

Simple Tracker™ with Circuit Breaker

Preliminary Technical Data

ADM1203

FEATURES

Enables Power Supply Tracking of multiple Supplies Monitors Current on Supply being Tracked Up/Down Tracking limits Supply Differences to ~100mV Capacitor Adjustable Slew Rate On Board Charge Pump Fully enhances FET Ability to Track Down Supplies (ADM1203-1/3) Emergency Shutdown Feature (ADM1203-2/4) Auto retry after Current Fault (ADM1203-1/2) Latch off after Current Fault (ADM1203-3/4) Packaged in tiny 8-Lead TSOT Package

APPLICATIONS

Multi-Voltage Supply Rail Tracker Telecoms and Datacom s Systems Multi voltage Network Processors , FPGAs, ASICs, DSPs PC/Server Applications

GENERAL DESCRIPTION

The ADM1203 is a cascadable Simple Tracker TM device which ensures that voltage rails track within ~100mV of each other in multi supply systems. Any number of these devices can be cascaded to form a multi supply tracking solution.

The ADM1203 requires 2.7V to 16.5V on its Vcc pin to operate. An on-board charge pump generates a high voltage GATE drive to fully enhance FETs in the power path.

The Slew Rate of the ramp is adjustable via an external capacitor on the C_{SLEW} pin and can be programmed from 100V/s to 1000V/s. When multiple devices are cascaded the C_{SLEW} pin of each subsequent device should be tied to the output rail of the previous device to ensure that supply will track up and down with the previous supply.

The ADM1203 is offered in four variants. The ADM1203-1/3 features an UP/DOWNb pin and the ADM1203-2/4 features an Up/STOPb pin. The ADM1203-1/2 features an auto retry on current RS fault and the ADM1203-3/4 latches off. For all devices, a high level on the input will initiate tracking power up sequence. A low on the UP/DOWNb pin of the ADM1203-1/3 will initiate a tracking down of the supply rails, while a low on the UP/STOPb pin of the ADM1203-2/4 will initiate an emergency fast shutdown of all supply rails simultaneously.

The ADM1203 features a current sense comparator, which monitors for an over current condition on the supply. In the event of an over current condition, a fault is flagged and the gate is switched off. The ADM1203-1/2 will auto retry this fault at **Rev. PrD**

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies. every cycle determined by the capacitor on the TIMER pin and the ADM1203-3/4 will latch off the gate until the up/down(stop) pin is toggled.

The ADM1203 is packaged in a tiny 8-pin TSOT package.

Functional Block Diagram

Applications Diagram

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700
www.analog.com

Fax: 781.326.8703
© 2003 Analog Devices in the black of the context of the con

ADM1203—SPECIFICATIONS

Table 1. V_{cc} = Full Operating Range, T_A = -40°C to +85°C, unless otherwise noted.

www.DataSheet4U.com

Parameter	Min	Тур	Мах	Units	Conditions
Vcc Pin					
Operating Voltage Range Vcc	2.7		16.5	V	
Undervoltage Lockout, VUVLO	2.4	2.525	2.65	V	Vcc Rising
UVLO Hysteresis		25		mV	
Switched Voltage Range	0.65		16.5	V	
Quiesent Current		0.65	1.0	mA	
Up/Downb Pin					
Input Threshold	0.58	0.6	0.62	V	Rising
Input Threshold Hysteresis		60		mV	
Input Current	-100		100	nA	
RS- Pin					
Hot Swap Voltage	2.7		16.5	V	
RS- Pin Input Current, I _{INRS}	TBD	-200	TBD	μA	$V_{RS} = V_{CC}$, $V_{HOTSWAP} = 0.6 V$,
	10	20	30	μA	$V_{RS} = V_{CC}, V_{HOTSWAP} > 2.2 V$
Circuit Breaker Limit Voltage, V _{CB}	34	47	60	mV	$V_{CB} = (V_{CC} - V_{RS})$, $V_{HOTSWAP} = 0.6$ V
	44	47	53	mV	$V_{CB} = (V_{CC} - V_{RS})$, $V_{HOTSWAP} > 2.2 V$
Over Current Limit Voltage, Voc	40	53	66	mV	$V_{HOTSWAP} = 0.6 V$
	50	53	59	mV	VHOTSWAP > 2.2 V
C _{SLEW} Pin					
Slew up Current		-10		μA	
Slew down Current		10		μA	
Tracking Gain		1		V/V	Vslew/Voutfb
Minimum Tracking Voltage		0.1		V	
Maximum Tracking voltage		Vcc – 0.3		V	
Slew Rate	100		1000	V/s	
Vouteb Pin					
Input Current	-10		10	μΑ	
Voltage Range	0		Vcc	V	
GATE Pin					
Gate Pullup Current		12		μΑ	Vslew – Vout > 100mV
Gate Pulldown Current		12		μΑ	Vout – Vslew > 100mV
Gate Pulldown Current		2		mA	ADM1203-2 only –vgate = 3.0V
GATE Voltage, V _{GATE}	5	6.5	10	V	$V_{GATE} - V_{CC}$; $V_{CC} = 2.7V$
	6	8	12	V	$V_{GATE} - V_{CC}$; $V_{CC} = 5.0V$
	5	6.5	10	V	V _{GATE} – V _{CC} ; V _{CC} = 16.5V
TIMER Pin					
TIMER Pin Pull-Up Current, ITIMERUP	-4	-5	-6	μΑ	Initial Cycle, $V_{TIMER} = 1V$
	-48	-60	-72	μA	During Current Fault, $V_{\text{TIMER}} = 1V$
TIMER Pin Pull-Down Current, ITIMERDN		2	2.5	μA	After Current Fault, $V_{TIMER} = 1V$
		100		μA	Normal Operation, $V_{TIMER} = 1V$
TIMER Pin Threshold High, VTIMERH	1.235	1.3	1.365	V	TIMER rising
TIMER Pin Threshold Low, VTIMERL NOTES:	0.18	0.2	0.22	V	TIMER falling

Absolute Maximum Ratings Table 2. ADM1203 Absolute Maximum Ratings

Parameter	Rating
V _{cc} Pin	20V
TIMER Pin	20V
UP/DOWNb, UP/STOPb	20V
RS- Pin	20V
C _{SLEW} Pin	20V
Gate Pin	Vcc + 11V
V _{OUTFB} Pin	20V
Power Dissipation	TBD
Storage Temperature	-65°C to +125°C
Operating Temperature Range	-40°C to +85°C
Lead Temperature Range (Soldering 10 sec)	300°C
Junction Temperature	150°C

ADM1203

Preliminary Technical Data

www.DataSheet4U.com

ENABLING A SINGLE SUPPLY

The ADM1203 requires a supply voltage of 2.7V to 16.5V on its Vcc pin for operation. The device may be powered from the input supply rail that is being switched or from an auxiliary supply.

An internal charge pump ensures that the ADM1203 is capable of fully enhancing an external FET via the GATE pin, turning on the output. An external capacitor may be required on the GATE node for stability.

Power up can be externally initiated by driving the UP/DOWNb (ADM1203-1) or UP/STOPb (ADM1203-2) logic pin high. A low on this pin will initiate a power down.

The V_{OUTFB} pin monitors the output voltage.

A single ADM1203 device may be used where a single supply rail is required to switch on at a controlled slew rate (see Figure 1). The value of the slew rate capacitor, C_{SLEW} , will dictate the slew rate of the GATE voltage at startup. An internal current 10µA source charges C_{SLEW} and the GATE voltage is ramped at the same rate.

Figure 1. ADM1203 Switching on a Single Supply

MULTI-SUPPLY TRACKING

The primary function of the ADM1203 is to provide a voltage tracking solution for multiple supply rails. The implementation in Figure 2 will provide this function. Each voltage rail has its own ADM1203 device driving a FET.

The UP/DOWNb (ADM1203-1/3) or UP/STOPb (ADM1203-2/4) pins of all devices can be driven by a single logic input which will initiate a system power-up going high or powerdown going low.

In figure 2, the ADM1203 is configured to control the ramp of the largest supply first. The output of the first device is connected to the slew pin on the second device to allow the rate of the first supply to control the rate of the second and so on.

Figure 2. ADM1203 Solution for Tracking 3 Supplies

A low-to-high transition on the UP/DOWNb or UP/STOPb pin will initiate turn-on of the supplies. The ADM1203 will begin to source current into the C_{SLEW} capacitor. The voltages on all GATE pins will begin to rise, or "track" up, at the same rate, as set by the value of C_{SLEW} . All supply voltages will remain within 100mV of the C_{SLEW} voltage until they level off at their full potentials.

A high-to-low on the UP/DOWNb pin of the ADM1203-1 will initiate a tracking down of the supply rails. The voltages will attempt to stay with ~100mV of each other assuming the load current will be sufficient to discharge the capacitors at the required rate. (See Figure 3.)

A high-to-low on the UP/STOPb pin of the ADM1203-2 will initiate an emergency fast shutdown of all supply rails simultaneously. (See Figure 4.) Note that while the pass FETs will be turned off immediately the actual discharge rate of each supply rail will depend on the load.

Preliminary Technical Data

Figure 3. ADM1203-1 Power-Up and Power-Down Waveforms

Figure 4. ADM1203-2 Power-Up and Power-Down Waveforms

SLEW RATE CONTROL

Voltage tracking is achieved by controlling the slew rate of a rising or falling supply by an external capacitor on the SLEW pin. Alternatively, this pin can be overdriven with a supply which will result in the output following this supply. The gate responds to maintain ~100mV between the VOUTFB pin and the SLEW pin

Figure 6. Tracking up Waveforms

CURRENT LIMIT CIRCUIT BREAKER FUNCTION

ADM1203

www.DataSheet

The ADM1203 features a current limiting circuit breaker. When there is a sudden load current surge, such as a low impedance fault, the bus supply voltage can drop significantly to a point where the power to an adjacent card is affected, causing system malfunctions. The ADM1203 fast response current RS amplifier instantly limits current by reducing the external FET GATE pin voltage. This minimizes the bus supply voltage drop and permits power budgeting and fault isolation without affecting neighboring cards. A compensation circuit should be connected to the GATE pin for current limit loop stability.

CALCULATING CURRENT LIMIT

The nominal fault current limit is determined by a RS resistor connected between $V_{\rm CC}$ and the RS- pin as given by the equation below:

 $I_{\text{LIMIT(NOM)}} = V_{\text{CB(NOM)}} / R_{\text{RS}}$ (1)

The minimum load current is given by Equation 2:

 $I_{\text{LIMIT(MIN)}} = V_{\text{CB(MIN)}} / R_{\text{RS(MAX)}}$ (2)

The maximum load current is given by Equation 3:

 $I_{\text{LIMIT(MAX)}} = V_{\text{CB(MAX)}} / R_{\text{RS(MIN)}}$ (3)

Note: The power rating of the RS resistor should be rated at the fault current level. The RS resistor power rating must exceed $V_{CB(MAX})^2$ /R_{RS(MIN).}

TIMER FUNCTION

The TIMER pin handles several key functions with an external capacitor, C_{TIMER} . There are two comparator thresholds: COMP1 (0.2V) and COMP2 (1.3V). The four timing current sources are:

- 5µA pull-up
- 60μA pull-up
- 2μA pull-down
- 100µA pull-down

The 100 μA is a non-ideal current source approximating a 7k resistor below 0.4V.

INITIAL TIMING CYCLE

When the card is being inserted into the bus connector, the long pins mate first which brings up the supply VIN at time point 1 of Figure 7. The ADM1203 is in reset mode as the ON pin is low. GATE is pulled low and the TIMER pin is pulled low with a 100 μ A source. At time point 2, the short pin makes contact and ON is pulled high. At this instant, a start-up check requires that the supply voltage be above UVLO, the ON pin beabove1.3Vand the TIMER pin voltage be less than 0.2V. When these three conditions are fulfilled, the initial cycle begins and the TIMER pin is pulled high with 5 μ A. At time point 3, the TIMER reaches the COMP2 threshold and the first portion of the initial cycle ends. The 100 μ A current source then pulls down the TIMER pin until it reaches 0.2V at time point 4. The initial cycle delay (time point 2 to time point 4) is related to C_{TIMER} by equation:

 $t_{\text{INITIAL}} \sim = 272.9 \text{ x } C_{\text{TIMER}} \text{ ms/uF}$ (4)

When the initial cycle terminates, a start-up cycle is activated and the GATE pin ramps high. The TIMER pin continues to be pulled down towards ground.

Figure 8: Current Limiting at Start-up

www.DataSheet4U.com

ADM1203

PIN CONFIGURATIONS

PIN FUNCTIONAL DESCRIPTIONS

Pin No.	Name	Description
1	TIMER	Timer Input Pin. An external capacitor C_{TIMER} sets a 272.9ms/µF initial timing delay and a 21.7ms/µF circuit breaker delay. The GATE pin turns off whenever the TIMER pin is pulled beyond the upper threshold, such as for overvoltage detection with an external zener.
2	GND	Chip Ground Pin.
3	UP/DOWNb or UP/STOPb	Logic Pin. Drive high to initiate track up off all ADM1203 controlled rails. Drive low to initiate track down of all rails (ADM1203-1) or a fast shutdown of all rails (ADM1203-2).
4	VOUT	Monitors the Source of the external FET
5	CSLEW	Connect to an external capacitor to control the slew rate of the of the GATE at turn on (and turn-off for ADM1203-1).
6	GATE	Drives the GATE node of the external FET
7	RS-	Current Limit Sense Input Pin. A sense resistor between the Vcc and RS- pins sets the analog current limit. In overload, the EA controls the external FET gate to maintain the SENSE voltage at 47mV. When the EA is maintaining current limit, the TIMER circuit breaker mode is activated. The current limit loop/circuit breaker mode can be disabled by connecting the Vcc pin and RS- pin together
8	VCC	Chip Power Supply, 2.7V to 16.5V.

www.DataSheet4U.com

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-193BA

Figure XX. 8-Lead TSOT Package (UJ-8)—Dimensions shown in millimeters

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table 3. Ordering Guide

Part Number	Variant	Temperature Package	Package Description	Package Outline
ADM1203-1AUJ	UP/DOWNb logic input	-40°C to +85°C	тѕот	UJ-8
ADM1203-2AUJ	UP/STOPb logic input	–40°C to +85°C	TSOT	UJ-8
ADM1203-3AUJ	UP/DOWNb logic input	-40°C to +85°C	тѕот	UJ-8
ADM1203-4AUJ	UP/STOPb logic input	–40°C to +85°C	TSOT	UJ-8

003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A.

www.analog.com