

FEATURES

- 12-bit resolution
- 10MHz minimum sampling rate
- Functionally complete
- Small 24-pin DDIP or SMT package
- Requires only ±5V supplies
- Low-power, 1.8 Watts
- Outstanding dynamic performance
- Edge-triggered
- No missing codes over temperature
- Ideal for both time and frequency-domain applications

BLOCK DIAGRAM

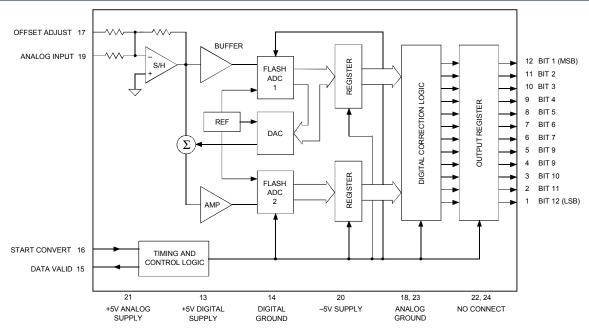


Figure 1. ADS-119 Functional Block Diagram

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

PRODUCT OVERVIEW

The ADS-119 is a high-performance, 12-bit, 10MHz sampling A/D converter. The device samples input signals up to Nyquist frequencies with no missing codes. The ADS-119 features excellent dynamic performance including a typical SNR of 69dB.

Packaged in a metal-sealed, ceramic, 24-pin DDIP, the functionally complete ADS-119 contains a fast-settling sample/ hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and error-correction circuitry. All timing and control logic operates from the rising edge of a single start convert pulse. Digital input and output levels are TTL.

Requiring only $\pm 5V$ supplies, the ADS-119 typically dissipates 1.8 Watts. The unit offers a bipolar input range of $\pm 1.5V$. Models are available for use in either commercial (0 to $+70^{\circ}$ C) or military (-55 to $+125^{\circ}$ C) operating temperature ranges.

Typical applications include signal analysis, medical/graphic imaging, process control, ATE, radar, and sonar.

	INPUT/OUTPUT CONNECTIONS						
PIN	FUNCTION	PIN	FUNCTION				
1	BIT 12 (LSB)	24	NO CONNECT				
2	BIT 11	23	ANALOG GROUND				
3	BIT 10	22	NO CONNECT				
4	BIT 9	21	+5V ANALOG SUPPLY				
5	BIT 8	20	-5V SUPPLY				
6	BIT 7	19	ANALOG INPUT				
7	BIT 6	18	ANALOG GROUND				
8	BIT 5	17	OFFSET ADJUST				
9	BIT 4	16	START CONVERT				
10	BIT 3	15	DATA VALID				
11	BIT 2	14	DIGITAL GROUND				
12	BIT 1	13	+5V DIGITAL SUPPLY				

12-Bit, 10MHz, Low-Power Sampling A/D Converters

ABSC	DLUTE MAXIMUM RATINGS		PHYSIC	CAL/ENVIROI	MENTAL		
PARAMETERS +5V Supply (Pin 13, 21)	LIMITS 0 to +6	UNITS Volts	PARAMETERS Operating Temp. Range, Case	MIN.	TYP.	MAX.	UNITS
-5V Supply (Pin 20)	0 to6	Volts	ADS-119MC/GC	0	_	+70	°C
Digital Input (Pin 16)	gital Input (Pin 16) -0.3 to +VDD +0.3 Volts ADS-119MM/GM/8		ADS-119MM/GM/883	-55	_	+125	°C
Analog Input (Pin 19)	±5	Volts	Thermal Impedance				
Lead Temp (10 seconds)	+300	°C	θјс	_	2	_	°C/Watt
			өса	_	24	_	°C/Watt
			Storage Temperature Range	-65	_	+150	°C
			Package Type	24-pin, metal-sealed, ceramic DDIP or S			c DDIP or SMT
			Weight	0.42 (ounces (12	grams)	

FUNCTIONAL SPECIFICATIONS

 $(T_A = +25^{\circ}C, \pm V_{DD} = \pm 5V, 10$ mHz sampling rate, and a minimum 3 minute warmup \oplus unless otherwise specified.)

	+25°C 0 T0 +70°C				–55 T0 +125°C					
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ②	_	±1.5	_	_	±1.5	_	_	±1.5	_	Volts
nput Resistance	300	350		300	350		300	350	—	Ω
nput Capacitance	—	6	15		6	15	—	6	15	pF
DIGITAL INPUT										
Logic Levels										
Logic "1"	+2.0			+2.0			+2.0	—	—	Volts
Logic "0"	—		+0.8		_	+0.8	—	—	+0.8	Volts
Logic Loading "1"	—		+20		_	+20	_	—	+20	μA
Logic Loading "0"	—		-20	_		-20	—		-20	μA
Start Convert Positive Pulse Width ③	_	50	_	_	50	_	_	50	—	ns
STATIC PERFORMANCE										
Resolution	—	12	—	—	12	—	—	12	—	Bits
Integral Nonlinearity (fin = 10kHz)	—	±0.75	—	—	±1.0	—	—	±1.5	—	LSB
Differential Nonlinearity (fin = 10kHz)	-0.95	±0.5	+0.95	-0.95	±0.5	±0.95	-0.95	±0.75	+1.5	LSB
Full Scale Absolute Accuracy	—	±0.2	±0.5		±0.5	±0.75		±0.75	±2.5	%FSR
Bipolar Zero Error (Tech Note 2)	—	±0.2	±0.6	—	±0.3	±0.7	—	±0.6	±1.5	%FSR
Bipolar Offset Error (Tech Note 2)	—	±0.1	±0.5	_	±0.3	±0.7		±0.7	±1.8	%FSR
Gain Error (Tech Note 2)		±0.1	±0.5		±0.5	±1.0		±1.0	±3.5	%
No Missing Codes (fin = 10kHz)	12	—	—	12	—	—	12	—	—	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (–0.5dB)										
dc to 1MHz	—	-70	-63		-70	-63	—	-69	-61	dB
1MHz to 2.5MHz	—	-70	-63		-70	-63	—	-69	-60	dB
2.5MHz to 5MHz		-70	-63	—	-70	-63	_	-67	-60	dB
Total Harmonic Distortion (–0.5dB)										15
dc to 1MHz	_	-69	-63		-69	-63	_	-68	-60	dB
1MHz to 2.5MHz	_	-68	-63	_	-68	-63	_	-67	-60	dB
2.5MHz to 5MHz	_	-68	-63	_	-67	-63	_	-66	-60	dB
Signal-to-Noise Ratio (w/o distortion, –0.5dB)										
dc to 1MHz	66	69		66	69		63	67		dB
1MHz to 2.5MHz	66	69 69	_	66	69 69	_	63	66	_	dВ
2.5MHz to 5MHz	66	69 69	_	66	69 69	_	63	66	_	dВ
Signal-to-Noise Ratio ④	00	03		00	03		05	00		uD
(& distortion, -0.5dB)										
dc to 1MHz	62	66	_	62	66	_	59	64	_	dB
1MHz to 2.5MHz	62	66	_	62	66	_	59	64	_	dB
2.5MHz to 5MHz	62	66	_	62	66	_	59	64	_	dB
Two-tone Intermodulation	02	00		02	00		00	т		uD
Distortion (fin = 100 kHz,										
240kHz, fs = 1MHz, -0.5 dB)	_	-72	_	_	-72	_	_	-72	_	dB
Voise		250	_	_	300	_	_	400	_	μVrms
nput Bandwidth (–3dB)										
Small Signal (-20dB input)	_	30	_	_	30	_	_	30	_	MHz
Large Signal (-OdB input)	_	10	_	_	10	_	_	10	_	MHz
Feedthrough Rejection (fin = 5MHz)	_	76	_	_	76	_	_	76	_	dB
Slew Rate		±400	_	_	±400	_	_	±400	_	V/µs
Aperture Delay Time		5	_	_	5	_		5	_	ns
Aperture Uncertainty	_	3	_		3		_	3		ps rms

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

12-Bit, 10MHz, Low-Power Sampling A/D Converters

		+25°C			0 to +70°C		_	-55 to +125°	C	
DYNAMIC PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
S/H Acquisition Time (to ±0.001%FSR, 10V step) Overvoltage Recovery Time A/D Conversion Rate	<u>30</u> — 10	35 100 —	37 —	<u>30</u> — 500	35 100 —	37 —	<u>30</u> — 500	35 100 —	37	ns ns MHz
DIGITAL OUTPUTS										
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" Output Coding	+2.4 	 	+0.4 -4 +4	+2.4 	— — — Offset Binary	+0.4 -4 +4	+2.4 	 		Volts Volts mA mA
POWER REQUIREMENTS										
Power Supply Ranges +5V Supply -5V Supply	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	+4.9 -4.9	+5.0 -5.0	+5.25 -5.25	Volts Volts
Power Supply Currents +5V Supply -5V Supply		+200 -180	+225 -205	_	+200 -180	+225 -205	_	+205 -180	+225 -205	mA mA
Power Dissipation Power Supply Rejection		1.8	2.1 ±0.1	_	1.8	2.1 ±0.1	_	1.8	2.1 ±0.1	Watts %FSR/%V

Footnotes:

① All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time. There is slight degradation in performance when using ±12V supplies.

0 See ordering information for availability of $\pm 5V$ input range. Contact DATEL for availability of other input voltage ranges.

③ A 200ns wide start convert pulse is used for all production testing. Only the rising edge of the start convert pulse is required for the device to operate (edge-triggered). ④ Effective bits is equal to:

(SNR + Distortion) - 1.76 +	20 log	Full Scale Amplitude Actual Input Amplitude
	6.02	

⑤ This is the time required before the A/D output data is valid after the analog input is back within the specified range.

TECHNICAL NOTES

- 1. Obtaining fully specified performance from the ADS-119 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 18, and 23) directly to a large analog ground plane beneath the package. Bypass all power supplies to ground with 4.7μ F tantalum capacitors in parallel with 0.1μ F ceramic capacitors. Locate the bypass capacitors as close to the unit as possible.
- 2. The ADS-119 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain

errors can be reduced to zero using the adjustment circuitry shown in Figures 3 and 4. For operation without adjustment, tie pin 17 to analog ground. When using this circuitry, or any similar offset and gaincalibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.

- Applying a start convert pulse while a conversion is in progress (EOC = logic "1") will initiate a new and inaccurate conversion cycle.
- 4. Data is valid only for the time period (55ns, typical) shown in Figure 2 even if the device is sampling at less than 10MHz.

ADS-119 12-Bit, 10MHz, Low-Power Sampling A/D Converters

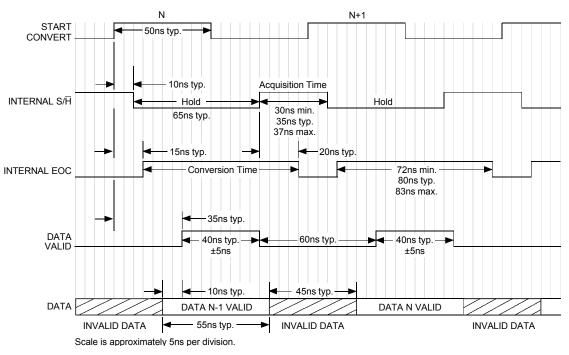


Figure 2. ADS-119 Timing Diagram

CALIBRATION PROCEDURE

(Refer to Figures 3 and 4, Table 1)

Any offset and/or gain calibration procedures should not be implemented ntil devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuits in Figure 3 and 4 are guaranteed to compensate for the ADS-119's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

Offset adjusting for the ADS-119 is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $+\frac{1}{2}$ LSB (+366µV).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0. This transition ideally occurs when the analog input is at +full scale minus 1 $\frac{1}{2}$ LSB's (+1.4989V).

Zero/Offset Adjust Procedure

- 1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting.
- 2. Apply +366µV to the ANALOG INPUT (pin 19).
- 3. Adjust the offset potentiometer until the output bits are 1000 0000 0000 and the LSB flickers between 0 and 1.

Gain Adjust Procedure

- 1. Apply +1.4989V to the ANALOG INPUT (pin 19).
- 2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0.
- 3. To confirm proper operation of the device, vary the input signal to obtain the output coding listed in Table 1.

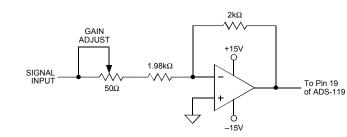
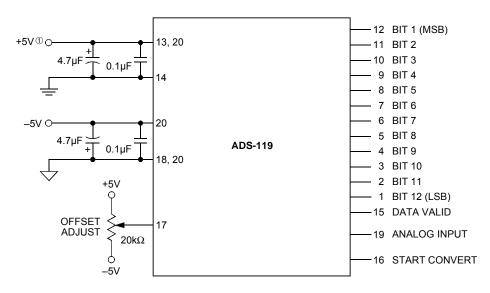
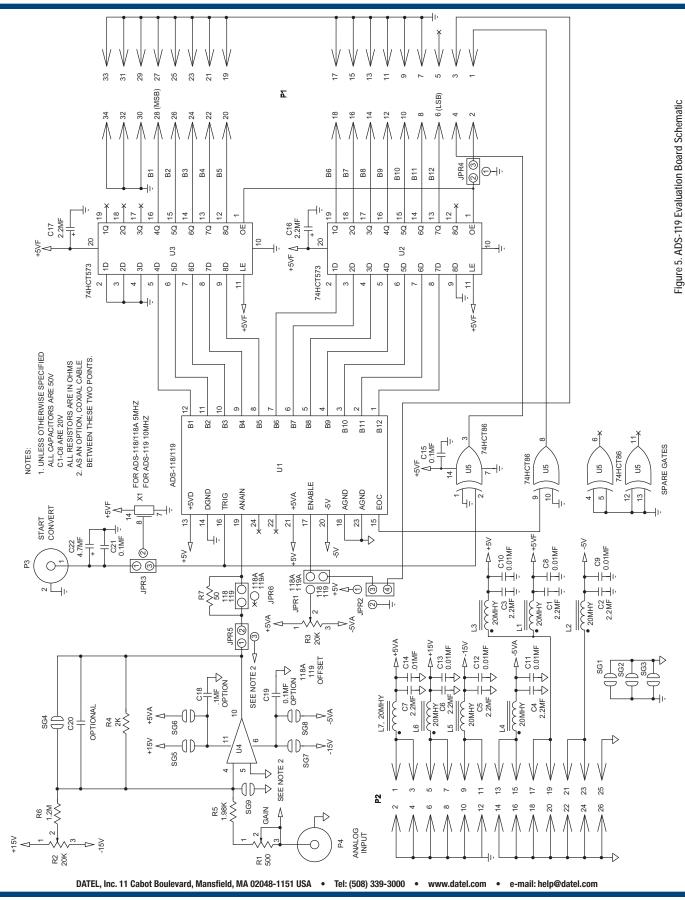



Figure 3. Optional Calibration Circuit, ADS-119

Table 1.	Output	Coding	for	Bipolar	Operation
----------	--------	--------	-----	---------	-----------

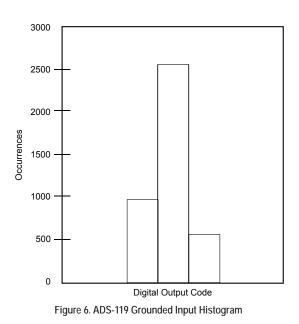
		OUTPUT CODING			
BIPOLAR SCALE	ADS-118 INPUT RANGE (±1V)	OFFSET MSB	BINARY LSB		
+FS-1 LSB	+1.49927V	1111 11	11 1111		
+3/4 FS	+1.12500V	1110 00	00 0000		
+1/2 FS	+0.75000V	1100 00	00 0000		
0	0.00000V	1000 00	00 0000		
-1/2 FS	-0.75000V	0100 00	00 0000		
-3/4 FS	-1.12500V	0010 00	00 0000		
-FS +1 LSB	-1.49927V	0000 00	00 0001		
-FS	-1.50000V	0000 00	00 0000		



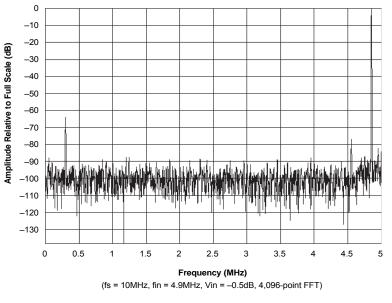
 \odot A single +5V supply should be used for both the +5V analog and +5V digital. If separate supplies are used, the difference between the two cannot exceed 100mV.

Figure 4. Typical Connection Diagram

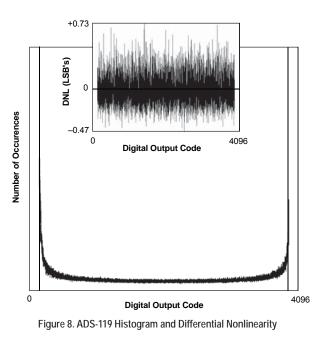
12-Bit, 10MHz, Low-Power Sampling A/D Converters


12-Bit, 10MHz, Low-Power Sampling A/D Converters

THERMAL REQUIREMENTS


All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (TA = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.


These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrical-lyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.


In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

This histogram represents the typical peak-to-peak noise (including quantization noise) associated with the ADS-119. 4,096 conversions were processed with the input to the ADS-119 tied to analog ground.

12-Bit, 10MHz, Low-Power Sampling A/D Converters

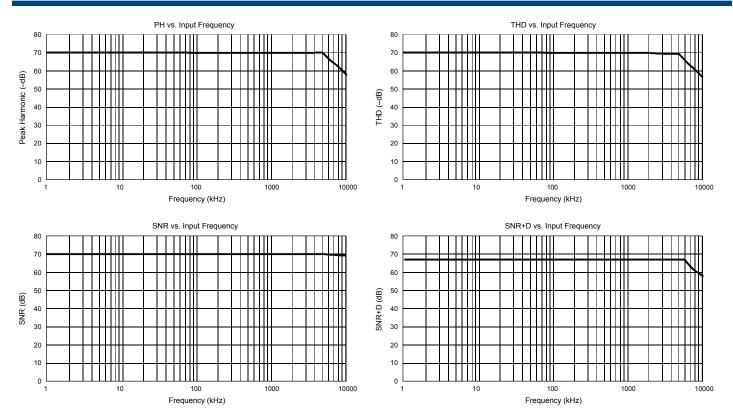
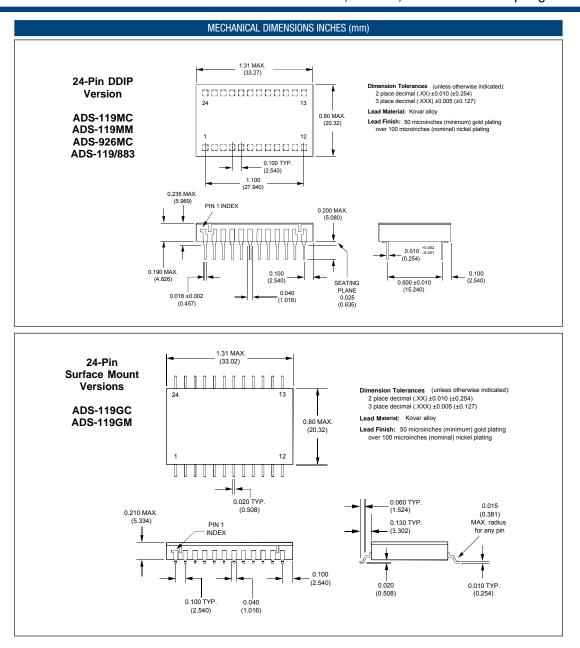



Figure 9. ADS-119 Performance Curves

ADS-119 12-Bit, 10MHz, Low-Power Sampling A/D Converters

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

12-Bit, 10MHz, Low-Power Sampling A/D Converters

ORDERING GUIDE			
MODEL NUMBER	OPERATING TEMPERATURE RANGE PACKAGE		ROHS
ADS-119MC	0 to +70°C	TDIP	No
ADS-119MC-C	0 to +70°C	TDIP	Yes
ADS-119ME	-40 to +100°C	TDIP	No
ADS-119ME-C	-40 to +100°C	TDIP	Yes
ADS-119MM	-55 to +125°C	TDIP	No
ADS-119MM-C	-55 to +125°C	TDIP	Yes
ADS-119/883	-55 to +125°C	TDIP	No
ADS-119-C/883	-55 to +125°C	TDIP	Yes
ADS-119GC	0 to +70°C	SMT	No
ADS-119GC-C	0 to +70°C	SMT	Yes
ADS-119GE	-40 to +100°C	SMT	No
ADS-119GE-C	-40 to +100°C	SMT	Yes
ADS-119GM	-55 to +125°C	SMT	No
ADS-119GM-C	-55 to +125°C	SMT	Yes
ADS-119G/883	-55 to +125°C	SMT	No
ADS-119G-C/883	-55 to +125°C	SMT	Yes

DATEL is a registered trademark of DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2015 DATEL, Inc.

www.datel.com • e-mail: help@datel.com