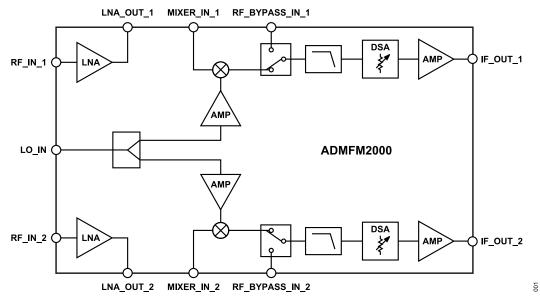


Dual-Channel, 0.5 GHz to 32 GHz, Microwave Downconverter

FEATURES

- Dual-channel, 0.5 GHz to 32 GHz receiver
- Integrated LNA
- Integrated downconversion mixer
- Integrated switch for mixer bypass
- Integrated IF LPF: 8 GHz bandwidth
- Integrated DSA
- ▶ DSA range: 31 dB with 1 dB step
- Single common LO input
- 50 Ω matched input and output
- > 20.00 mm × 14.00 mm, 179-ball CSP BGA

APPLICATIONS


- Phased array radar receivers
- Satellite communications (satcom) receivers
- ► Electronic warfare
- Electronic test and measurement equipment
- ► Automatic test equipment

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADMFM2000 is a dual-channel microwave downconverter, with input RF and local oscillator (LO) frequency ranges covering 5 GHz to 32 GHz, with an output intermediate frequency (IF) frequency range from 0.5 GHz to 8 GHz. The downconverting mixer can also be bypassed allowing direct access to the 0.5 to 8 GHz IF path. A common LO input signal is split to feed two separate buffer amplifiers to drive the mixer in each channel. Each down conversion path consists of a low noise amplifier (LNA), a mixer, an IF filter, a digital step attenuator (DSA), and an IF amplifier.

Fabricated using a combination of surface mount and bare die components, the ADMFM2000 provides precise gain adjustment capabilities with low distortion performance. The ADMFM2000 comes in a compact, shielded 20.00 mm × 14.00 mm, 179-ball chip scale package ball grid array (CSP_BGA) and operates over a temperature range of -40° C to $+85^{\circ}$ C.

Figure 1. Functional Block Diagram

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

1
1
1
1
3
6
6
6
6
7
9
9
12
) 16
19
20

REVISION HISTORY

3/2024—Revision 0: Initial Version

Theory of Operation	21
LNA	
Mixer	21
LO	21
Switch	21
LPF	22
DSA	22
IF Amplifier	23
Applications Information	24
Basic Connections	24
LNA Mixer Cascaded Performance	26
Layout Recommendations	27
Vent Hole	27
Power Management Recommendations	27
Outline Dimensions	28
Ordering Guide	28
Evaluation Boards	

SPECIFICATIONS

 $\label{eq:VDD_LNA_1 = VDD_LNA_2 = VDD_IF_1 = VDD_IF_2 = VDD_LO_DRIVER_1 = VDD_LO_DRIVER_2 = 5 \text{ V}, \text{ VSS_DSAS} = -5 \text{ V}, \text{ VGG_RFAMP_1 = VGG_RFAMP_2 = VGG_LOAMP_1 = VGG_LOAMP_2 = open, LO_IN power (P_{LO_IN}) = 6 dBm (referenced at the customer evaluation board LO_IN RF connector), and T_A = 25°C, unless otherwise noted.$

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
OPERATING CONDITIONS					
Frequency Range		0.5		32	GHz
LNA Input		5		32	GHz
Mixer Input		5		32	GHz
Direct IF Input		0.5		8	GHz
LNA Output		5		32	GHz
IF Output		0.5		8	GHz
LO Input		7		30	GHz
NA	Input: RF_IN_1 and RF_IN_2 and output: LNA_OUT_1 and LNA_OUT_2				
Gain	18 GHz		12		dB
Gain Flatness	Over any 4 GHz of bandwidth		1		dB p-p
Gain Variation over Temperature	-40°C to +85°C		1.2		dB
Noise Figure	18 GHz		3.5		dB
Input 1 dB Compression Point (P1dB)	18 GHz		2		dBm
Second Harmonic (HD2)	RF_IN_x frequency ($f_{RF_IN_x}$) = 9 GHz, and LNA_OUT_x power ($P_{LNA_OUT_x}$) = -6 dBm		-37		dBc
Third Harmonic (HD3)	$f_{RF_{IN_x}} = 9 \text{ GHz}$, and $P_{LNA_{OUT_x}} = -6 \text{ dBm}$		-69		dBc
Input Third-Order Intercept (IP3)	18 GHz, 1 MHz tone spacing and an output power (P_{OUT}) = -6 dBm per tone		12		dBm
Input Second-Order Intercept (IP2)	9 GHz, 11 MHz tone spacing, P _{OUT} = −6 dBm per tone		25		dBm
Channel to Channel Isolation	$P_{LNA_OUT_1}$ to $P_{LNA_OUT_2},$ 18 GHz, $P_{RF_IN_1}$ = -20 dBm, and RF_IN_2: 50 Ω termination		-55		dB
MIXER	Input: MIXER_IN_1 and MIXER_IN_2, LO: LO_IN = 6 dBm, SW1_CTRL_A = -5 V, SW1_CTRL_B = 0 V, SW2_CTRL_A = 0 V, SW2_CTRL_B = -5 V, and output: IF_OUT_1 and IF_OUT_2 = 3 GHz				
Gain	18 GHz		-6.3		dB
Gain Flatness	Over any 4 GHz of bandwidth		2		dB p-p
Gain Variation over Temperature	-40°C to +85°C		2		dB
DSA Range		0		31	dB
DSA Step Size			1		dB
Noise Figure	Single sideband, 18 GHz		23.5		dB
Input P1dB	18 GHz		16.5		dBm
Input IP3		23.5		dBm	
Input IP2	$f1_{MIXER_IN_x}$ = 18 GHz, 11 MHz tone spacing, P _{OUT} = -15 dBm per tone		39.7		dBm
Mixer Isolation					
RF to IF	(MIXER_IN_x power ($P_{MIXER_IN_x}$) at 18 GHz) – (IF_OUT_x power ($P_{IF OUT_x}$) at 18 GHz), $P_{MIXER_IN_x} = -10 \text{ dBm}$		57		dB
LO to RF	(P _{LO IN} at 18 GHz) – (P _{MIXER IN x} at 18 GHz), P _{LO IN} = 8 dBm		32		dB
LO to IF	(P _{LO_IN} at 18 GHz) – (P _{IF_OUT_x} at 18 GHz), P _{LO_IN} = 8 dBm		77		dB

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
		(1111	אני	IVIAN	Unit
Channel to Channel Isolation	MIXER_IN_2: 50 Ω termination, MIXER_IN_1 power (P _{MIXER_IN_1}) = -10 dBm at MIXER_IN_1 frequency (f _{MIXER_IN_1})				
	$(F_{MXER_IN_1}) = 10 \text{ dBm at MAZEN_IN_1} = 18 \text{ GHz}$, IF_OUT_1 frequency ($f_{IF_OUT_1}$) = 3.0 GHz				
IF to IF	$(IF_OUT_1 \text{ power } (P_{IF_OUT_1}) \text{ at } 3 \text{ GHz}) - (IF_OUT_2 \text{ power})$		-80		dB
	(P _{IF OUT 2}) at 3 GHz)				
DIRECT IF MODE	Input: RF_BYPASS_IN_1 and RF_BYPASS_IN_2, output:				
	IF_OUT_1 and IF_OUT_2, SW1_CTRL_A = 0 V, SW1_CTRL_B = -5 V, SW2_CTRL_A = -5 V, and SW2_CTRL_B = 0 V				
Gain	3.0 GHz		5.0		dB
Gain Flatness	3 GHz ± 1.0 GHz		1.2		dB p-p
Gain Variation over Temperature	-40°C to +85°C		0.6		dB
DSA Range		0		31	dB
DSA Step Size			1		dB
Noise Figure	3.0 GHz		12.1		dB
Input P1dB	3.0 GHz		14.5		dBm
HD2	3.0 GHz, $P_{IF_OUT_x} - P(2 \times f_{IF_OUT_x})$, and $P_{OUT} = 5 \text{ dBm}$		-50		dBc
HD3	3.0 GHz, $P_{IF_{OUT_x}} - P(3 \times f_{IF_{OUT_x}})$, $P_{OUT} = 5 \text{ dBm}$		-77		dBc
Input IP3	3.0 GHz, 1 MHz tone spacing, and P _{OUT} = 5 dBm per tone		27		dBm
Input IP2	3.0 GHz, 11 MHz tone spacing, and P _{OUT} = 5 dBm per tone		32.4		dBm
Channel to Channel Isolation	P _{IF_OUT_1} to P _{IF_OUT_2} , 3.0 GHz, RF_BYPASS_IN_1 power		-67		dB
	$(P_{RF_BYPASS_IN_1}) = -20 \text{ dBm}$, and RF_BYPASS_IN_2: 50 Ω termination				
SA SPECIFICATIONS					
Range		0		31	dB
Step Size	Between any successive attenuation states, 0.5 GHz to 8 GHz		1		dB
Step Error	Between any successive attenuation states, 0.5 GHz to 8 GHz		±0.5		dB
Settling Time	Minimum attenuation to maximum attenuation, $t_{\mbox{FALL}}$ (90% to 10% $\mbox{RF})$		38		ns
	Maximum attenuation to minimum attenuation, t_{RISE} (10% to 90% RF)		42		ns
	t _{ON} (50% control to 90% RF)		60		ns
	t _{ON} and t _{OFF} (50% control to 10% RF)		60		ns
NA MIXER CASCADED	Input: RF_IN_1 and RF_IN_2, output: IF_OUT_1 and				
	IF_OUT_2, 5.5 dB attenuation between LNA_OUT_x and MIXER_IN_x, SW1_CTRL_A = -5 V, SW1_CTRL_B = 0 V,				
0 ·	SW2_CTRL_A = 0 V, and SW2_CTRL_B = -5 V		<u></u>		
Gain	$f_{RF_IN_x}$ = 18 GHz and $f_{IF_OUT_x}$ = 3.0 GHz		0.5	0.4	dB
DSA Range		0		31	dB
DSA Step Size			1		dB
Noise Figure	Single sideband		16.7		dB
Input P1dB			10.6		dBm
Input IP3	18 GHz, 1 MHz tone spacing, and $P_{OUT} = -15$ dBm per tone		10.2		dBm
Input IP2	9 GHz, 11 MHz tone spacing, and $P_{OUT} = -15$ dBm per tone		24.3		dBm
Channel to Channel Isolation	$P_{IF_OUT_1}$ to $P_{IF_OUT_2}$, 18 GHz, $P_{RF_IN_1}$ = -20 dBm, and RF_IN_2: 50 Ω termination		60		dB
O CHARACTERISTICS					
LO Drive Level ¹		4	6	8	dBm
OGIC INPUTS					
SWx_CTRL_x	SW1_CTRL_A, SW1_CTRL_B, SW2_CTRL_A, and SW2_CTRL_B				
Input Low Voltage (V _{IL})		-0.2		0	V

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Input High Voltage (V _{IH})		-5		-3	V
DSAx_Vx	DSA1_V0, DSA1_V1, DSA1_V2, DSA1_V3, DSA1_V4, DSA2_V0, DSA2_V1, DSA2_V2, DSA2_V3, and DSA2_V4				
V _{IL}		0		0.8	V
V _{IH}		2		5	V
POWER SUPPLIES					
VDD_LNA_1 and VDD_LNA_2			5		V
VDD_IF_1 and VDD_IF_2			5		V
VDD_LO_DRIVER_1 and VDD_LO_DRIVER_2			5		V
VSS_DSAS			-5		V
VDD_LNA_x Current (I _{VDD_LNA_x})			66		mA
VDD_IF_x Current (I _{VDD_IF_x})			72		mA
VDD_LO_DRIVER_x Current (I _{VDD_LO_DRIVER_x})			68		mA
VSS_DSAS Current (I _{VSS_DSAS})			12		mA
Total Power Consumption			2.18		W

¹ The LO power specification is the power level at the RF connector on the customer evaluation board (LO_IN). Figure 60 shows a plot of the insertion loss of the LO trace on the customer evaluation board.

ABSOLUTE MAXIMUM RATINGS

Table 2. Absolute Maximum Ratings

Parameter	Rating
Maximum Supply Voltage	
VDD_LNA_1 and VDD_LNA_2	8 V
VDD_IF_1 and VDD_IF_2	7 V
VDD_LO_DRIVER_1, VDD_LO_DRIVER_2	10 V
VSS_DSAS	-7 V
Maximum Input Power	
RF_IN_1 and RF_IN_2	23 dBm
MIXER_IN_1and MIXER_IN_2	21 dBm
RF_BYPASS_IN_1 and RF_BYPASS_IN_2	26 dBm
LO_IN	24 dBm
Switch Control Inputs	
SW1_CTRL_A, SW1_CTRL_B, SW2_CTRL_A, and SW2_CTRL_B	-7.5 V to +0.5 V
DSA Control Inputs	
DSA1_V0, DSA1_V1, DSA1_V2, DSA1_V3, DSA1_V4,DSA2_V0, DSA2_V1, DSA2_V2, DSA2_V3, and DSA2_V4	7.5 V
Temperature	
Operating Range	-40°C to +85°C
Storage Range	-40°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

The Layout Recommendations section details and shows a design that utilizes multiple ground vias to maximize heat dissipation from the device package.

 θ_{JC} is the junction-to-case thermal resistance.

Table 3. Thermal Resistance

Package Type ¹	θ _{JC} ²	Unit
BV-179-1	70	°C/W

¹ Based on simulations with JEDEC standard JESD-51.

 $^2~$ The θ_{JC} thermal resistance was determined by simulation of the heat transfer from the hottest localized circuit in the package through the ground paddle of the PCB, with the PCB ground paddle held constant at 85°C. The associated power consumption of this circuit is 0.35 W.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in and ESD-protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADMFM2000

Table 4. ADMFM2000, 179-Ball BGA_CAV

ESD Model	Withstand Threshold (V)	Class
НВМ	±250	1A
CDM		
RF Pins	±175	COB
NonRF Pins	±500	C2A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

		ADMFM2000 TOP VIEW (Not to Scale)																		
	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A	7					0		0		0		0		0						
в			Ó	0	0	0	Ó	Ó	0	0	0	Ó	Ó	Ó	0	Ó	Ó	Ó	Ó	
с	C	ì	O	O	0	0	Ó	O	0	Ó	0	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	
D			O	O	0	0	Ó	O	O	Ó	0	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	
Е	C)	O	O	0												Ó	$^{\circ}$	O	0
F			O	O	0		$^{\circ}$	\odot	\odot	\odot	$^{\circ}$	$^{\circ}$	$^{\circ}$	O	\odot		Ó	$^{\circ}$	O	
G	C	ì	Ó	O	O		O	O	O	\odot	O	O	Ó	O	Ó		Ó	Ó	O	\odot
н			Ó	O	O		O	O	O	\odot	O	O	Ó	O	Ó		Ó	Ó	O	
J	C	ì	Ó	O	O												Ó	Ó	O	
κ	ζ.	ì	O	0	0	\odot	\bigcirc	\odot	\odot	\odot	\odot	\bigcirc	\odot	\odot	\odot	\odot	Ó	\odot	\odot	0
L			Ó	O	O	O	O	O	O	$^{\circ}$	O	O	Ó	O	Ó	Ó	Ó	Ó	O	
м	C	ì	O	O	0	O	O	O	O	0	O	O	O	O	O	\odot	Ó	O	O	0
Ν						O		\odot		\odot		O		O						

Figure 2. BGA Ball Array Configuration (Top View)

									(BAL	TOP VIEW L SIDE DO ot to Scale									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A					GND		GND		GND		GND		GND						
в		VGG_ RFAMP_1	GND	VDD_ LNA_1	GND	LNA_ OUT_1	GND	GND	GND	MIXER_ IN_1	GND	RF_BYPASS _IN_1	GND	GND	SW1_ CTRL_A	SW1_ CTRL_B	GND	VSS_ DSAS	
с	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	DSA1_V2	DSA1_V3	DSA1_V4	GND	GND	
D		RF_IN_1	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	DSA1_V1	DSA1_V0	GND	GND	VDD_IF_1	
Е	GND	GND	GND	VDD_LO_ DRIVER_1												GND	GND	GND	GND
F		GND	GND	VGG_ LOAMP_1		GND	GND	GND	GND	GND	GND	GND	GND	GND		GND	GND	IF_OUT_1	
G	GND	GND	GND	VGG_ LOAMP_2		GND	GND	GND	GND	GND	GND	GND	GND	GND		GND	GND	GND	GND
н		LO_IN	GND	GND		GND	GND	GND	GND	GND	GND	GND	GND	GND		GND	GND	GND	
J	GND	GND	GND	GND												GND	GND	VDD_IF_2	
к	GND	GND	GND	VGG_ RFAMP_2	GND	GND	VDD_LO_ DRIVER_2	GND	GND	GND	GND	GND	GND	SW2_ CTRL_B	GND	GND	GND	GND	GND
L		RF_IN_2	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	SW2_ CTRL_A	DSA2_V3	DSA2_V4	GND	IF_OUT_2	
м	GND	GND	GND	VDD_ LNA_2	GND	LNA_ OUT_2	GND	GND	GND	MIXER_ IN_2	GND	RF_BYPASS _IN_2	GND	DSA2_V0	DSA2_V1	DSA2_V2	GND	GND	GND
N					GND		GND		GND		GND		GND						
					RF I/Os		GND		PWR		CTRL +5/0		CTRL 5/0		NC				

Figure 3. 179-Ball Pin Configuration (Top View)

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Туре	Description
RF Inputs and Outputs			
D2	RF_IN_1	Input	Channel 1, RF Input, AC-Coupled, Matched to 50 Ω.
L2	RF_IN_2	Input	Channel 2, RF Input, AC-Coupled, Matched to 50 Ω.
H2	LO_IN	Input	LO Input, AC-Coupled, Matched to 50 Ω.
B6	LNA_OUT_1	Output	Channel 1, LNA Output, AC-Coupled, Matched to 50 Ω.
M6	LNA_OUT_2	Output	Channel 2, LNA Output, AC-Coupled, Matched to 50 Ω
B10	MIXER_IN_1	Input	Channel 1, Input to Mixer.
M10	MIXER_IN_2	Input	Channel 2, Input to Mixer.
B12	RF_BYPASS_IN_1	Input	Channel 1, IF Input, AC-Coupled, Matched to 50 Ω.
M12	RF_BYPASS_IN_2	Input	Channel 2, IF Input, AC-Coupled, Matched to 50 Ω.
F18	IF_OUT_1	Output	Channel 1, IF Output, AC-Coupled, Matched to 50 Ω.
L18	IF_OUT_2	Output	Channel 2, IF Output, AC-Coupled, Matched to 50 $\Omega.$

803

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions (Continued)

Pin No.	Mnemonic	Туре	Description
Power Supplies			
B2	VGG_RFAMP_1	Input	Optional Gain Control Voltage for Channel 1 LNA. This pin is internally self-biased and must normally be left open.
B4	VDD_LNA_1	Input	Analog 5.0 V Input for the Channel 1 LNA.
B18	VSS_DSAS	Input	Analog -5.0 V for DSAs.
D18	VDD_IF_1	Input	Analog 5.0 V Input for the Channel 1 IF Amplifier and Channel 1 DSA.
E4	VDD_LO_DRIVER_1	Input	Analog 5.0 V Input for the Channel 1 LO Driver.
F4	VGG_LOAMP_1	Input	Optional Gain Control Voltage for Channel 1 LO amplifier. This pin is internally self-biased and must normally be left open.
G4	VGG_LOAMP_2	Input	Optional Gain Control Voltage for Channel 2 LO Amplifier. This pin is internally self-biased and must normally be left open.
J18	VDD_IF_2	Input	Analog 5.0 V Input for the Channel 2 IF amplifier and Channel 2 DSA.
K4	VGG_RFAMP_2	Input	Optional Gain Control Voltage for the Channel 2 LNA. This pin is internally self-biased and must normally be left open.
K7	VDD_LO_DRIVER_2	Input	Analog 5.0 V Input for the Channel 2 LO Driver.
M4	VDD_LNA_2	Input	Analog 5.0 V Input for the Channel 2 LNA.
A5, A7, A9, A11, A13, B3, B5, B7 to B9, B11, B13, B14, B17, C1 to C13, C17, C18, D3 to D13, D16, D17, E1 to E3, E16 to E19, F2, F3, F6 to F14, F16, F17, G1 to G3, G6 to G14, G16 to G19, H3, H4, H6 to H14, H16 to H18, J1 to J4, J16, J17, K1 to K3, K5, K6, K8 to K13, K15 to K19, L3 to L13, L17, M1 to M3, M5, M7 to M9, M11, M13, M17 to M19, N5, N7, N9, N11, N13	GND	Input/Output	Ground.
Control Signals			
B15	SW1_CTRL_A	Input	Channel 1 Switch Control Input A. The SW1_CTRL_A pin must always be kept at a valid logic level (refer to Table 1).
B16	SW1_CTRL_B	Input	Channel 1 Switch Control Input B. The SW1_CTRL_B pin must always be kept at a valid logic level (refer to Table 1).
K14	SW2_CTRL_B	Input	Channel 2 Switch Control Input B. The SW2_CTRL_A pin must always be kept at a valid logic level (refer to Table 1).
L14	SW2_CTRL_A	Input	Channel 2 Switch Control Input A. The SW2_CTRL_B pin must always be kept at a valid logic level (refer to Table 1).
Channel 1 DSA Control Inputs			
D15	DSA1_V0	Input	Channel 1 DSA Parallel Control Voltage Inputs for the Required Attenuation.
D14	DSA1_V1	Input	There is no internal pull-up or pull-down resistor on these pins. Therefore, the
C14	DSA1_V2	Input	DSA1_Vx pins must always be kept at a valid logic level (5 V V_{INH} or 0 V V_{INL})
C15	DSA1_V3	Input	and not be left floating.
C16	DSA1_V4	Input	
Channel 2 DSA Control Inputs			
M14	DSA2_V0	Input	Channel 2 DSA Parallel Control Voltage Inputs for the Required Attenuation.
M15	DSA2_V1	Input	There is no internal pull-up or pull-down resistor on these pins. Therefore, the
M16	DSA2_V2	Input	DSA2_Vx pins must always be kept at a valid logic level (refer to Table 1) and
L15	DSA2_V3	Input	not be left floating.
L16	DSA2_V4	Input	

LNA (RF_IN_x TO LNA_OUT_x)

 $T_A = 25^{\circ}C$, VDD_LNA_1 = VDD_LNA_2 = 5 V, VGG_RFAMP_1 = VGG_RFAMP_2 = open, RF power (P_{RF}) = -20 dBm at RF_IN_1 and RF_IN_2.

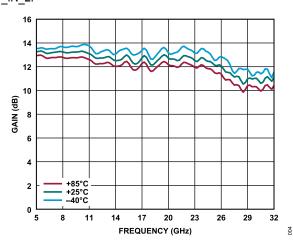


Figure 4. Gain vs. Frequency for Various Temperatures

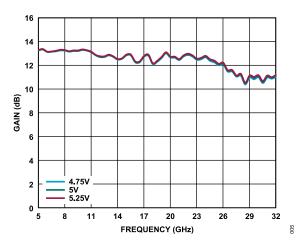


Figure 5. Gain vs. Frequency for Various Supply Voltages

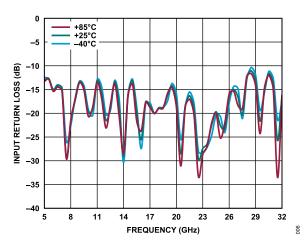


Figure 6. Input Return Loss vs. Frequency for Various Temperatures

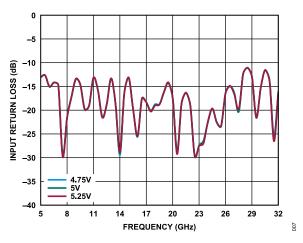


Figure 7. Input Return Loss vs. Frequency for Various Supply Voltages

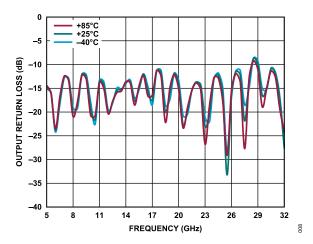


Figure 8. Output Return Loss vs. Frequency for Various Temperatures

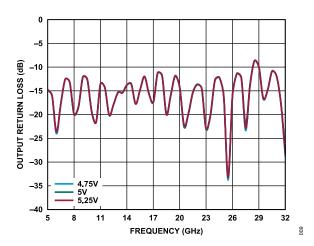


Figure 9. Output Return Loss vs. Frequency for Various Supply Voltages

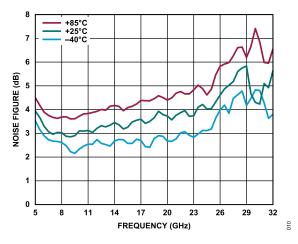


Figure 10. Noise Figure vs. Frequency for Various Temperatures

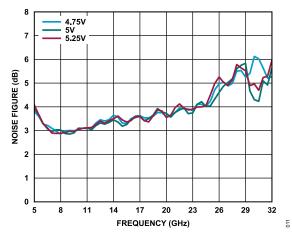


Figure 11. Noise Figure vs. Frequency for Various Supply Voltages

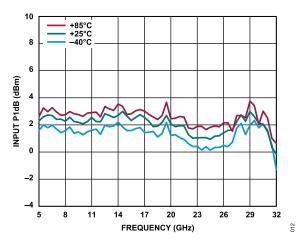


Figure 12. Input P1dB vs. Frequency for Various Temperatures



Figure 13. Input P1dB vs. Frequency for Various Supply Voltages

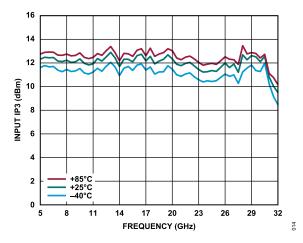


Figure 14. Input IP3 vs. Frequency for Various Temperatures, P_{OUT} per Tone = -6 dBm at 1 MHz Tone Spacing

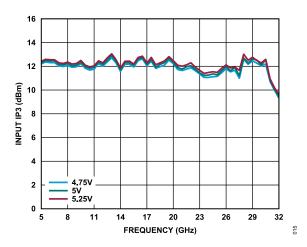


Figure 15. Input IP3 vs. Frequency for Various Supply Voltages, P_{OUT} per Tone = -6 dBm at 1 MHz Tone Spacing

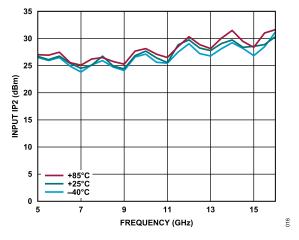


Figure 16. Input IP2 vs. Frequency for Various Temperatures, P_{OUT} per Tone = -6 dBm at 11 MHz Tone Spacing

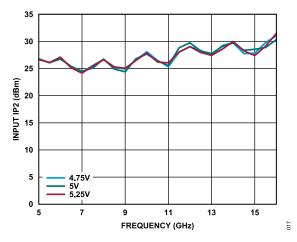


Figure 17. Input IP2 vs. Frequency for Various Supply Voltages, P_{OUT} per Tone = -6 dBm at 11 MHz Tone Spacing

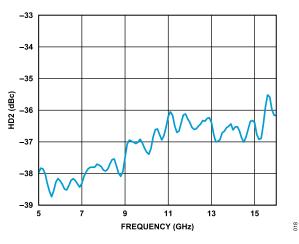


Figure 18. HD2 vs. Frequency, P_{LNA_OUT_x} = -6 dBm

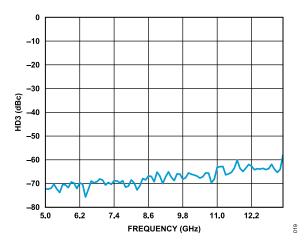


Figure 19. HD3 vs. Frequency, and $P_{LNA OUT x} = -6 dBm$

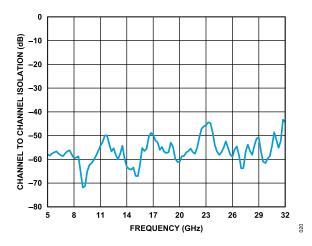


Figure 20. $P_{LNA_OUT_1}$ to $P_{LNA_OUT_2}$ Channel to Channel Isolation vs. Frequency, $P_{RF_IN_1} = -20$ dBm and RF_IN_2 = 50 Ω Termination

MIXER (MIXER_IN_x TO IF_OUT_x)

 $T_A = 25^{\circ}C$, $VDD_IF_1 = VDD_IF_2 = VDD_LO_DRIVER_1 = VDD_LO_DRIVER_2 = 5 V$, $VSS_DSAS = -5 V$, $VGG_LO_AMP_1 = VGG_LO_AMP_2 = open$, $P_{MIXER_IN_x} = -20 dBm$ at $MIXER_IN_1$ and $MIXER_IN_2$, $f_{IF} = 3.0 GHz$ at IF_OUT_1 and IF_OUT_2 , and $P_{LO_IN} = 6 dBm$ referenced at the characterization and customer evaluation board LO_IN RF connector.

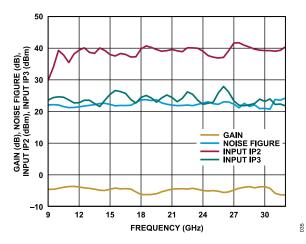


Figure 21. Gain, Noise Figure, Input IP2, and Input IP3 vs. Frequency at an IF Frequency = 3.0 GHz

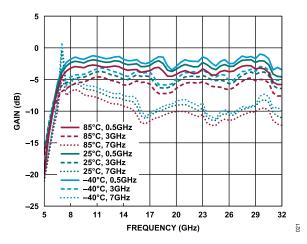


Figure 22. Gain vs. Frequency for Various Temperatures and IF Frequencies

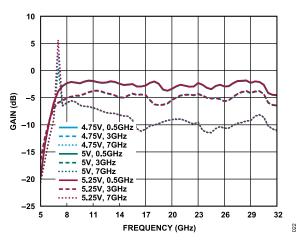


Figure 23. Gain vs. Frequency for Various Supply Voltages and IF Frequencies

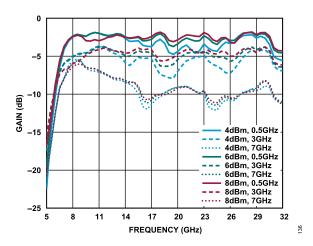


Figure 24. Gain vs. Frequency for Various LO Drive Power Level and Frequencies

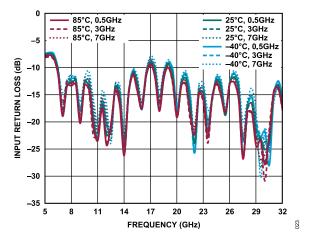


Figure 25. Input Return Loss vs. Frequency for Various Temperatures and IF Frequencies

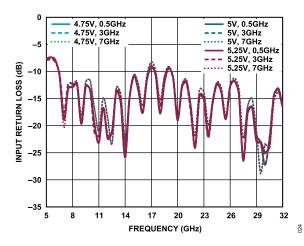


Figure 26. Input Return Loss vs. Frequency for Various Supply Voltages and IF Frequencies

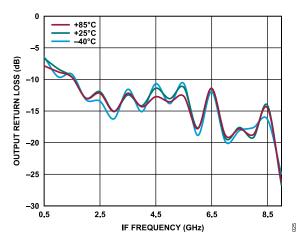


Figure 27. Output Return Loss vs. IF Frequency for Various Temperatures for a Fixed RF Input (18 GHz)

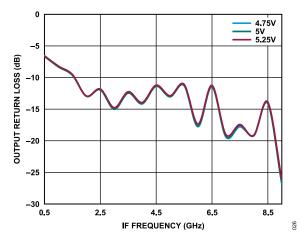


Figure 28. Output Return Loss vs. IF Frequency for Various Supply Voltages and a Fixed RF Input (18 GHz)

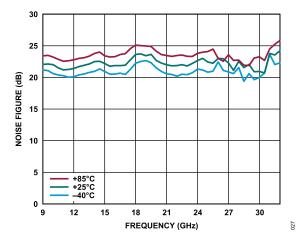


Figure 29. Noise Figure vs. Frequency for Various Temperatures at an IF Frequency = 3.0 GHz

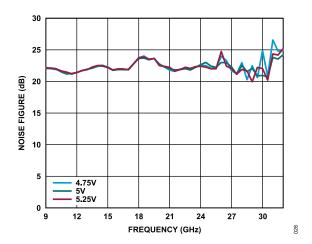


Figure 30. Noise Figure vs. Frequency for Various Supply Voltages at an IF Frequency = 3.0 GHz

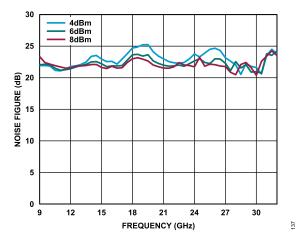


Figure 31. Noise Figure vs. Frequency for Various LO Drive Power Levels

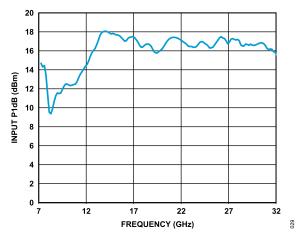


Figure 32. Input P1dB vs. Frequency at IF Frequency = 3.0 GHz

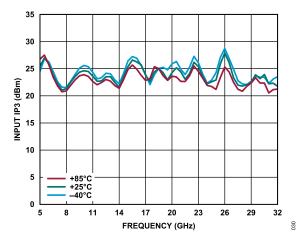


Figure 33. Input IP3 vs. Frequency for Various Temperatures at an IF Frequency = 3.0 GHz, P_{OUT} per Tone = -15 dBm at 1 MHz Tone Spacing

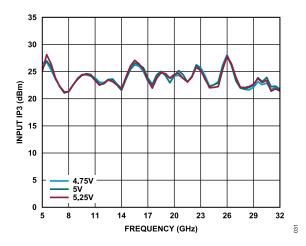


Figure 34. Input IP3 vs. Frequency for Various Supply Voltages at an IF Frequency = 3.0 GHz, P_{OUT} per Tone = -15 dBm at 1 MHz Tone Spacing

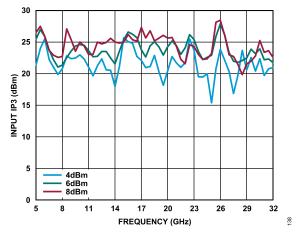


Figure 35. Input IP3 vs. Frequency for Various LO Drive Power Levels

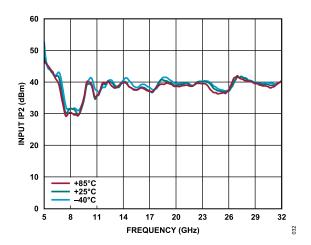
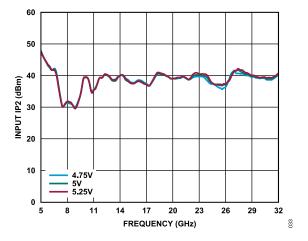
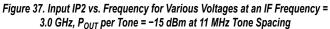




Figure 36. Input IP2 vs. Frequency for Various Temperatures at an IF Frequency = 3.0 GHz, P_{OUT} per Tone = -15 dBm at 11 MHz Tone Spacing

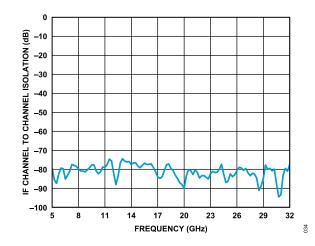


Figure 38. IF Channel to Channel Isolation vs. Frequency, $(P_{IF_OUT_1} \text{ at } 3 \text{ GHz}) - (P_{IF_OUT_2} \text{ at } 3 \text{ GHz})$, MIXER_IN_2: 50 Ω termination, $P_{MIXER_IN_1} = -10 \text{ dBm}$, $f_{IF_OUT_1} = 3.0 \text{ GHz}$

DIRECT IF (RF_BYPASS_IN_x TO IF_OUT_x)

 $T_A = 25^{\circ}C$, $VDD_IF_1 = VDD_IF_2 = 5 V$, $VSS_DSAS = -5 V$, $P_{RF_BYPASS_IN_1} = -20 dBm$, and $RF_BYPASS_IN_2$ power ($P_{RF_BYPASS_IN_2}$) = -20 dBm.

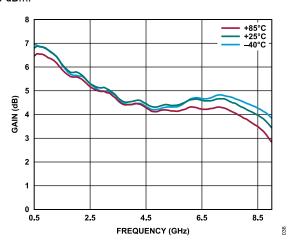


Figure 39. Gain vs. Frequency for Various Temperatures

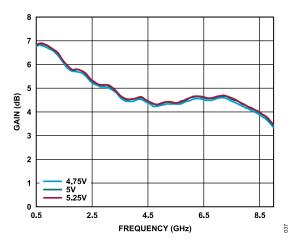


Figure 40. Gain vs. Frequency for Various Supply Voltages

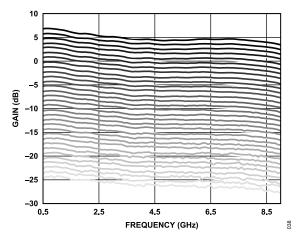


Figure 41. Gain vs. Frequency for Various DSA Settings

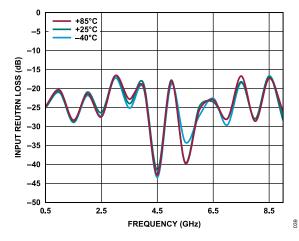


Figure 42. Input Return Loss vs. Frequency for Various Temperatures

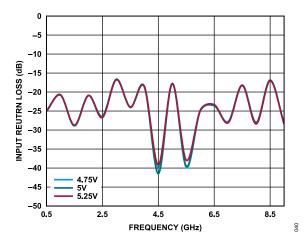


Figure 43. Input Return Loss vs. Frequency for Various Supply Voltages

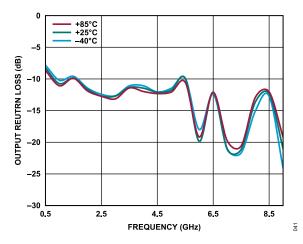


Figure 44. Output Return Loss vs. Frequency for Various Temperatures

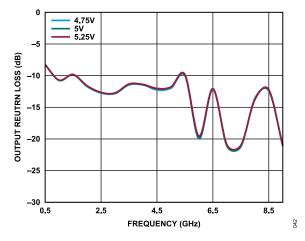


Figure 45. Output Return Loss vs. Frequency for Various Supply Voltages

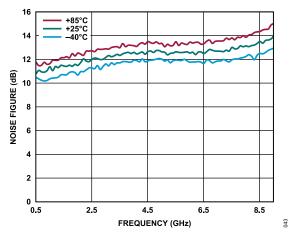


Figure 46. Noise Figure vs. Frequency for Various Temperatures

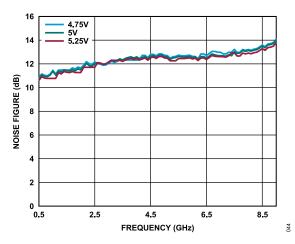


Figure 47. Noise Figure vs. Frequency for Various Supply Voltages

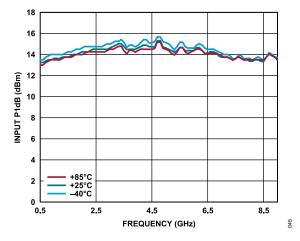


Figure 48. Input P1dB vs. Frequency for Various Temperatures

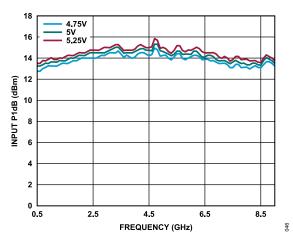


Figure 49. Input P1dB vs. Frequency for Various Supply Voltages

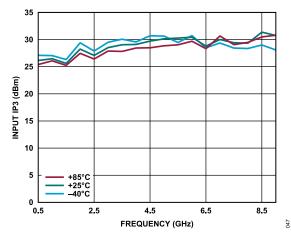


Figure 50. Input IP3 vs. Frequency for Various Temperatures, P_{OUT} per Tone = 5 dBm at 1 MHz Tone Spacing

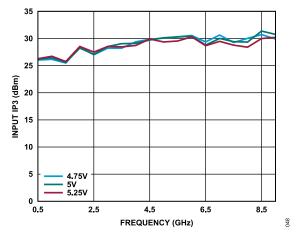


Figure 51. Input IP3 vs. Frequency for Various Supply Voltages, P_{OUT} per Tone = 5 dBm at 1 MHz Tone Spacing

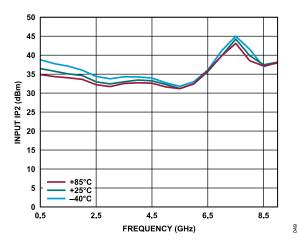


Figure 52. Input IP2 vs. Frequency for Various Temperatures, P_{OUT} per Tone = 5 dBm at 11 MHz Tone Spacing

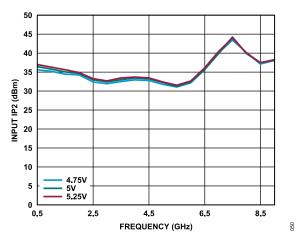


Figure 53. Input IP2 vs. Frequency for Various Supply Voltages, P_{OUT} per Tone = 5 dBm at 11 MHz Tone Spacing

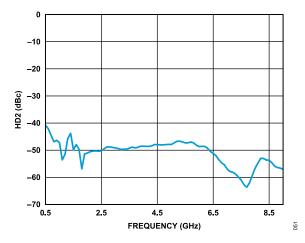


Figure 54. HD2 vs. Frequency, P_{OUT} = 5 dBm

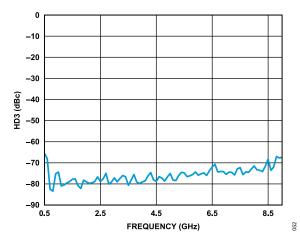


Figure 55. HD3 vs. Frequency, P_{OUT} = 5 dBm

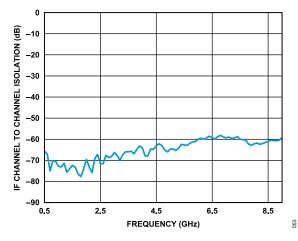


Figure 56. IF Channel to Channel Isolation vs. Frequency

LNA-MIXER CASCADED (RF_IN_x TO IF_OUT_x)

 $T_A = 25^{\circ}C$, $VDD_IF_1 = VDD_IF_2 = 5 V$, $VSS_DSAS = -5 V$, $P_{RF_IN_x} = -20 dBm$, 5.5 dB attenuation between LNA_OUT_x and MIXER_IN, SW1_CTRL_A = -5 V, SW1_CTRL_B = 0 V, SW2_CTRL_A = 0 V, and SW2_CTRL_B = -5 V.

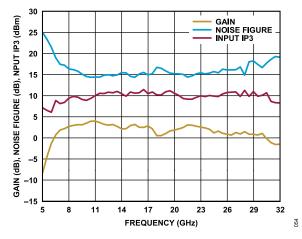


Figure 57. Gain, Noise Figure, and Input IP3 vs. Frequency at an IF Frequency = 3.0 GHz, P_{OUT} per Tone = -15 dBm

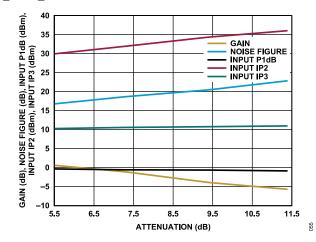


Figure 58. Gain, Noise Figure, Input P1dB, Input IP2, and Input IP3 vs. Attenuation between LNA_OUT_x and MIXER_IN_x at an RF Frequency = 18 GHz and IF Frequency = 3.0 GHz, P_{OUT} per Tone = -15 dBm

SPURIOUS PERFORMANCE

Mixer spurious products are measured in dB from the IF output power level. Spurious values are (N × LO) – (M × RF). N/A means not applicable.

M × N Spurious Outputs, IF = 1 GHz

RF input frequency = 10 GHz, RF input power at mixer input = -20 dBm, LO frequency = 11 GHz, and the LO input power = 6 dBm.

 $M \times N$ spurs other than the RF input and LO input signal at the IF output are more than 51 dB down from the main IF output at 1 GHz. Over 8 GHz, spurs are rejected significantly by the low-pass filter (LPF) on the signal path.

Table 6. M x N Spurious at Mixer Mode¹

		N × LO					
		0	1	2	3	4	5
	0	N/A	-10.1	+57.4	+69.2	+70.5	N/A
	1	+3.8	0.0	+51.2	+87.0	+83.8	+94.4
M × RF	2	+87.6	+61.6	+56.7	+100.2	+108.6	+104.7
	3	+108.9	+111.6	+95.6	+109.0	+114.0	+110.5
	4	+105.5	+108.6	+112.6	+117.9	+100.9	+114.0
	5	+102.5	+103.9	+112.2	+112.2	+107.5	+114.7

¹ Level (dB) refers to an IF output = -26 dBm at 1 GHz.

THEORY OF OPERATION

The ADMFM2000 is a dual-channel, microwave downconverter. Each downconversion path consists of an LNA, mixer, filter, DSA, IF amplifier, and a single LO input that drives both mixers.

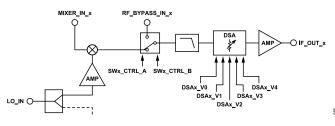


Figure 59. ADMFM2000 Simplified Block Diagram

LNA

The ADMFM2000 has a wideband LNA in each channel that operates between 5 GHz and 32 GHz. The LNAs are self-biased with a required single 5 V supply. Inputs and outputs are internally matched to 50 Ω and have internal DC blocking capacitors.

Each LNA also has gain control capability using the

VGG_RFAMP_1 and VGG_RFAMP_2 pins corresponding to each channel. These pins are internally self-biased and must normally be left open.

MIXER

The ADMFM2000 has a double-balanced mixer in each channel. These mixers down convert the RF from 5 GHz and 32 GHz to a corresponding IF of 0.5 GHz and 8 GHz. These mixers are passive devices and require no external biasing components or RF matching circuitry. The mixers in the ADMFM2000 operate well with a LO drive level of 6 dBm at the LO input pin.

LO

A common LO input operates from 7 GHz to 30 GHz and is split to feed separate buffer amplifiers for each channel. These amplifiers drive separate mixers in each channel. The buffer amplifiers also have gain control using the VGG_LOAMP_1 and the VGG_LOAMP_2 pins, one for each channel. The VGG_LOAMP_x pins are internally self-biased and must normally be left open. The typical LO drive level at the LO input pin is 6 dBm.

SWITCH

The ADMFM2000 has a broadband SPDT RF switch in each channel that can be used to bypass the mixer. The SPDTs require negative control voltages at the control pins (SW_CHx_CTRL_A and SW_CHx_CTRL_B, x = 1 or 2). Depending on the logic level applied to those control pins, the IF path is either connected to the mixer or to the RF_BYPASS_IN pin (see Figure 59 and Table 7). The required logic level for operating mode on Channel 2 is opposite to the required logic level on Channel 1.

Table 7. Switch Control Truth Table for SW1_CTRL_A, SW1_CTRL_B, SW2_CTRL_A, and SW2_CLRL_B

Digital Control Inputs ¹			RF Paths		
SWx_CTRL_A	SWx_CTRL_B	Channel 1 Status	Channel 2 Status		
High	Low	Direct IF mode	Mixer mode		
Low	High	Mixer mode	Direct IF mode		

¹ Refer to logic input in Table 1 for the logic level high and low detailed in Table 7.

THEORY OF OPERATION

LPF

A LPF with a bandwidth of 8 GHz after the switch rejects harmonics and other spurs generated from the mixer or induced on the RF_BYPASS_IN_1 and RF_BYPASS_IN_2 input pins when in direct IF mode of operation.

DSA

The DSA after the LPF provides a 31 dB of gain control range with 1 dB step size. The DSA attenuation is set by the logic levels on the DSAx_V0 to DSAx_V4 pins (see Figure 3 and Table 8). All pins at high sets the minimum attenuation level and all pins at low sets the maximum attenuation. Note that the DSA requires a negative supply of -5 V on the VSS_DSAS pin, and that the logic controls on these pins are positive (0 V and 5 V).

DSAx_V4	DSAx_V3	DSAx_V2	DSAx_V1	DSAx_V0	Attenuation State (dB)
High	High	High	High	High	0 (reference)
High	High	High	High	Low	1
High	High	High	Low	High	2
High	High	High	Low	Low	3
High	High	Low	High	High	4
High	High	Low	High	Low	5
High	High	Low	Low	High	6
High	High	Low	Low	Low	7
High	Low	High	High	High	8
High	Low	High	High	Low	9
High	Low	High	Low	High	10
High	Low	High	Low	Low	11
High	Low	Low	High	High	12
High	Low	Low	High	Low	13
High	Low	Low	Low	High	14
High	Low	High	Low	Low	15
Low	High	High	High	High	16
Low	High	High	High	Low	17
Low	High	High	Low	High	18
Low	High	High	Low	Low	19
Low	High	Low	High	High	20
Low	High	Low	High	Low	21
Low	High	Low	Low	High	22
Low	High	Low	Low	Low	23
Low	Low	High	High	High	24
Low	Low	High	High	Low	25
Low	Low	High	Low	High	26
Low	Low	High	Low	Low	27
Low	Low	Low	High	High	28
Low	Low	Low	High	Low	29
Low	Low	Low	Low	High	30
Low	Low	Low	Low	Low	31

¹ Refer to the logic input in Table 1 for the logic level high and low detailed in Table 8.

THEORY OF OPERATION

IF AMPLIFIER

A IF amplifier follows the DSA. The amplifier requires a 5 V supply voltage and it features an outputs that is internally matched to 50 $\Omega.$

BASIC CONNECTIONS

The basic connections for operating the ADMFM2000 are shown in Figure 61. Table 9 details how to connect each pin. Figure 61 represents the circuit that was used to characterize the ADMFM2000. Note that the specified LO power used during characterization is referenced to the power level at the RF connector and not the power at the LO_IN pin. Figure 60 shows a plot of the insertion loss between the RF connector and the LO IN pin.

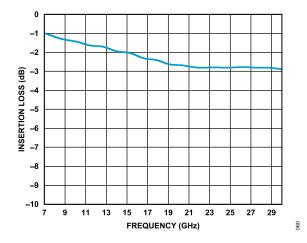


Figure 60. Insertion Loss vs. Frequency of LO Trace on the ADMFM2000 Characterization Board

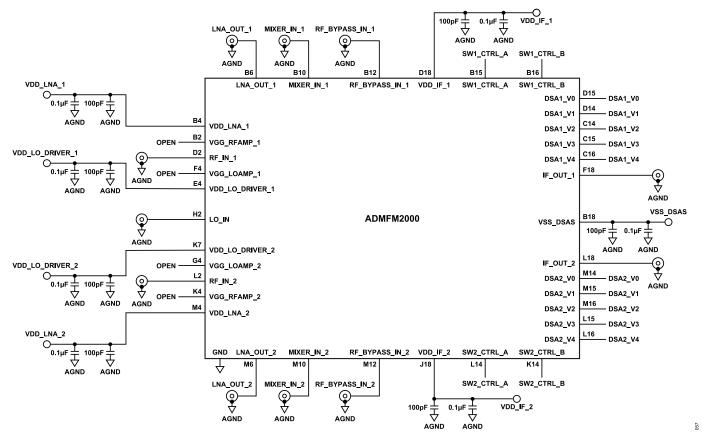


Figure 61. Basic Connections

Table 9. Connection Descriptions

Functional Blocks	Pin No.	Mnemonic	Description	Basic Connection
5 V Supply Voltage for LNA, DSA, and IF Amplifier	B4, D18, E4, J18, K7, M4	VDD_LNA_1, VDD_IF_1, VDD_LO_DRIVER_1, VDD_IF_2,	Analog 5.0 V supply voltage for Channel 1 LNA, analog 5.0 V supply voltage for Channel 1 IF amplifier and Channel 1 DSA, analog 5.0 V supply voltage for Channel 1 LO driver, analog 5.0 V supply voltage for Channel 2 IF amplifier and Channel 1 DSA, analog 5.0 V supply	Decouple thes pins using 10 pF and 0.1 µF capacitors to ground. Locate the decoupling capacitors as

Table 9. Connection Descriptions (Continued)

Functional Blocks	Pin No.	Mnemonic	Description	Basic Connection
		VDD_LO_DRIVER_2, VDD_LNA_2	voltage for Channel 2 LO driver, analog 5.0 V supply voltage for Channel 2 LNA.	close as possible to the pins.
-5 V Supply Voltage for DSA	B18	VSS_DSAS	Analog -5.0 V supply voltage for DSAs.	Decouple this pin using 10 pF and 0.1 μ F capacitors to ground. Locate the decoupling capacitors as close as possible to the pin.
LNA Inputs	D2, L2	RF_IN_1, RF_IN_2	Single-ended RF inputs for Channel 1 and Channel 2.	Connect these pins to an RF input source with a typical input power of -20 dBm.
LNA Outputs	B6, M6	LNA_OUT_1, LNA_OUT_2	Single-ended RF outputs for Channel 1 and Channel 2.	Connect these pins to signa analyzer.
Mixer Inputs	B10, M10	MIXER_IN_1, MIXER_IN_2	Single-ended mixer inputs for Channel 1 and Channel 2.	Connect these pins to an RF input source with a typical input power of -10 dBm.
LO Input	H2	LO_IN	Single-ended LO input for Channel 1 and Channel 2.	Connect this pin to RF input source, typical input power 6 dBm.
IF Inputs	B12, M12	RF_BYPASS_IN_1, RF_BYPASS_IN_2	Single-ended IF inputs for Channel 1 and Channel 2.	Connect these pins to an IF input source with a typical input power of -20 dBm.
IF Outputs	F18, L18	IF_OUT_1, IF_OUT_2	Single-ended IF outputs for Channel 1 and Channel 2.	Connect these pins to signa analyzer.
Amplifier Gain Control	B2, K4, F4, G4	VGG_RFAMP_1, VGG_RFAMP_2, VGG_LOAMP_1, VGG_LOAMP_2	Optional gain control voltage, these pins are internally self-biased and must normally be left open.	Set these pins to left open.
Switch Control	B15, B16, L14, K14	SW1_CTRL_A, SW1_CTRL_B, SW2_CTRL_A, SW2_CTRL_B	Channel 1 Switch Control Input A, and Channel 1 Switch Control Input B, Channel 2 Switch Control Input A, and Channel 2 Switch Control Input B.	These pins must always be kept at a valid logic level (Refer to Table 1).
DSA Attenuation	D15, D14, C14, C15, C16, M14, M15, M16, L15, L16	DSA1_Vx ¹ , DSA2_Vx ¹	Channel 1 DSA attenuation control voltage, and Channel 2 DSA attenuation control voltage.	These pins must always be kept at a valid logic level (Refer to Table 1) and not be left floating.
Ground	A5, A7, A9, A11, A13, B3, B5, B7, B8, B9, B11, B13, B14, B17, C1 to C13, C17, C18, D3 to D13, D16, D17, E1 to E3, E16 to E19, F2, F3, F6 to F14, F16, F17, G1 to G3, G6 to G14, G16 to G19, H3, H4, H6 to H14, H16 to H18, J1 to J4, J16, J17, K1 to K3, K5, K6, K8 to K13, K15 to K19, L3 to L13, L17, M1 to M3, M5, M7 to M9, M11, M13, M17 to M19, N5, N7, N9, N11, N13	GND	Ground.	Connect these balls to the ground of the PCB.

¹ x = 0, 1, 2, 3, and 4

LNA MIXER CASCADED PERFORMANCE

The ADMFM2000 provides significant application flexibility. Access is provided to the LNA output, the mixer input, and the mixer bypass input for each channel, which allows configurable filtering and/or attenuation between the LNA and mixer.

Table 10 details the cascaded overall performance with different levels of attenuation between the LNA and the mixer. This attenua-

tion is typically a consequence of the insertion loss of a band-pass filter between the LNA and mixer. The consistent ilnput P1dB and input IP3 vs. attenuation means that the LNA is the dominant factor in the channel performance.

The isolation between the two IF channels is better than -60 dB up to 30 GHz RF input.

Attenuation Between LNA Output (LNA_OUT_x ¹) and Mixer Input					
(MIXER_IN_x ¹)	Gain (dB)	Input P1dB (dBm)	Input IP2 (dBm) ²	Input IP3 (dBm)	Noise Figure (dB)
5.5	+0.52	-0.43	29.9	10.2	16.7
7.3	-1.2	-0.67	31.9	10.5	18.6
9.4	-4	-0.74	34.3	10.7	20.4
11.4	-5.8	-0.96	36	10.9	22.8

¹ x = 1 or 2.

² At a 9 GHz RF input.

LAYOUT RECOMMENDATIONS

Solder the ground balls on the underside of the ADMFM2000 to a low thermal and electrical impedance connection. Utilize multiple ground vias throughout the ground plane on the ADMFM2000-EVALZ to maximize heat dissipation from the device package. Referring to the layout shown in Figure 62, the green dots with PCB traces attached are the inputs and outputs of the ADMFM2000. The gray dots are the ground vias, and the gray dots that are encircled in red are vias either to the power plane or vias for digital control. For more information on the ADMFM2000-EVALZ, visit www.analog.com/EVAL-ADMF2000.

Ensure that the decoupling capacitors are located as close as possible to the supply voltage balls.

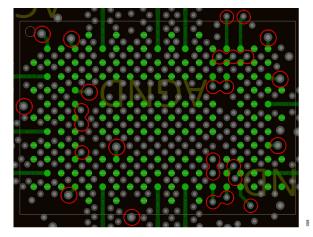


Figure 62. Evaluation Board Layout for the ADMFM2000-EVALZ, Top View (Through the ADMFM2000)

VENT HOLE

The ADMFM2000 package contains a vent hole on the top of the metal lid. Keep this vent hole open during the ADMFM2000-EVALZ reflow process and cover it with Kapton tape during board wash. After board washing, remove the Kapton tape. When the fully assembled PCB is either in storage or operation, the vent hole must be left open and a gas-permeable tape is recommended for protecting the ADMFM2000 from moisture and water. If a heatsink is added on the top of the package, the hole must not be blocked so that air can circulate.

POWER MANAGEMENT RECOMMENDATIONS

The ADMFM2000 has three voltage supplies, two +5 V supplies and a -5 V supply, and each supply has different maximum current requirements. To supply both voltages to several ADMFM2000 devices, follow the power management recommendations detailed within this section and shown in Figure 63. A 12 V supply is assumed available in the application, and this supply is used as the input voltage for two LT8627SP (+5 V) devices and one LTM8074 (-5 V) device.

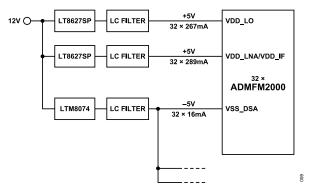
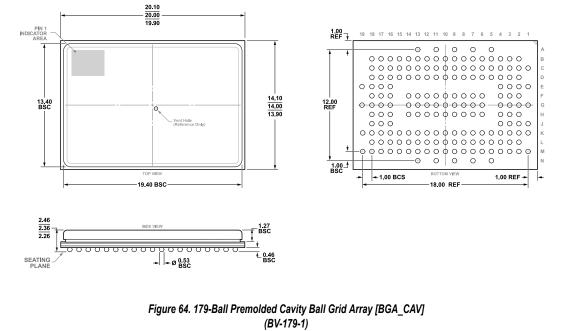



Figure 63. Power Management

For the two 5 V supplies, the voltage steps down from 12 V to 5 V with the LT8627SP. For the -5 V supply, the voltage steps down from +12 V to -5 V with the LTM8074. The LT8627SP output can drive the two 5 V supplies of up to 32 ADMFM2000 devices. The maximum expected 5 V current on one LT8627SP for the LO driver supplies is 267 mA per ADMFM2000 device, totaling 8.54 A for the 32 LO driver inputs. The maximum expected 5 V current on the second LT8627SP for the LNA supplies is 289 mA per ADMFM2000 device, totaling 9.25 A for the 32 LO driver inputs.

For the -5 V supply, the voltage steps down from 12 V to -5 V using the LTM8074. The maximum expected -5 V current is 16 mA per ADMFM2000 device, totaling 512 mA for the 32 ADMFM2000 devices.

OUTLINE DIMENSIONS

Dimensions shown in millimeters

Updated: October 10, 2023

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADMFM2000ABVZ	-40°C to +85°C	179-Ball BGA_CAV	BV-179-1

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Table 11. Evaluation Boards

Model ¹	Description
ADMFM2000-EVALZ	Evaluation Board

¹ Z = RoHS-Compliant Part.

