
9	NEGFV	Negative Fault Voltage. This pin is the negative supply voltage that determines the overvoltage protection level. If a secondary supply is not used, connect this pin to Vss.
10	SF	Specific Fault Digital Output. This pin has a high output (weak internal pull-up resistor, nominally 3 V output) when the device is in normal operation, or a low output when a fault condition is detected on a specific pin, depending on the state of F0, F1, and F2 as shown in Table 9.
11	FF	Fault Flag Digital Output. This pin has a high output when the device is in normal operation, or a low output when a fault condition occurs on any of the Sx inputs. The FF pin has a weak internal pull-up resistor that allows multiple signals to be combined into a single interrupt for larger modules that contain multiple devices.
12	POSFV	Positive Fault Voltage. This pin is the positive supply voltage that determines the overvoltage protection level. If a secondary supply is not used, connect this pin to VDD.
13	S8	Overvoltage Protected Source Terminal 8. This pin can be an input or an output.
14	S7	Overvoltage Protected Source Terminal 7. This pin can be an input or an output.
15	S6	Overvoltage Protected Source Terminal 6. This pin can be an input or an output.
16	S5	Overvoltage Protected Source Terminal 5. This pin can be an input or an output.
17	V_{DD}	Most Positive Power Supply Potential.
18	GND	Ground (0 V) Reference.
19	A2	Logic Control Input.
20	A1/F1	Logic Control Input (A1). See Table 8.
		Decoder Pin (F1). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 9.

Table 8. ADG5248F Switch Selection Truth Table

A2	A1	A0	EN	On Switch
X ¹	X ¹	X ¹	0	None
0	0	0	1	S1
0	0	1	1	S2
0	1	0	1	S3
0	1	1	1	S4
1	0	0	1	S5
1	0	1	1	S6
1	1	0	1	S7
1	1	1	1	S8

¹ X is don't care.

Table 9. ADG5248F Fault Diagnostic Output Truth Table

		State o							
Switch in Fault ¹	0, 0, 0	0, 0, 1	0, 1, 0	0, 1, 1	1, 0, 0	1, 0, 1	1, 1, 0	1, 1, 1	State of the Fault Flag (FF)
None	1	1	1	1	1	1	1	1	1
S1	0	1	1	1	1	1	1	1	0
S2	1	0	1	1	1	1	1	1	0
S3	1	1	0	1	1	1	1	1	0
S4	1	1	1	0	1	1	1	1	0
S5	1	1	1	1	0	1	1	1	0
S6	1	1	1	1	1	0	1	1	0
S7	1	1	1	1	1	1	0	1	0
S8	1	1	1	1	1	1	1	0	0

 $^{^{\}rm 1}$ More than one switch can be in fault. See the Applications Information section for more information.

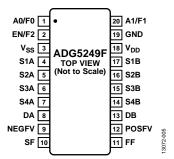


Figure 4. ADG5249F Pin Configuration

Table 10. ADG5249F Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0/F0	Logic Control Input (A0). See Table 11.
		Decoder Pin (F0). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 12.
2	EN/F2	Active High Digital Input (EN). When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
		Decoder Pin (F2). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 12.
3	V_{SS}	Most Negative Power Supply Potential.
4	S1A	Overvoltage Protected Source Terminal 1A. This pin can be an input or an output.
5	S2A	Overvoltage Protected Source Terminal 2A. This pin can be an input or an output.
6	S3A	Overvoltage Protected Source Terminal 3A. This pin can be an input or an output.
7	S4A	Overvoltage Protected Source Terminal 4A. This pin can be an input or an output.
8	DA	Drain Terminal A. This pin can be an input or an output.
9	NEGFV	Negative Fault Voltage. This pin is the negative supply voltage that determines the overvoltage protection level. If a secondary supply is not used, connect this pin to Vss.
10	SF	Specific Fault Digital Output. This pin has a high output (weak internal pull-up resistor, nominally 3 V output) wher the device is in normal operation, or a low output when a fault condition is detected on a specific pin, depending on the state of F0, F1, and, F2 as shown in Table 12.
11	FF	Fault Flag Digital Output. This pin has a high output when the device is in normal operation, or a low output when a fault condition occurs on any of the Sx inputs. The FF pin has a weak internal pull-up resistor that allows multiple signals to be combined into a single interrupt for larger modules that contain multiple devices.
12	POSFV	Positive Fault Voltage. This pin is the positive supply voltage that determines the overvoltage protection level. If a secondary supply is not used, connect this pin to V_{DD} .
13	DB	Drain Terminal B. This pin can be an input or an output.
14	S4B	Overvoltage Protected Source Terminal 4B. This pin can be an input or an output.
15	S3B	Overvoltage Protected Source Terminal 3B. This pin can be an input or an output.
16	S2B	Overvoltage Protected Source Terminal 2B. This pin can be an input or an output.
17	S1B	Overvoltage Protected Source Terminal 1B. This pin can be an input or an output.
18	V_{DD}	Most Positive Power Supply Potential.
19	GND	Ground (0 V) Reference.
20	A1/F1	Logic Control Input (A1). See Table 11.
		Decoder Pin (F1). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 12.

Table 11. ADG5249F Switch Selection Truth Table

A1	A0	EN	On Switch Pair
X ¹	X ¹	0	None
0	0	1	S1x
0	1	1	S2x
1	0	1	S3x
1	1	1	S4x

¹ X is don't care.

Table 12. ADG5249F Fault Diagnostic Output Truth Table

	State of Specific Flag (SF) with Control Inputs (F2, F1, F0)								
Switch in Fault ¹	0, 0, 0	0, 0, 1	0, 1, 0	0, 1, 1	1, 0, 0	1, 0, 1	1, 1, 0	1, 1, 1	State of the Fault Flag (FF)
None	1	1	1	1	1	1	1	1	1
S1A	0	1	1	1	1	1	1	1	0
S2A	1	0	1	1	1	1	1	1	0
S3A	1	1	0	1	1	1	1	1	0
S4A	1	1	1	0	1	1	1	1	0
S1B	1	1	1	1	0	1	1	1	0
S2B	1	1	1	1	1	0	1	1	0
S3B	1	1	1	1	1	1	0	1	0
S4B	1	1	1	1	1	1	1	0	0

 $^{^{1}}$ More than one switch can be in fault. See the Applications Information section for more information.

TYPICAL PERFORMANCE CHARACTERISTICS

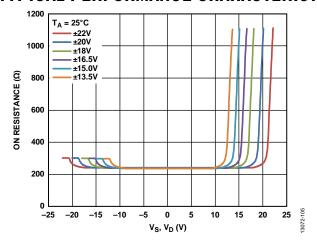


Figure 5. R_{ON} as a Function of V_S , V_D , Dual Supply

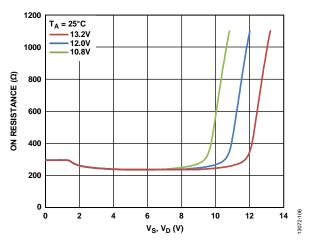


Figure 6. R_{ON} as a Function of V_S , V_D , 12 V Single Supply

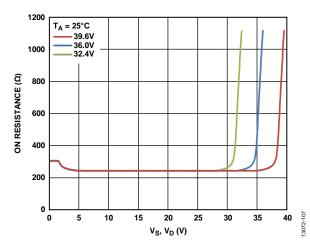


Figure 7. R_{ON} as a Function of V_S , V_D , 36 V Single Supply

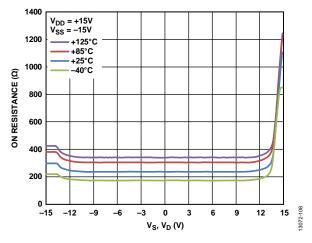


Figure 8. R_{ON} as a Function of V₅, V_D for Different Temperatures, ±15 V Dual Supply

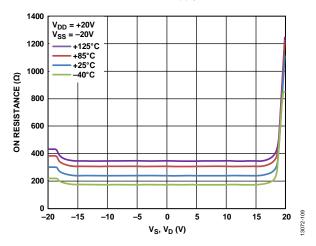


Figure 9. R_{ON} as a Function of V₅, V_D for Different Temperatures, ±20 V Dual Supply

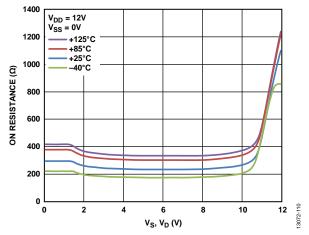


Figure 10. R_{ON} as a Function of V_{S_r} V_D for Different Temperatures, 12 V Single Supply

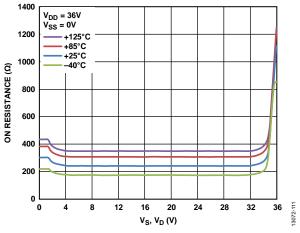


Figure 11. R_{ON} as a Function of V_{S_r} V_D for Different Temperatures, 36 V Single Supply

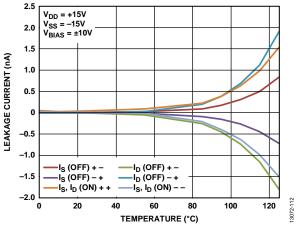


Figure 12. Leakage Current vs. Temperature, ±15 V Dual Supply

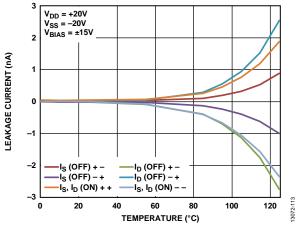


Figure 13. Leakage Current vs. Temperature, ±20 V Dual Supply

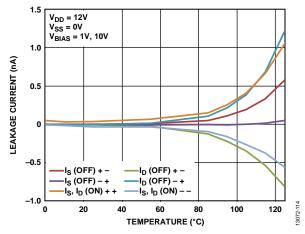


Figure 14. Leakage Current vs. Temperature, 12 V Single Supply

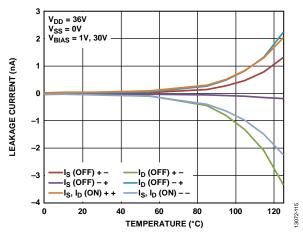


Figure 15. Leakage Current vs. Temperature, 36 V Single Supply

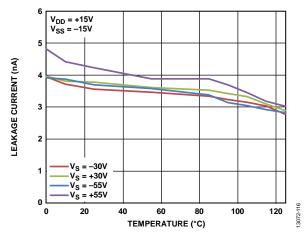


Figure 16. Overvoltage Leakage Current vs. Temperature, ± 15 V Dual Supply

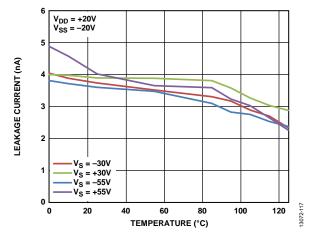


Figure 17. Overvoltage Leakage Current vs. Temperature, ±20 V Dual Supply

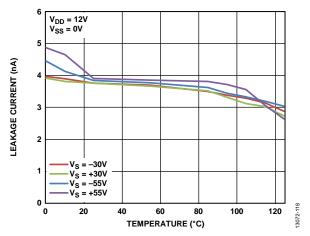


Figure 18. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply

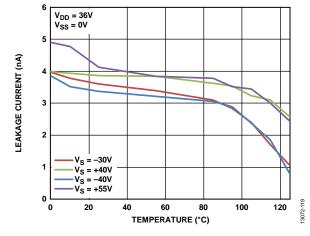


Figure 19. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply

Figure 20. Off Isolation vs. Frequency, ±15 V Dual Supply

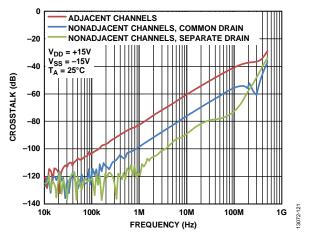


Figure 21. Crosstalk vs. Frequency, ±15 V Dual Supply

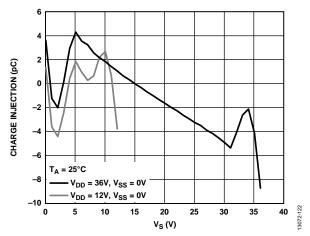


Figure 22. Charge Injection vs. Source Voltage (Vs), Single Supply

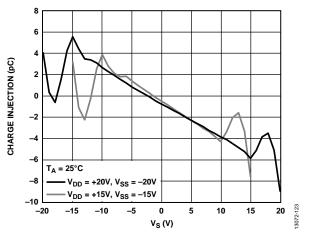


Figure 23. Charge Injection vs. Source Voltage (Vs), Dual Supply

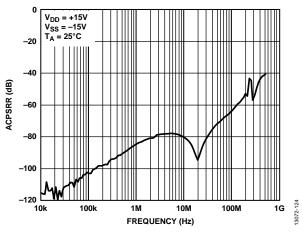


Figure 24. ACPSRR vs. Frequency, ±15 V Dual Supply

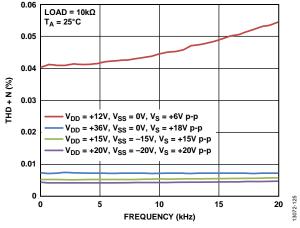


Figure 25. THD + N vs. Frequency

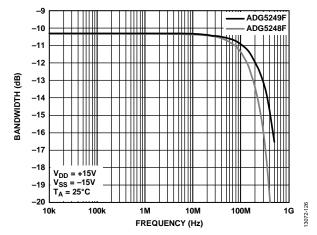


Figure 26. Bandwidth vs. Frequency

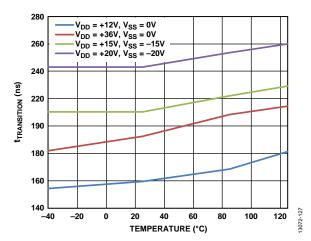


Figure 27. t_{TRANSITION} vs. Temperature

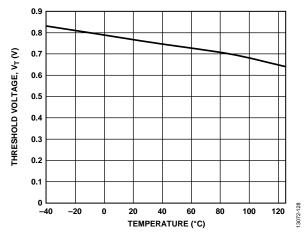


Figure 28. Threshold Voltage (V_T) vs. Temperature

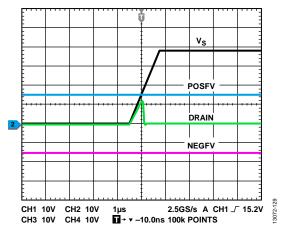


Figure 29. Drain Output Response to Positive Overvoltage

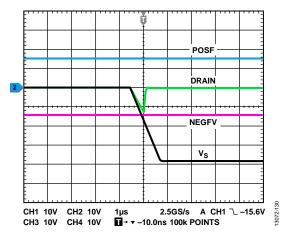


Figure 30. Drain Output Response to Negative Overvoltage

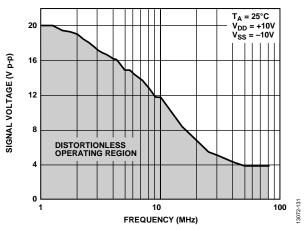


Figure 31. Large Signal Voltage Tracking vs. Frequency

TEST CIRCUITS

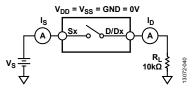


Figure 32. Switch Unpowered Leakage

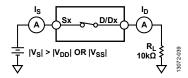


Figure 33. Switch Overvoltage Leakage

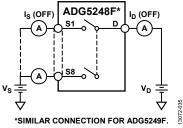


Figure 34. Off Leakage

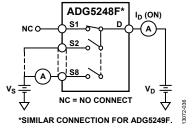


Figure 35. On Leakage

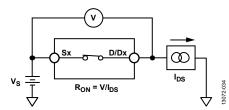


Figure 36. On Resistance

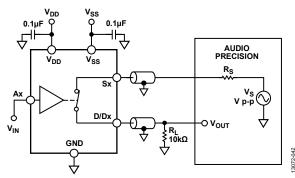


Figure 37. THD + N

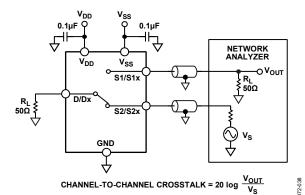


Figure 38. Channel-to-Channel Crosstalk

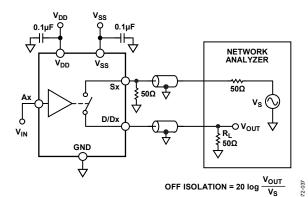


Figure 39. Off Isolation

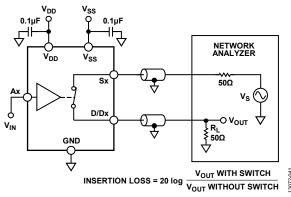
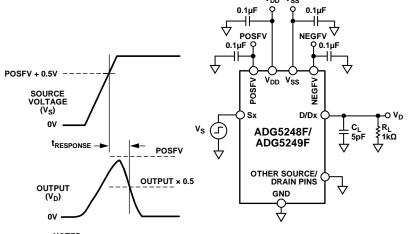



Figure 40. Bandwidth

NOTES 1. THE OUTPUT PULLS TO V_{DD} WITHOUT A 1k Ω RESISTOR (INTERNAL 40k Ω PULL-UP RESISTOR TO THE SUPPLY RAIL DURING A FAULT).

Figure 41. Overvoltage Response Time, tresponse

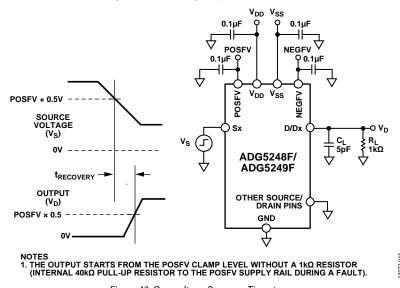


Figure 42. Overvoltage Recovery Time, trecovery

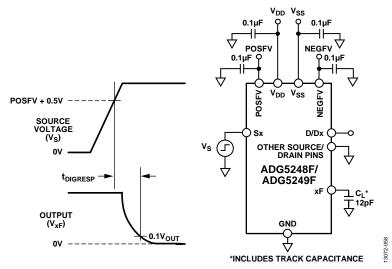


Figure 43. Interrupt Flag Response Time, tDIGRESP

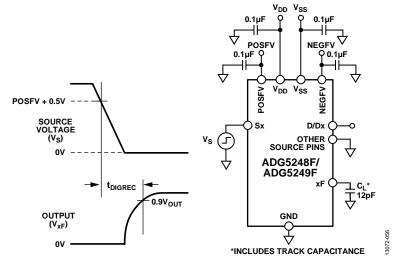


Figure 44. Interrupt Flag Recovery Time, t_{DIGREC}

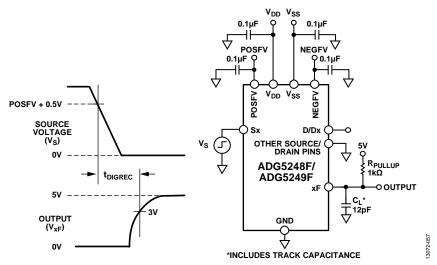


Figure 45. Interrupt Flag Recovery Time, t_{DIGREC} , with a 1 k Ω Pull-Up Resistor

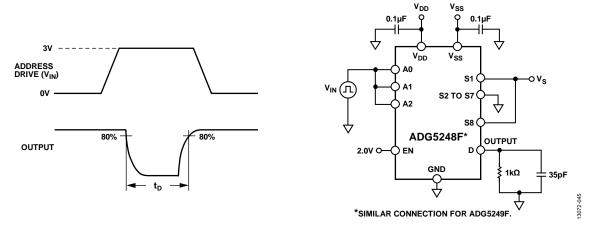


Figure 46. Break-Before-Make Time Delay, t_D

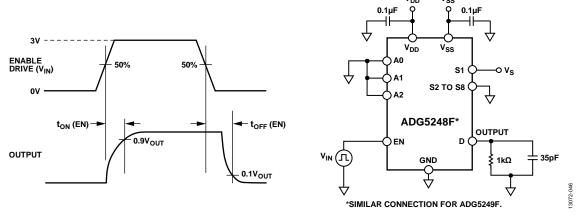


Figure 47. Enable Delay, ton (EN), toff (EN)

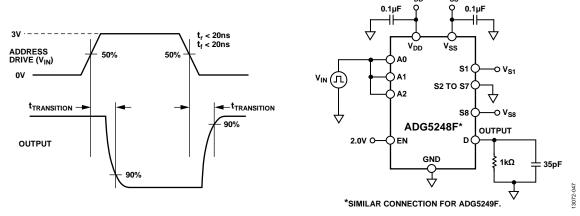


Figure 48. Address to Output Switching Time, ttransition

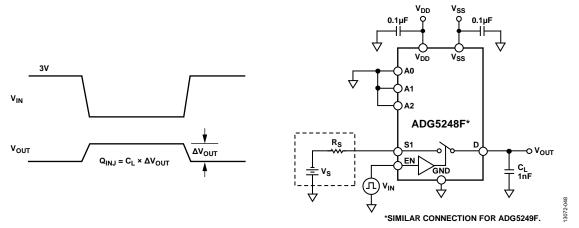


Figure 49. Charge Injection, QINJ

TERMINOLOGY

I_{DD}

IDD represents the positive supply current.

I_{ss}

Iss represents the negative supply current.

IPOSEX

I_{POSFV} represents the positive secondary supply current.

INEGEV

INEGFV represents the negative secondary supply current.

V_D, V_S

 V_{D} and V_{S} represent the analog voltage on the D or Dx pins and the Sx pins, respectively.

Ron

 R_{ON} represents the ohmic resistance between the D or Dx pins and the Sx pins.

ΔR_{ON}

 ΔR_{ON} represents the difference between the R_{ON} of any two channels.

R_{FLAT(ON)}

R_{FLAT(ON)} is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

I_S (off) is the source leakage current with the switch off.

In (Off)

I_D (off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{\rm D}$ (on) and $I_{\rm S}$ (on) represent the channel leakage currents with the switch on.

V_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

IINL, IINH

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

C_D (Off)

 C_D (off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

Cs (off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 C_D (on) and C_S (on) represent the on switch capacitances, which are measured with reference to ground.

CIN

 C_{IN} is the digital input capacitance.

ton (EN)

 $t_{\rm ON}$ (EN) represents the delay between applying the digital control input and the output switching on (see Figure 47).

toff (EN

t_{OFF} (EN) represents the delay between applying the digital control input and the output switching off (see Figure 47).

TRANSITIO

t_{transition} represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

to

 $t_{\rm D}$ represents the off time measured between the 90% points of both switches when switching from one address state to another.

tDIGRESP

 t_{DIGRESP} is the time required for the FF pin to go low (0.3 V), measured with respect to the voltage on the source pin exceeding the supply voltage by 0.5 V.

tDIGREC

 $t_{\rm DIGREC}$ is the time required for the FF pin to return high, measured with respect to voltage on the Sx pin falling below the supply voltage plus 0.5 V.

tresponsi

 t_{RESPONSE} represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to 50% of its peak voltage.

tresponse (EN)

 t_{RESPONSE} (EN) represents the delay between the enable pin being asserted and the drain reaching 90% of POSFV or NEGFV for a switch that is in fault.

trecovery

 $t_{\texttt{RECOVERY}}$ represents the delay between an overvoltage on the Sx pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to 50% of its voltage.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

-3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62~\mathrm{V}$ p-p.

On Response

On response is the frequency response of the on switch.

V_T

 $V_{\scriptscriptstyle T}$ is the voltage threshold at which the overvoltage protection circuitry engages (see Figure 28).

Total Harmonic Distortion Plus Noise (THD + N)

THD + N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

THEORY OF OPERATION

SWITCH ARCHITECTURE

Each channel of the ADG5248F/ADG5249F consists of a parallel pair of N-channel DMOS (NDMOS) and P-channel DMOS (PDMOS) transistors. This construction provides excellent performance across the signal range. The

ADG5248F/ADG5249F channels operate as standard switches when input signals with a voltage between POSFV and NEGFV are applied. For example, the on resistance is 250 Ω typically and opening or closing the switch is controlled using the appropriate address pins.

Additional internal circuitry enables the switch to detect overvoltage inputs by comparing the voltage on a source pin (Sx) with POSFV and NEGFV. A signal is considered overvoltage if it exceeds these secondary supply voltages by the voltage threshold, V_T . The threshold voltage is typically 0.7 V, but can range from 0.8 V at -40° C down to 0.6 V at $+125^{\circ}$ C. See Figure 28 to see the change in V_T with operating temperature.

The maximum voltage that can be applied to any source input is $+55~\rm V$ or $-55~\rm V$. When the device is powered using a single supply of 25 V or greater, the maximum negative signal level is reduced. It reduces from $-55~\rm V$ at $\rm V_{DD}=+25~\rm V$ to $-40~\rm V$ at $\rm V_{DD}=+40~\rm V$ to remain within the 80 V maximum rating. Construction of the process allows the channel to withstand 80 V across the switch when it is opened. These overvoltage limits apply whether the power supplies are present or not.

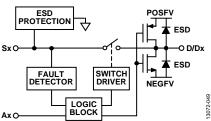


Figure 50. Switch Channel and Control Function

When an overvoltage condition is detected on a source pin (Sx), the switch automatically opens regardless of the digital logic state. The source pin becomes high impedance and ensures that no current flows through the switch. If a source pin is selected that is in fault, the drain pin is pulled to the supply that was exceeded. For example, if the source voltage exceeds POSFV, the drain output pulls to POSFV. If the source voltage exceeds NEGFV, the drain output pulls to NEGFV. In Figure 29, the voltage on the drain pin can be seen to follow the voltage on the source pin until the switch turns off completely. The drain pin then pulls to GND due to the 1 k Ω load resistor; otherwise, it pulls to the POSFV supply. The maximum voltage on the drain is limited by the internal ESD diodes, and the rate at which the output voltage discharges is dependent on the load at the pin.

During overvoltage conditions, the leakage current into and out of the source pins is limited to tens of microamperes. If the source pin is unselected, only nanoamperes of leakage appear on the drain pin. However, if the source is selected, the pin is pulled to the supply rail. The device that pulls the drain pin to the rail has an impedance of approximately 40 k Ω ; thus, the D or Dx pin current is limited to approximately 1 mA during a shorted load condition. This internal impedance also determines the minimum external load resistance required to ensure that the drain pin is pulled to the desired voltage level during a fault.

When an overvoltage event occurs, the channels undisturbed by the overvoltage input continue to operate normally without additional crosstalk.

ESD Performance

The drain pins have ESD protection diodes to the secondary supply rails and the voltage at these pins must not exceed the secondary supply voltages, POSFV and NEGFV. The source pins have specialized ESD protection that allows the signal voltage to reach ± 55 V regardless of supply voltage level. Exceeding ± 55 V on any source input may damage the ESD protection circuitry on the device. See Figure 50 for an overview of the switch channel.

Trench Isolation

In the ADG5248F and ADG5249F, an insulating oxide layer (trench) is placed between the NDMOS and the PDMOS transistors of each switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a switch that is latch-up immune under all circumstances.

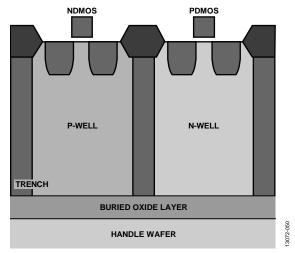


Figure 51. Trench Isolation

USER DEFINED FAULT PROTECTION

POSFV and NEGFV are required secondary power supplies that set the level at which the overvoltage protection is engaged. POSFV can be supplied from $4.5~\rm V$ to $V_{\rm DD}$, and NEGFV can be supplied from $V_{\rm SS}$ to 0 V. If a secondary supply is not available, the POSFV and NEGFV pins must be connected to $V_{\rm DD}$ (POSFV) and $V_{\rm SS}$ (NEGFV). The overvoltage protection then engages at the primary supply voltages. When the voltages at the source inputs exceed POSFV or NEGFV by $V_{\rm T}$, the switch turns off or, if the device is unpowered, the switch remains off. The switch input remains high impedance regardless of the digital input state and if it is selected, the drain pulls to either POSFV or NEGFV. Signal levels up to $+55~\rm V$ and $-55~\rm V$ are blocked in both the powered and unpowered condition as long as the 80 V limitation between the source and supply pins is met.

Power-On Protection

The following conditions must be satisfied for the switch to be in the on condition:

- The primary supply must be V_{DD} to $V_{SS} \ge 8 \text{ V}$
- For POSFV, the secondary supply must be between 4.5 V and $V_{\rm DD}$, and for NEGFV, the secondary supply must be between V_{SS} and 0 V
- The input signal must be between NEGFV V_T and POSFV + V_T
- The digital logic control input has selected the switch

When the switch is turned on, signal levels up to the secondary supply rails are passed.

The switch responds to an analog input that exceeds POSFV or NEGFV by a threshold voltage, V_T , by turning off. The absolute input voltage limits are -55~V and +55~V, while maintaining an 80~V limit between the source pin and the supply rails. The switch remains off until the voltage at the source pin returns to between POSFV and NEGFV.

The fault response time ($t_{RESPONSE}$) when powered by a ± 15 V dual supply is typically 90 ns and the fault recovery time ($t_{RECOVERY}$) is 745 ns. These vary with supply voltages and output load conditions.

The maximum stress across the switch channel is 80 V; therefore, the user must pay close attention to this limit under a fault condition.

For example, consider the case where the device is set up in a multiplexer configuration as shown in Figure 52.

- V_{DD}/V_{SS} and POSFV/NEGFV= ± 22 V, S1 = +22 V, S1 is selected
- S2 has a -55 V fault and S3 has a +55 V fault
- The voltage between S2 and D = +22 V (-55 V) = +77 V
- The voltage between S3 and D = 55 V 22 V = 33 V

These calculations are all within device specifications: a 55 V maximum fault on the source inputs and a maximum of 80 V across the off switch channel.

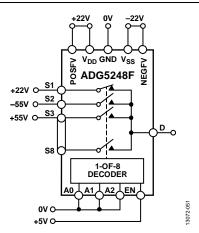


Figure 52. ADG5248F in an Overvoltage Condition

Power-Off Protection

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switch or downstream circuitry. The switch output is a virtual open circuit.

The switch remains off regardless of whether the V_{DD} and V_{SS} supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to ± 55 V are blocked in the unpowered condition.

Digital Input Protection

The ADG5248F and the ADG5249F can tolerate digital input signals being present on the device without power. When the device is unpowered, the switch is guaranteed to be in the off state, regardless of the state of the digital logic signals.

The digital inputs are protected against positive faults of up to 44 V. The digital inputs do not offer protection against negative overvoltages. ESD protection diodes connected to GND are present on the digital inputs.

Overvoltage Interrupt Flag

The voltages on the source inputs of the ADG5248F and ADG5249F are continuously monitored, and the state of the switches is indicated by an active low digital output pin, FF.

The voltage on the FF pin indicates if any of the source input pins are experiencing a fault condition. The output of the FF pin is a nominal 3 V when all source pins are within normal operating range. If any source pin voltage exceeds the secondary supply voltage by V_T , the FF output reduces to below 0.8 V.

Use the specific fault digital output pin, SF, to decode which inputs are experiencing a fault condition. The SF pin reduces to below 0.8 V when a fault condition is detected on a specific pin, depending on the state of the F0, F1, and F2 pins (see Table 9 and Table 12).

APPLICATIONS INFORMATION

The overvoltage protected family of switches and multiplexers provides robust solutions for instrumentation, industrial, automotive, aerospace, and other harsh environments where overvoltage signals can be present and the system must remain operational both during and after the overvoltage has occurred.

POWER SUPPLY RAILS

To guarantee correct operation of the device, 0.1 μF decoupling capacitors are required on the primary and secondary supplies. If they are driven from the same supply, one set of 0.1 μF decoupling capacitors is sufficient.

The secondary supplies (POSFV and NEGFV) provide the current required to operate the fault protection and, thus, must be low impedance supplies. Therefore, they can be derived from the primary supplies by using a resistor divider and buffer.

The secondary supply rails (POSFV and NEGFV) must not exceed the primary supply rails (V_{DD} and V_{SS}) because this may lead to a signal passing through the switch unintentionally.

The ADG5248F and the ADG5249F can operate with bipolar supplies between ± 5 V and ± 22 V. The supplies on V_{DD} and V_{SS} need not be symmetrical but the V_{DD} to V_{SS} range must not exceed 44 V. The ADG5248F and the ADG5249F can also operate with single supplies between 8 V and 44 V with V_{SS} connected to GND.

The ADG5248F and ADG5249F devices are fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V supply ranges.

POWER SUPPLY SEQUENCING PROTECTION

The switch channel remains open when the devices are unpowered and signals from -55 V to +55 V can be applied without damaging the devices. The switch channel closes only when the supplies are connected, a suitable digital control signal is placed on the address pins, and the signal is within normal operating range. Placing the ADG5248F/ADG5249F between external connectors and sensitive components offers protection in systems where a signal is presented to the source pins before the supply voltages are available.

SIGNAL RANGE

The primary supplies define the on-resistance profile of the channel, whereas the secondary supplies define the signal range. Using voltages on POSFV and NEGFV that are lower than $V_{\rm DD}$ and $V_{\rm SS}$, the required signal can benefit from the flat on resistance in the center of the full signal capabilities of the device.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a bipolar power solution is shown in Figure 53. The ADP7118 and ADP7182 can be used to generate clean positive and negative rails from the ADP5070 (dual switching regulator) output. These rails can power the ADG5248F, the ADG5249F, an amplifier, and/or a precision converter in a typical signal chain.

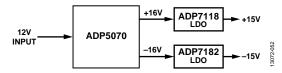


Figure 53. Bipolar Power Solution

Table 13. Recommended Power Management Devices

Product	Description
ADP5070	1 A/0.6 A, dc-to-dc switching regulator with independent positive and negative outputs
ADP7118	20 V, 200 mA, low noise, CMOS LDO
ADP7142	40 V, 200 mA, low noise, CMOS LDO
ADP7182	–28 V, –200 mA, low noise, linear regulator

HIGH VOLTAGE SURGE SUPPRESSION

The ADG5248F/ADG5249F are not intended for use in very high voltage applications. The maximum operating voltage of the transistor is 80 V. In applications where the inputs are likely to be subject to overvoltages exceeding the breakdown voltage, use transient voltage suppressors (TVSs) or similar.

INTELLIGENT FAULT DETECTION

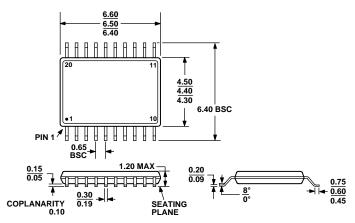
The ADG5248F and ADG5249F digital output pin, FF, can interface with a microprocessor or control system and can be used as an interrupt flag. This feature provides real-time diagnostic information on the state of the device and the system to which it connects.

The control system can use the digital interrupt, FF, to start a variety of actions, as follows:

- Initiating an investigation into the source of an overvoltage fault.
- Shutting down critical systems in response to the overvoltage condition.
- Using data recorders to mark data during these events as unreliable or out of specification.

For systems sensitive during a start-up sequence, the active low operation of the flag allows the system to ensure that the ADG5248F or ADG5249F is powered on and that all input voltages are within the normal operating range before initiating operation.

The FF pin has a weak internal pull-up resistor, which allows the signals to combine into a single interrupt for larger modules that contain multiple devices.


The recovery time, t_{DIGREC} , can be decreased from a typical 65 μs to 900 ns by using a 1 k Ω pull-up resistor.

The specific fault digital output, SF, decodes which inputs are experiencing a fault condition. The SF pin reduces to below 0.8 V when a fault condition is detected on a specific pin, depending on the state of the F0, F1, and F2 pins (see Table 9 and Table 12). The specific fault feature also works with the switches disabled (EN pin low), which allows the user to cycle through and check the fault conditions without connecting the fault to the drain output.

LARGE VOLTAGE, HIGH FREQUENCY SIGNALS

Figure 31 illustrates the voltage range and frequencies that the ADG5248F/ADG5249F can reliably convey. For signals that extend across the full signal range from V_{SS} to V_{DD} , keep the frequency below 1 MHz. If the required frequency is greater than 1 MHz, decrease the signal range appropriately to ensure signal integrity.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AC

Figure 54. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5248FBRUZ	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG5248FBRUZ-RL7	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG5249FBRUZ	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG5249FBRUZ-RL7	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20

 $^{^{1}}$ Z = RoHS Compliant Part.