

Data Sheet

FEATURES

0.8 Ω typical on resistance Less than 1 Ω maximum on resistance at 85°C 1.8 V to 5.5 V single supply High current carrying capability: 300 mA continuous Rail-to-rail switching operation Fast-switching times: <17 ns Typical power consumption: <0.1 μ W 1.30 mm \times 1.60 mm, 10-lead mini LFCSP

APPLICATIONS

Cellular phones PDAs MP3 players Power routing Battery-powered systems PCMCIA cards Modems Audio and video signal routing Communication systems

GENERAL DESCRIPTION

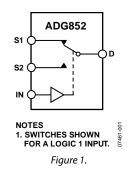
Rev. B

The ADG852 is a low voltage CMOS single-pole, double-throw (SPDT) switch. This device offers ultralow on resistance of less than 1 Ω over the full temperature range. The ADG852 is fully specified for 5.5 V and 3.3 V supply operation.

Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. The ADG852 exhibits break-before-make switching action.

The ADG852 is available in a 1.30 mm \times 1.60 mm 10-lead mini LFCSP.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


PRODUCT HIGHLIGHTS

- 1. <1 Ω over full temperature range of -40°C to +85°C.
- 2. Single 1.8 V to 5.5 V operation.
- 3. Compatible with 1.8 V CMOS logic.
- 4. High current handling capability (300 mA continuous current per channel).
- 5. Low THD + N: 0.08% typical.
- 6. $1.30 \text{ mm} \times 1.60 \text{ mm}$, 10-lead mini LFCSP.

0.8 Ω CMOS, 1.8 V to 5.5 V, SPDT/2:1 Mux Mini LFCSP

ADG852

FUNCTIONAL BLOCK DIAGRAM

ADG852* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

- ADG852: 0.8 Ω CMOS, 1.8 V to 5.5 V, SPDT/2:1 Mux Mini LFCSP Datasheet

REFERENCE MATERIALS

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

DESIGN RESOURCES

- ADG852 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG852 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

. 1
. 1
. 1
. 1
. 1
. 2
. 3
. 5

REVISION HISTORY

5/12—Rev. A to Rev. B
Changes to Ordering Guide
10/08—Rev. 0 to Rev. A
Change to Title
Changes to Features Section
Plan Product Highlights Section

8/08—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 4.2 V to 5.5 V, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance, R _{on}	0.8		Ωtyp	$V_{DD} = 4.2 V$, $V_S = 0 V$ to V_{DD} , $I_{DS} = 100 \text{ mA}$; see Figure 16
	0.85	1	Ωmax	
On Resistance Match Between Channels, ΔR_{ON}	0.02		Ωtyp	$V_{\text{DD}} = 4.2 \text{ V}, V_{\text{S}} = 0 \text{ V} \text{ to } V_{\text{DD}}, I_{\text{DS}} = 100 \text{ mA}$
		0.04	Ωmax	
On Resistance Flatness, R _{FLAT (ON)}	0.17		Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V} \text{ to } V_{DD}, I_{DS} = 100 \text{ mA}$
		0.23	Ωmax	
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$
Source Off Leakage, Is (Off)	±10		pA typ	$V_{s} = 0.6 V/4.2 V$, $V_{D} = 4.2 V/0.6 V$; see Figure 17
Channel On Leakage, I _D , I _S (On)	±30		pA typ	$V_{s} = V_{D} = 0.6 V$ or 4.2 V; see Figure 18
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.002		μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
		0.05	µA max	
C _{IN} , Digital Input Capacitance	2.5		pF typ	
DYNAMIC CHARACTERISTICS ¹				
t _{on}	17		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	23	28	ns max	$V_s = 3 V/0 V$; see Figure 19
t _{OFF}	6		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	8.5	9.2	ns max	V _s = 3 V; see Figure 19
Break-Before-Make Time Delay, t _{BBM}	14		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
		8	ns min	$V_{S1} = V_{S2} = 1.5 V$; see Figure 20
Charge Injection	30		pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 21
Off Isolation	-75		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 22
Channel-to-Channel Crosstalk	-73		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 24
Total Harmonic Distortion, THD + N	0.08		%	$R_L = 32 \Omega$, f = 20 Hz to 20 kHz, Vs = 3.5 V p-p
Insertion Loss	-0.6		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 23
–3 dB Bandwidth	100		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 23
C _s (Off)	19.5		pF typ	
C _D , C _s (On)	50		pF typ	
POWER REQUIREMENTS				V _{DD} = 5.5 V
ldd	0.002		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	µA max	

¹ Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	–40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}	V		
On Resistance, R _{ON}	1.3		Ωtyp	$V_{DD} = 2.7 V$, $V_{S} = 0 V$ to V_{DD} , $I_{DS} = 100 m$ A; see Figure 16	
	1.5	1.7	Ωmax		
On Resistance Match Between Channels, ΔR_{ON}	0.03		Ωtyp	$V_{DD} = 2.7 \text{ V}, V_{S} = 0.6 \text{ V}, I_{DS} = 100 \text{ mA}$	
		0.05	Ωmax		
On Resistance Flatness, R _{FLAT (ON)}	0.48		Ωtyp	$V_{DD} = 4.2 V, V_S = 0 V \text{ to } V_{DD}, I_{DS} = 100 \text{ mA}$	
		0.66	Ωmax		
LEAKAGE CURRENTS				V _{DD} = 3.6 V	
Source Off Leakage, Is (Off)	±10		pA typ	$V_{s} = 0.6 V/3.3 V$, $V_{D} = 3.3 V/0.6 V$; see Figure 17	
Channel On Leakage, I _D , I _S (On)	±30		pA typ	$V_{s} = V_{D} = 0.6 V \text{ or } 3.3 V$; see Figure 18	
DIGITAL INPUTS					
Input High Voltage, VINH		1.35	V min		
Input Low Voltage, V _{INL}		0.7	V max		
Input Current					
I _{INL} or I _{INH}	0.002		μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$	
		0.05	µA max		
C _{IN} , Digital Input Capacitance	4		pF typ		
DYNAMIC CHARACTERISTICS ¹					
ton	25		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$	
	37	43	ns max	$V_s = 1.5 V/0 V$; see Figure 19	
t _{OFF}	7		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$	
	7.4	8	ns max	V _s = 1.5 V; see Figure 19	
Break-Before-Make Time Delay, t _{BBM}	22		ns typ	$R_L = 50 \Omega, C_L = 35 pF$	
		13	ns min	$V_{S1} = V_{S2} = 1 V$; see Figure 20	
Charge Injection	23		pC typ	$V_s = 1.5 V$, $R_s = 0 V$, $C_L = 1 nF$; see Figure 21	
Off Isolation	-75		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 22	
Channel-to-Channel Crosstalk	-73		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 24	
Total Harmonic Distortion, THD	0.15		%	$R_L = 32 \Omega$, f = 20 Hz to 20 kHz, Vs = 1.5 V p-p	
Insertion Loss	-0.07		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 23	
–3 dB Bandwidth	100		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 23	
C _s (Off)	20		pF typ		
C _D , C _S (On)	52		pF typ		
POWER REQUIREMENTS				V _{DD} = 3.6 V	
lod	0.002		μA typ	Digital inputs = 0 V or 3.6 V	
		1.0	µA max		

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Tuble 5.				
Parameter	Rating			
V _{DD} to GND	–0.3 V to +6 V			
Analog Inputs ¹	-0.3 V to V _{DD} + 0.3 V			
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 10 mA, whichever occurs first			
Peak Current, S or D Pins	500 mA (pulsed at 1 ms, 10% duty cycle max)			
Continuous Current, S or D Pins	300 mA			
Operating Temperature Range	–40°C to +85°C			
Storage Temperature Range	–65°C to +150°C			
Junction Temperature	150°C			
Mini LFCSP				
θ _{JA} Thermal Impedance, 3-Layer Board	131.6°C/W			
Reflow Soldering, Pb-Free				
Peak Temperature	260(+0/-5)°C			
Time at Peak Temperature	10 sec to 40 sec			

¹ Overvoltages at the IN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTION

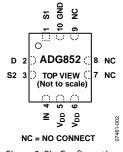


Figure 2. Pin Configurations

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1	Source Terminal. Can be an input or output.
2	D	Drain Terminal. Can be an input or output.
3	S2	Source Terminal. Can be an input or output.
4	IN	Logic Control Input.
5, 6	VDD	Most Positive Power Supply Potential.
7, 8, 9	N/C	No Connect.
10	GND	Ground (0 V) Reference.

Table 5. ADG852 Truth Table

Logic	Switch 1	Switch 2
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

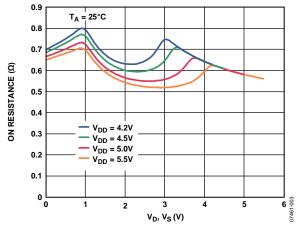


Figure 3. On Resistance vs. V_D (V_s), $V_{DD} = 4.2$ V to 5.5 V

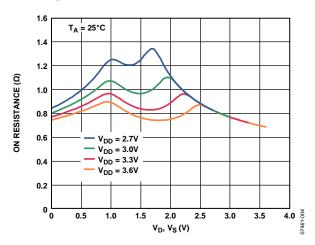


Figure 4. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 V$ to 3.6 V

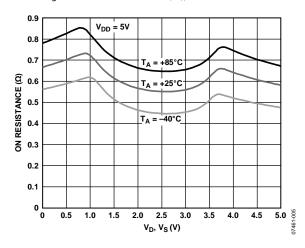


Figure 5. On Resistance vs. V_D (V_s) for Different Temperatures, $V_{DD} = 5 V$

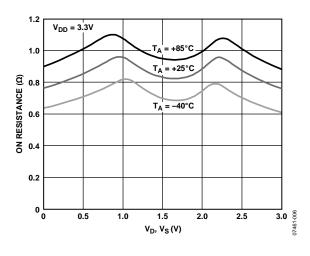


Figure 6. On Resistance vs. V_D (V_s) for Different Temperatures, V_{DD} = 3.3 V

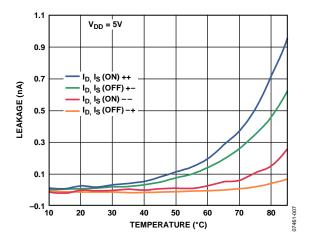


Figure 7. Leakage Current vs. Temperature, $V_{DD} = 5 V$

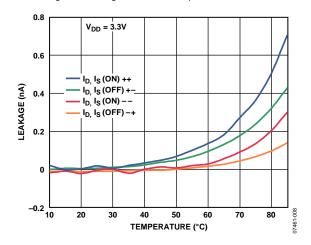


Figure 8. Leakage Current vs. Temperature, $V_{DD} = 3.3 V$

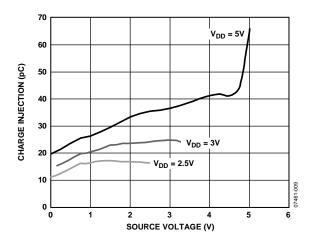


Figure 9. Charge Injection vs. Source Voltage

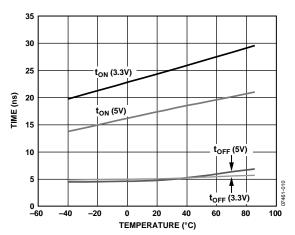


Figure 10. ton/toff Times vs. Temperature

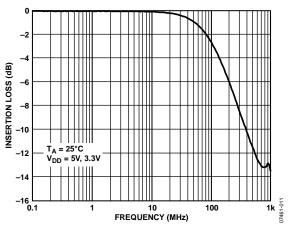
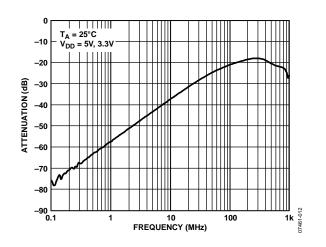
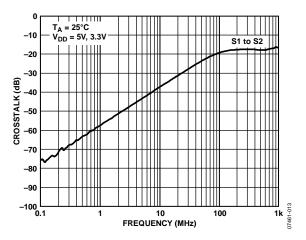




Figure 11. Bandwidth

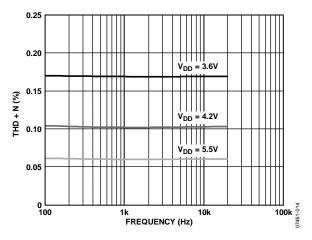


Figure 14. Total Harmonic Distortion + Noise (THD+N) vs. Frequency

Data Sheet

ADG852

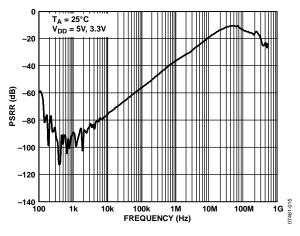
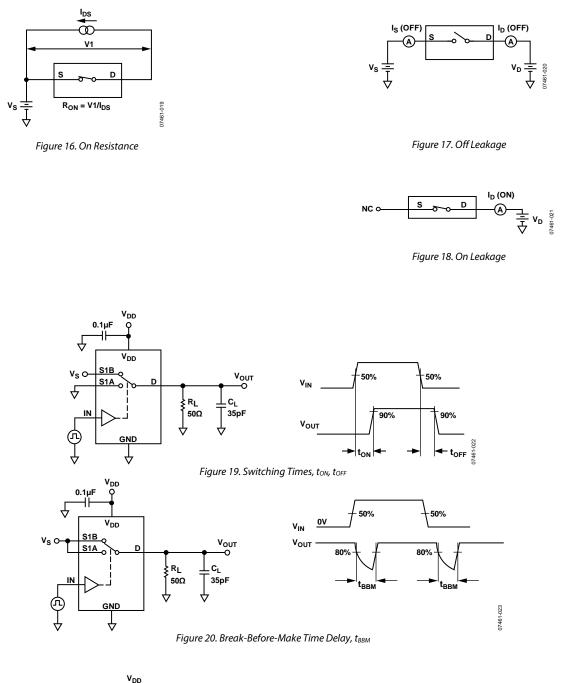
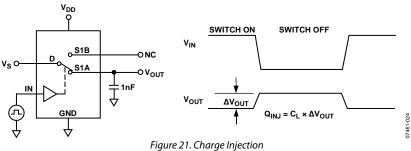




Figure 15. PSSR vs. Frequency

TEST CIRCUITS

Data Sheet

V_{DD} 0.1µF Q £ NETWORK ANALYZER V_{DD} \$50Ω ↓ ↓ 50Ω S1A S1B o NC O Vs(ΟV_{OUT} ξ 50Ω D 4 -) ₹ 07461-025 GND Ą

OFF ISOLATION = 20 log $\frac{V_{OUT}}{V_S}$

Figure 22. Off Isolation

Figure 24. Channel-to-Channel Crosstalk (S1 toS2)

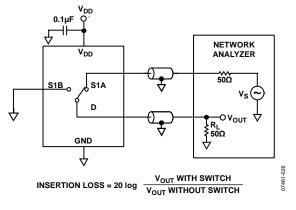


Figure 23. Bandwidth

ADG852

TERMINOLOGY

IDD

Positive supply current.

$V_D(V_s)$

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT} (On)

The difference between the maximum and minimum values of on resistance as measured on the switch.

ΔR_{ON}

On resistance match between any two channels.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

I_D , I_S (On)

Channel leakage current with the switch on.

VINL

Maximum input voltage for Logic 0.

VINH

Minimum input voltage for Logic 1.

IINL (IINH)

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

$C_D, C_S(On)$

On switch capacitance. Measured with reference to ground.

Cin

Digital input capacitance.

ton

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and 90% points of the digital input and switch off condition.

\mathbf{t}_{BBM}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

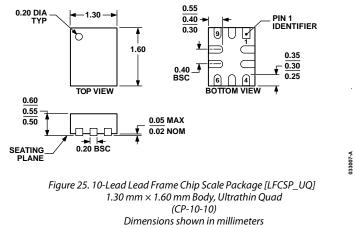
Measure of unwanted signal coupling through an off switch.

Crosstalk

Measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

Frequency at which the output is attenuated by 3 dB.


Insertion Loss

The loss due to the on resistance of the switch.

THD + N

Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG852BCPZ-REEL7	-40°C to +85°C	10-Lead Lead Frame Chip Scale Package (LFCSP_UQ)	CP-10-10	F
17 Dol IC Commissions Dout				

 $^{1}Z = RoHS$ Compliant Part.

NOTES

NOTES

NOTES

www.analog.com

©2008–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07461-0-5/12(B)