

Order

Now

ADS131M06

SBAS949-FEBRUARY 2020

ADS131M06 6-Channel, Simultaneously-Sampling, 24-Bit, Delta-Sigma ADC

Features 1

Texas

INSTRUMENTS

- 6 simultaneously sampling differential inputs
- Programmable data rate up to 32 kSPS
- Programmable gain up to 128
- Noise performance:
 - 102-dB dynamic range at gain = 1, 4 kSPS
 - 80-dB dynamic range at gain = 64, 4 kSPS
- Total harmonic distortion: -100 dB
- High-impedance inputs for direct sensor connection:
 - 330-kΩ input impedance for gains of 1, 2, and 4
 - 1-M Ω input impedance for gains of 8, 16, 32, and 64
- Programmable channel-to-channel phase delay calibration:
 - 244-ns resolution, 8.192-MHz f_{CLKIN}
- Current-detect mode allows for extremely low power tamper detection
- Fast startup: first data within 0.5 ms of supply ramp
- Integrated negative charge pump allows input signals below ground
- Crosstalk between channels: -120 dB
- Low-drift internal voltage reference
- Cyclic redundancy check (CRC) on communications and register map
- 2.7-V to 3.6-V analog and digital supplies
- Low power consumption: 5.0 mW at 3-V AVDD and DVDD
- Packages: 32-pin TQFP or 32-pin WQFN (preview)
- Operating temperature range: -40°C to +125°C

Applications 2

- Electricity meters: commercial and residential
- **Circuit breakers**
- Battery test equipment
- Battery management systems

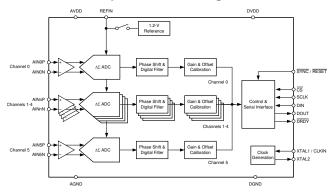
3 Description

The ADS131M06 is a six-channel, simultaneouslysampling, 24-bit, delta-sigma ($\Delta\Sigma$), analog-to-digital converter (ADC) that offers wide dynamic range, low power, and energy-measurement-specific features, making the device an excellent fit for energy metering, power metrology, and circuit breaker applications. The ADC inputs can be directly interfaced to a resistor-divider network or a power transformer to measure voltage or to a current transformer or a Rogowski coil to measure current.

The individual ADC channels can be independently configured depending on the sensor input. A lownoise, programmable gain amplifier (PGA) provides gains ranging from 1 to 128 to amplify low-level signals. Additionally, this device integrates channelto-channel phase calibration and offset and gain calibration registers to help remove signal-chain errors.

A low-drift, 1.2-V reference is integrated into the device reducing printed circuit board (PCB) area. Cyclic redundancy check (CRC) options can be individually enabled on the data input, data output, and register map to ensure communication integrity.

The complete analog front-end (AFE) is offered in a 32-pin TQFP or leadless 32-pin WQFN package and is specified over the industrial temperature range of -40°C to +125°C.


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
ADS131M06	TQFP (32)	5.00 mm × 5.00 mm		
	WQFN (32) ⁽²⁾	4.00 mm × 4.00 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(2) Preview package.

Simplified Block Diagram

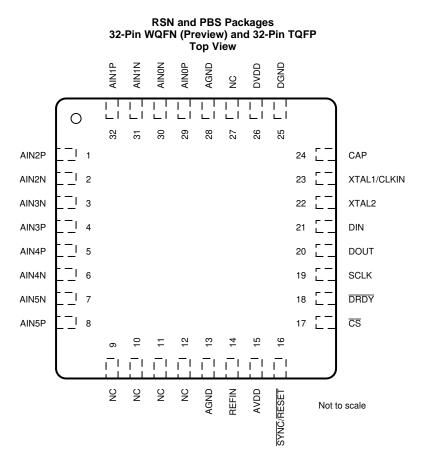
TEXAS INSTRUMENTS

www.ti.com

Table of Contents

1	Feat	tures	. 1
2	Арр	lications	. 1
3	Des	cription	. 1
4	Rev	ision History	. 2
5	Pin	Configuration and Functions	. 3
6	Spe	cifications	. 5
	6.1	Absolute Maximum Ratings	5
	6.2	ESD Ratings	. 5
	6.3	Recommended Operating Conditions	
	6.4	Thermal Information	6
	6.5	Electrical Characteristics	6
	6.6	Timing Requirements	8
	6.7	Switching Characteristics	
	6.8	Typical Characteristics	10
7	Para	ameter Measurement Information	14
	7.1	Noise Measurements	14
8	Deta	ailed Description	15
	8.1	Overview	15
	8.2	Functional Block Diagram	15
	8.3	Feature Description	16
	8.4	Device Functional Modes	27

	8.5	Programming	31
	8.6	Registers	41
9	App	lication and Implementation	74
	9.1	Application Information	74
	9.2	Typical Application	81
10	Pow	er Supply Recommendations	88
	10.1		
	10.2	Power-Supply Sequencing	88
	10.3	Power-Supply Decoupling	88
11	Lay	out	88
	11.1	Layout Guidelines	88
	11.2	Layout Example	88
12		ice and Documentation Support	
	12.1	Documentation Support	90
	12.2	Receiving Notification of Documentation Updates	90
	12.3	Community Resources	90
	12.4	Trademarks	90
	12.5	Electrostatic Discharge Caution	90
	12.6	Glossary	90
13	Mec	hanical, Packaging, and Orderable	
		mation	90


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
February 2020	*	Initial release.

5 Pin Configuration and Functions

Pin Functions

PIN						
NAME	NO.		I/O	DESCRIPTION		
NAME	WQFN	TQFP				
AGND	13, 28	13, 28	Supply	Analog ground		
AINON	30	30	Analog input	Negative analog input 1		
AIN0P	29	29	Analog input	Positive analog input 1		
AIN1N	31	31	Analog input	Negative analog input 2		
AIN1P	32	32	Analog input	Positive analog input 2		
AIN2N	2	2	Analog input	Negative analog input 3		
AIN2P	1	1	Analog input	Positive analog input 3		
AIN3N	3	3	Analog input	Negative analog input 4		
AIN3P	4	4	Analog input	Positive analog input 4		
AIN4N	6	6	Analog input	Negative analog input 4		
AIN4P	5	5	Analog input	Positive analog input 4		
AIN5N	7	7	Analog input	Negative analog input 4		
AIN5P	8	8	Analog input	Positive analog input 4		
AVDD	15	15	Supply	Analog supply. Connect a 1-µF capacitor to AGND.		
CAP	24	24	Analog output	Digital low-dropout (LDO) regulator output. Connect a 220-nF capacitor to DGND.		
CS	17	17	Digital input	Chip select; active low		
DGND	25	25	Supply	Digital ground		

Copyright © 2020, Texas Instruments Incorporated

NSTRUMENTS

ÈXAS

Pin Functions (continued)

	PIN			
	N	0.	I/O	DESCRIPTION
NAME	WQFN	TQFP		
DIN	21	21	Digital input	Serial data input
DOUT	20	20	Digital output	Serial data output
DRDY	18	18	Digital output	Data ready; active low
DVDD	26	26	Supply	Digital I/O supply. Connect a 1-µF capacitor to DGND.
NC	9-12	9-12	—	Leave unconnected
NC	27	27	—	Leave unconnected or connect to AGND
REFIN	14	14	Analog input	External reference voltage input. Connect a 100-nF capacitor to AGND when using the internal reference. ⁽¹⁾
SCLK	19	19	Digital input	Serial data clock
SYNC/RESET	16	16	Digital input	Conversion synchronization or system reset; active low
XTAL1/CLKIN	23	23	Digital input	Master clock input, or crystal oscillator input
XTAL2	22	22	Digital output	Crystal oscillator excitation

(1) Do not place any capacitance on REFIN if the current-detect mode is used.

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

		MIN	MAX	UNIT
	AVDD to AGND	-0.3	3.9	
	AGND to DGND	-0.3	0.3	
Power-supply voltage	DVDD to DGND	-0.3	3.9	V
	DVDD to DGND, CAP tied to DVDD	-0.3	2.2	
	CAP to DGND	-0.3	2.2	
Analog input voltage	AINxP, AINxN	AGND – 1.6	AVDD + 0.3	V
Reference input voltage	REFIN	AGND – 0.3	AVDD + 0.3	V
Digital input voltage	CS, CLKIN, DIN, SCLK, SYNC/RESET	DGND – 0.3	DVDD + 0.3	V
Input current	Continuous, all pins except power-supply pins	-10	10	mA
Tomporatura	Junction, T _J		150	ů
Temperature	Storage, T _{stg}	-60	150	U

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electroptotic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
POWER	SUPPLY					
		AVDD to AGND, normal operating modes	2.7	3.0	3.6	
	Analog power supply	AVDD to AGND, standby and current-detect modes	2.4	3.0	3.6	V
		AGND to DGND	-0.3	0	0.3	
		DVDD to DGND	2.7	3.0	3.6	
	Digital power supply	DVDD to DGND, DVDD shorted to CAP (digital LDO bypassed)	1.65	1.8	2	V
ANALO	G INPUTS ⁽¹⁾		•			
V _{AINxP} ,		Gain = 1, 2, or 4	AGND – 1.3		AVDD	V
V _{AINxN}	Absolute input voltage	Gains = 8, 16, 32, 64 or 128	AGND – 1.3		AVDD - 1.8	V
V _{IN}	Differential input voltage	$V_{IN} = V_{AINxP} - V_{AINxN}$	–V _{REF} / Gain		V _{REF} / Gain	V
VOLTAG	GE REFERENCE INPUT					
V _{REFIN}	Reference input voltage		1.1	1.25	1.3	V
	AL CLOCK SOURCE					
		High-resolution mode, Gain = 1 or 2	0.3	8.192	8.4	
		High-resolution mode, Gain > 2	0.3	8.192	8.2	
f _{CLKIN}	External clock frequency	Low-power mode	0.3	4.096	4.15	MHz
		Very-low-power mode	0.3	2.048	2.08	
	Duty cycle		40	50	60	%
DIGITAL	INPUTS		•			
	Input voltage		DGND		DVDD	V
TEMPE	RATURE RANGE		•			
T _A	Operating ambient temperature		-40		125	°C

(1) The subscript "x" signifies the channel. For example, the positive analog input to channel 0 is named AINOP. See the Pin Configurations and Functions section for the pin names.

6.4 Thermal Information

		ADS1	31M0x	
	THERMAL METRIC ⁽¹⁾	RSN (WQFN)	PBS (TQFP)	UNIT
		32 PINS	32 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	TBD	81.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	TBD	26.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	TBD	32.7	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	TBD	1.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	TBD	32.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	TBD	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

minimum and maximum specifications apply from $T_A = -40^{\circ}$ C to +125°C; typical specifications are at $T_A = 25^{\circ}$ C; all specifications are at AVDD = 3 V, DVDD = 3 V, f_{CLKIN} = 8.192 MHz, data rate = 4 kSPS, gain = 1 and internal oscillator disabled (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
ANALO	G INPUTS					
Z _{in}	Differential input impedance	Gain = 1, 2, or 4		330		kΩ
I _b	Input bias current	Gain = 8, 16, 32, 64, or 128, inputs shorted to ground		±1		µA/V
ADC CH	IARACTERISTICS	-				
	Resolution		24			Bits
	Gain settings		1, 2, 4, 8,	16, 32, 64, 128		
		High-resolution mode, f _{CLKIN} = 8.192 MHz	250		32k	
f _{DATA}	Data rate	Low-power mode, f _{CLKIN} = 4.096 MHz	125		16k	SPS
		Very low-power mode, f _{CLKIN} = 2.048 MHz	62.5		8k	
	Startup time	Measured from supplies at 90% to first DRDY falling edge		0.5		ms
ADC PE	RFORMANCE					
INL	Integral nonlinearity (best fit)			7.5		ppm of FSR
				±240		
	Offset error (input referred)	Global-chop mode		±32		μV
	Offset drift			215		nV/⁰C
	Onset drift	Global-chop mode		105		nv/°C
	Gain error			±0.3%		
		Excluding voltage reference error, Gain = 1		5		
	Gain drift	Including internal voltage reference error, Gain = 1		10	20	ppm/°C
		Including internal voltage reference error, Gain = 32		15		
	Long term gain drift	1000 hours at 85°C, including internal voltage reference error		-385		ppm
		At dc		100		
CMRR	Common-mode rejection ratio	f _{CM} = 50 Hz or 60 Hz		94		dB
		AVDD at DC		80		
PSRR	Dower ownely rejection acti-	DVDD at DC		100		dD
rokk	Power-supply rejection ratio	AVDD supply, $f_{PS} = 50$ Hz or 60 Hz		78		dB
		DVDD supply, f _{PS} = 50 Hz or 60 Hz		90		

Electrical Characteristics (continued)

minimum and maximum specifications apply from $T_A = -40^{\circ}$ C to +125°C; typical specifications are at $T_A = 25^{\circ}$ C; all specifications are at AVDD = 3 V, DVDD = 3 V, f_{CLKIN} = 8.192 MHz, data rate = 4 kSPS, gain = 1 and internal oscillator disabled (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input referred poice			5.4		
	Input referred noise	During fast startup		2100		μV _{RMS}
		Gain = 1	99	102		dB
	Dynamic range	Gain = 64		80		uБ
		All other gain settings	Se	e Table 2		
	Crosstalk	$f_{IN} = 50$ Hz or 60 Hz		-120		dB
SNR	Signal-to-noise ratio	$f_{\rm IN}$ = 50 Hz or 60 Hz, Gain = 1, $V_{\rm IN}$ = –0.5 dBFS, normalized		101		dB
SINIX	Signal-to-hoise fatto	f_{IN} = 50 Hz or 60 Hz, Gain = 64, V_{IN} = –0.5 dBFS, normalized		80		uв
THD	Total harmonic distortion	$f_{\rm IN}$ = 50 Hz or 60 Hz (up to 50 harmonics), $V_{\rm IN}$ = –0.5 dBFS		-100		dB
SFDR	Spurious-free dynamic range	f_{IN} = 50 Hz or 60 Hz (up to 50 harmonics), V_{IN} = –0.5 dBFS		103		dB
INTERN	AL VOLTAGE REFERENCE	•				
V_{REF}	Internal reference voltage			1.2		V
	Accuracy	$T_A = 25^{\circ}C$		±0.1%		
	Temperature drift			7.5	20	ppm/°C
	Long-term reference drift	1000 hours at 85°C		340		ppm
DIGITAI	INPUTS/OUTPUTS					
V _{IL}	Logic input level, low		DGND		0.2 DVDD	V
V _{IH}	Logic input level, high		0.8 DVDD		DVDD	V
V _{OL}	Logic output level, low	I _{OL} = -1 mA			0.2 DVDD	V
V _{OH}	Logic output level, high	I _{OH} = 1 mA	0.8 DVDD			V
I _{IN}	Input current	DGND < V _{Digital Input} < DVDD	-1		1	μA
POWER	SUPPLY					
		High-resolution mode		5.0	5.9	
		Low-power mode		2.6	3.1	mA
I _{AVDD}	Analog supply current	Very low-power mode		1.5	1.8	
		Current-detect mode		1400		μA
		Standy mode		0.35		μΑ
		High-resolution mode		0.55	0.7	
		Low-power mode		0.28	0.36	mA
I _{DVDD}	Digital supply current ⁽¹⁾	Very low-power mode		0.14	0.19	
		Current-detect mode		100		
		Standy mode		1.1		μA
		High-resolution mode		16.7		
		Low-power mode		8.6		m\//
P _D	Power dissipation	Very low-power mode		4.9		mW
		Current-detect mode		4.5		
		Standy mode		4.4		μW

(1) Currents measured with SPI idle and oscillator disabled.

ISTRUMENTS

EXAS

6.6 Timing Requirements

over operating ambient temperature range, DOUT load: 20 pF || 100 kΩ (unless otherwise noted)

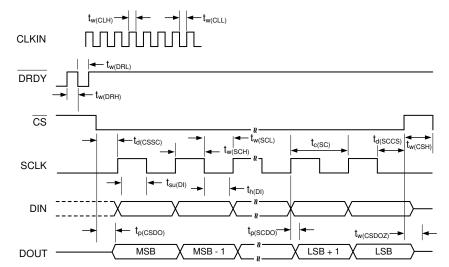
		MIN	NOM MAX	UNIT ⁽¹⁾
1.65 V ≤ D	VDD ≤ 2.0 V			
t _{w(CLL)}	Pulse duration, CLKIN low	49		ns
t _{w(CLH)}	Pulse duration, CLKIN high	49		ns
t _{c(SC)}	SCLK period	64		ns
t _{w(SCL)}	Pulse duration, SCLK low	32		ns
t _{w(SCH)}	Pulse duration, SCLK high	32		ns
t _{d(CSSC)}	Delay time, first SCLK rising edge after \overline{CS} falling edge	16		ns
t _{d(SCCS)}	Delay time, CS rising edge after final SCLK falling edge	10		ns
t _{w(CSH)}	Pulse duration, CS high	20		ns
t _{su(DI)}	Setup time, DIN valid before SCLK falling egde	5		ns
t _{h(DI)}	Hold time, DIN valid after SCLK falling edge	10		ns
t _{w(RSL)}	Pulse duration, SYNC/RESET low to generate device reset	2048		t _{CLKIN}
t _{w(SYL)}	Pulse duration, SYNC/RESET low for synchronization	1	2047	t _{CLKIN}
t _{su(SY)}	Setup time, SYNC/RESET valid before CLKIN falling edge	10		ns
2.7 V ≤ DV	′DD ≤ 3.6 V			
t _{w(CLL)}	Pulse duration, CLKIN low	49		ns
t _{w(CLH)}	Pulse duration, CLKIN high	49		ns
t _{c(SC)}	SCLK period	40		ns
t _{w(SCL)}	Pulse duration, SCLK low	20		ns
w(SCH)	Pulse duration, SCLK high	20		ns
d(CSSC)	Delay time, first SCLK rising edge after \overline{CS} falling edge	16		ns
d(SCCS)	Delay time, CS rising edge after final SCLK falling edge	10		ns
t _{w(CSH)}	Pulse duration, CS high	15		ns
su(DI)	Setup time, DIN valid before SCLK falling egde	5		ns
h(DI)	Hold time, DIN valid after SCLK falling edge	10		ns
t _{w(RSL)}	Pulse duration, SYNC/RESET low to generate device reset	2048		t _{CLKIN}
^t w(SYL)	Pulse duration, SYNC/RESET low for synchronization	1	2047	t _{CLKIN}
su(SY)	Setup time, SYNC/RESET valid before CLKIN falling edge	10		ns

(1) $t_{CLKIN} = 1/f_{CLKIN}$

6.7 Switching Characteristics

over operating ambient temperature range, DOUT load: 20 pF || 100 kΩ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT ⁽¹⁾
1.65 V ≤ D	VDD ≤ 2.0 V					
t _{p(CSDO)}	Propagation delay time, $\overline{\text{CS}}$ falling edge to DOUT driven				50	ns
t _{p(SCDO)}	Progapation delay time, SCLK rising edge to valid new DOUT				32	ns
t _{p(CSDOZ)}	Propagation delay time, $\overline{\text{CS}}$ rising edge to DOUT high impedace				75	ns
t _{w(DRH)}	Pulse duration, DRDY high			4		t _{CLKIN}
t _{w(DRL)}	Pulse duration, DRDY low			4		t _{CLKIN}
	SPI timeout		32768			t _{CLKIN}
t _{POR}	Power-on-reset time	Measured from supplies at 90%		250		μs
t _{REGACQ}	Register default acquisition time			5		μs


(1) $t_{CLKIN} = 1/f_{CLKIN}$

Switching Characteristics (continued)

over operating ambient temperature range, DOUT load: 20 pF || 100 kΩ (unless otherwise noted)

				-		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT ⁽¹⁾
2.7 V ≤ DV	DD ≤ 3.6 V					
t _{p(CSDO)}	Propagation delay time, $\overline{\text{CS}}$ falling edge to DOUT driven				50	ns
t _{p(SCDO)}	Progapation delay time, SCLK rising edge to valid new DOUT				20	ns
t _{p(CSDOZ)}	Propagation delay time, $\overline{\text{CS}}$ rising edge to DOUT high impedace				75	ns
t _{w(DRH)}	Pulse duration, DRDY high			4		t _{CLKIN}
t _{w(DRL)}	Pulse duration, DRDY low			4		t _{CLKIN}
	SPI timeout		32768			t _{CLKIN}
t _{POR}	Power-on-reset time	Measured from supplies at 90%		250		μS
t _{REGACQ}	Register default acquisition time			5		μs

NOTE: SPI settings are CPOL = 0 and CPHA = 1. \overline{CS} transitions must take place when SCLK is low.

Figure 1. SPI Timing Diagram

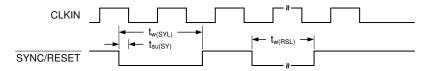


Figure 2. SYNC/RESET Timing Requirements

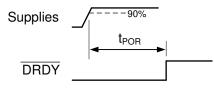
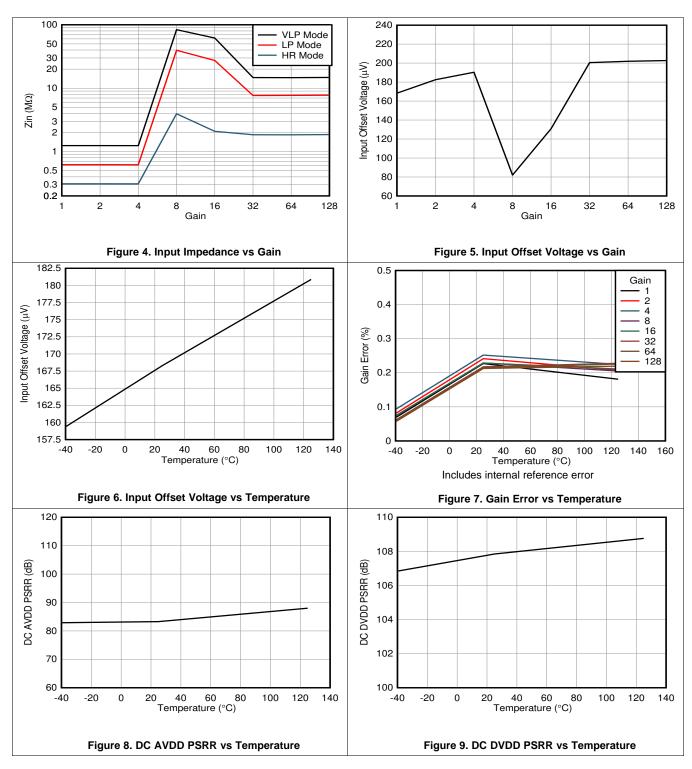
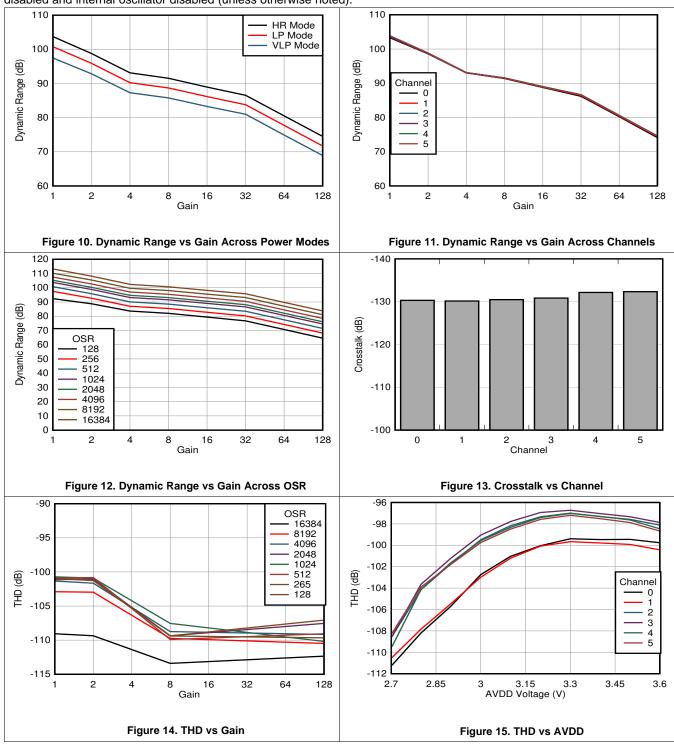



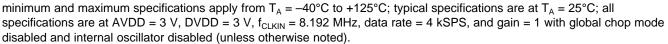
Figure 3. Power-On-Reset Timing

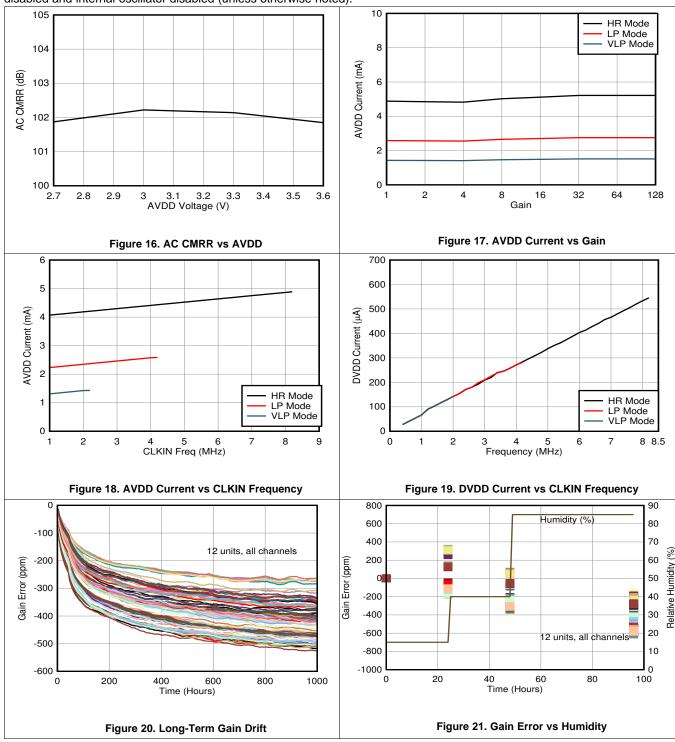
Copyright © 2020, Texas Instruments Incorporated

6.8 Typical Characteristics

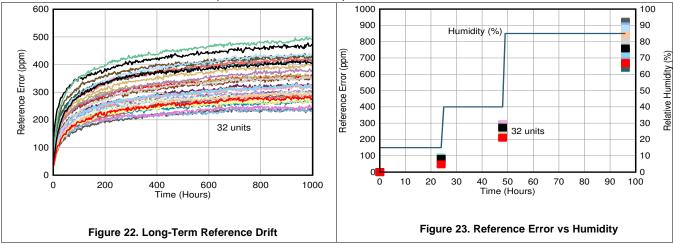
minimum and maximum specifications apply from $T_A = -40^{\circ}$ C to +125°C; typical specifications are at $T_A = 25^{\circ}$ C; all specifications are at AVDD = 3 V, DVDD = 3 V, $f_{CLKIN} = 8.192$ MHz, data rate = 4 kSPS, and gain = 1 with global chop mode disabled and internal oscillator disabled (unless otherwise noted).




Typical Characteristics (continued)


minimum and maximum specifications apply from $T_A = -40^{\circ}$ C to +125°C; typical specifications are at $T_A = 25^{\circ}$ C; all specifications are at AVDD = 3 V, DVDD = 3 V, $f_{CLKIN} = 8.192$ MHz, data rate = 4 kSPS, and gain = 1 with global chop mode disabled and internal oscillator disabled (unless otherwise noted).

Typical Characteristics (continued)



Typical Characteristics (continued)

minimum and maximum specifications apply from $T_A = -40^{\circ}$ C to +125°C; typical specifications are at $T_A = 25^{\circ}$ C; all specifications are at AVDD = 3 V, DVDD = 3 V, f_{CLKIN} = 8.192 MHz, data rate = 4 kSPS, and gain = 1 with global chop mode disabled and internal oscillator disabled (unless otherwise noted).

Parameter Measurement Information 7

7.1 Noise Measurements

Adjust the data rate and gain to optimize the ADS131M06 noise performance. When averaging is increased by reducing the data rate, noise drops correspondingly. Table 1 summarizes the ADS131M06 noise performance using the 1.2-V internal reference and a 3.0-V analog power supply. The data are representative of typical noise performance at $T_A = 25^{\circ}C$ when $f_{CLKIN} = 8.192$ MHz. The modulator clock frequency $f_{MOD} = f_{CLKIN} / 2$. The data shown are typical input-referred noise results with the analog inputs shorted together and taking an average of multiple readings across all channels. A minimum 1 second of consecutive readings are used to calculate the RMS noise for each reading. Table 2 shows the dynamic range and effective resolution calculated from the noise data. Equation 1 calculates dynamic range. Equation 2 calculates effective resolution. In each case, V_{REF} corresponds to the internal 1.2-V reference, or the voltage on the REFIN pin if the external reference is used. In global-chop mode, noise is improved by a factor of $\sqrt{2}$.

The noise performance scales with the OSR and gain settings, but is independent from the configured power mode. Thus, the device exhibits the same noise performance in different power modes when selecting the same OSR and gain settings. However, the data rate at the OSR settings scales based on the applied clock frequency for the different power modes.

Dynamic Range =
$$20 \times \log \left(\frac{V_{\text{REF}}}{\sqrt{2} \times \text{Gain} \times V_{\text{RMS}}} \right)$$
 (1)
Effective Resolution = $\log_2 \left(\frac{2 \times V_{\text{REF}}}{\text{Gain} \times V_{\text{RMS}}} \right)$ (2)

Table 1. Noise (μV_{RMS}) at $T_A = 25^{\circ}C$ GAIN DATA RATE (kSPS), OSR f_{CLKIN} = 8.192 MHz 1 2 4 8 16 32 64 128 16384 0.25 1.90 1.69 1.56 0.95 0.64 0.42 0.42 0.42 8192 0.5 2.39 2.13 2.13 1.29 0.86 0.57 0.57 0.57 4096 1 3.38 2.99 2.88 1.74 1.17 0.77 0.77 0.77 2048 2 4.25 3.91 3.79 2.27 1.52 1.00 1.00 1.00 1024 4 5.35 4.68 4.52 2.70 1.82 1.20 1.20 1.20 512 8 7.56 6.62 6.37 3.82 2.55 1.69 1.69 1.69 256 16 10.68 9.56 9.09 5.42 3.63 2.39 2.39 2.40 128 32 21.31 15.26 13.52 7.89 5.21 3.41 3.42 3.42

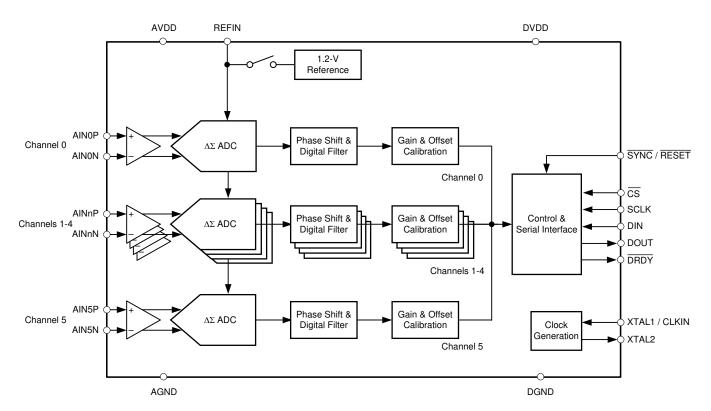
Table 2. Dynamic Range (Effective Resolution) at T_A = 25°C

000	DATA RATE (kSPS),	GAIN							
OSR	f _{CLKIN} = 8.192 MHz	1	2	4	8	16	32	64	128
16384	0.25	113 (20.3)	108 (19.4)	103 (18.6)	101 (18.3)	98 (17.8)	96 (17.5)	90 (16.5)	84 (15.4)
8192	0.5	111 (19.9)	106 (19.1)	100 (18.1)	98 (17.8)	96 (17.4)	93 (17.0)	87 (16.0)	81 (15.0)
4096	1	108 (19.4)	103 (18.6)	97 (17.7)	96 (17.4)	93 (17.0)	91 (16.6)	85 (15.6)	79 (14.6)
2048	2	106 (19.1)	101 (18.2)	95 (17.3)	93 (17.0)	91 (16.6)	88 (16.2)	82 (15.2)	76 (14.2)
1024	4	104 (18.8)	99 (18.0)	93 (17.0)	92 (16.8)	89 (16.3)	87 (15.9)	81 (14.9)	75 (13.9)
512	8	101 (18.3)	96 (17.5)	90 (16.5)	89 (16.3)	86 (15.8)	84 (15.4)	78 (14.4)	72 (13.4)
256	16	98 (17.8)	93 (16.9)	87 (16.0)	86 (15.8)	83 (15.3)	81 (14.9)	75 (13.9)	69 (12.9)
128	32	92 (16.8)	89 (16.3)	84 (15.4)	83 (15.2)	80 (14.8)	78 (14.4)	72 (13.4)	65 (12.4)

Product Folder Links: ADS131M06

www.ti.com

8 Detailed Description


8.1 Overview

The ADS131M06 is a low-power, six-channel, simultaneously sampling, 24-bit, delta-sigma ($\Delta\Sigma$) analog-to-digital converter (ADC) with a low-drift internal reference voltage. The dynamic range, size, feature set, and power consumption are optimized for cost-sensitive applications requiring simultaneous sampling.

The ADS131M06 requires both analog and digital supplies. The analog power supply (AVDD – AGND) can operate between 2.7 V and 3.6 V. An integrated negative charge pump allows absolute input voltages as low as 1.3 V below AGND, which enables measurements of input signals varying around ground with a single-ended power supply. The digital power supply (DVDD – DGND) accepts both 1.8-V and 3.3-V supplies. The device features a programmable gain amplifier (PGA) with gains up to 128. An integrated input precharge buffer enabled at gains greater than 4 ensures high input impedance at high PGA gain settings. The ADC receives its reference voltage from an integrated 1.2-V reference. The device allows differential input voltages as large as the reference. Three power-scaling modes allow designers to trade power consumption for ADC dynamic range.

Each channel on the ADS131M06 contains a digital decimation filter that demodulates the output of the $\Delta\Sigma$ modulators. The filter enables data rates as high as 32 kSPS per channel in high-resolution mode. The relative phase of the samples can be configured between channels, thus enabling an accurate compensation for the sensor phase response. Offset and gain calibration registers can be programmed to automatically adjust output samples for measured offset and gain errors. The *Functional Block Diagram* section provides a detailed diagram of the ADS131M06.

The device communicates via a serial programming interface (SPI)-compatible interface. Several SPI commands and internal registers control the operation of the ADS131M06. Other devices can be added to the same SPI bus by adding discrete CS control lines. The SYNC/RESET pin can be used to synchronize conversions between multiple ADS131M06 devices as well as to maintain synchronization with external events.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Input ESD Protection Circuitry

Basic electrostatic discharge (ESD) circuitry protects the ADS131M06 inputs from ESD and overvoltage events in conjunction with external circuits and assemblies. Figure 24 shows a simplified representation of the ESD circuit. The protection for input voltages exceeding AVDD can be modeled as a simple diode.

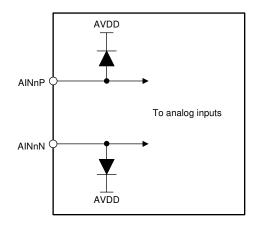
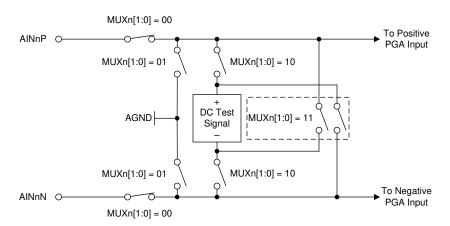


Figure 24. Input ESD Protection Circuitry


The ADS131M06 has an integrated negative charge pump that allows for input voltages below AGND with a unipolar supply. Consequently, shunt diodes between the inputs and AGND cannot be used to clamp excessive negative input voltages. Instead, the same diode that clamps overvoltage is used to clamp undervoltage at its reverse breakdown voltage. Take care to prevent input voltages or currents from exceeding the limits provided in the *Absolute Maximum Ratings* table in the *Specifications* section.

8.3.2 Input Multiplexer

Each channel of the ADS131M06 has a dedicated input multiplexer. The multiplexer controls which signals are routed to the ADC channels. Configure the input multiplexer using the MUXn[1:0] bits in the CHn_CFG register. The input multiplexer allows the following inputs to be connected to the ADC channel:

- The analog input pins corresponding to the given channel
- AGND, which is helpful for offset calibration
- Positive DC test signal
- Negative DC test signal

See the *Internal Test Signals* section for more information about the test signals. Figure 25 shows a diagram of the input multiplexer on the ADS131M06.

Feature Description (continued)

8.3.3 Programmable Gain Amplifier (PGA)

Each channel of the ADS131M06 features an integrated programmable gain amplifier (PGA) that provides gains of 1, 2, 4, 8, 16, 32, 64, and 128. The gains for all channels are individually controlled by the PGAGAINn bits for each channel in the GAIN1 register.

Varying the PGA gain scales the differential full-scale input voltage range (FSR) of the ADC. Equation 3 describes the relationship between FSR and gain. Equation 3 uses the internal reference voltage, 1.2 V, as the scaling factor without accounting for gain error caused by tolerance in the reference voltage.

 $FSR = \pm 1.2 V / Gain$

Table 3 shows the corresponding full-scale ranges for each gain setting.

· · · · · · · · · · · · · · · · · · ·				
GAIN SETTING	FSR			
1	±1.2 V			
2	±600 mV			
4	±300 mV			
8	±150 mV			
16	±75 mV			
32	±37.5 mV			
64	±18.75 mV			
128	±9.375 mV			

Table 3. Full-Scale Range

The input impedance of the PGA dominates the input impedance characteristics of the ADS131M06. The PGA input impedance for gain settings up to 4 behaves according to Equation 4 without accounting for device tolerance and change over temperature. Minimize the output impedance of the circuit that drives the ADS131M06 inputs to obtain the best possible gain error, INL, and distortion performance.

330 kΩ × 4.096 MHz / f_{MOD}

where:

The device uses an input precharge buffer for PGA gain settings of 8 and higher. The input impedance at these gain settings is very high. Specifying the input bias current for these gain settings is therefore more useful. A plot of input bias current for the high gain settings is provided in Figure 4.

8.3.4 Voltage Reference

The ADS131M06 has two reference voltage options: the internal reference and an external reference. The internal reference uses a low-drift band-gap voltage to supply the reference for the ADC. The internal reference has a nominal voltage of 1.2 V, allowing the differential input voltage to swing from -1.2 V to 1.2 V. The reference circuitry starts up very quickly to accommodate the fast-startup feature of this device. The device waits until after the reference circuitry is fully settled before generating conversion data. There is no delay or wait time after the first conversion result is ready. Connect a 100-nF decoupling capacitor between the REFIN pin and AGND when using the internal reference. This layout ensures that the ADC startup time and other specified parametrics can be met. However, do not place any capacitance on the REFIN pin if the current detect mode is used. See the *Current-Detect Mode* section for more details about the current detect mode.

The device also allows for an external reference voltage, which can be input at the REFIN pin. The nominal external reference voltage of 1.25 V. The full-scale range of the ADC is 1.2 V / gain when the reference voltage is 1.25 V. The ADC full-scale range maintains the ratio of 1.2 to 1.25 for all recommended reference voltages. For example, the ADC full-scale range is 1.248 V / gain if 1.3 V is applied to the REFIN pin instead of the nominal 1.2 V. The startup time for the external reference is governed by the external circuitry.

Copyright © 2020, Texas Instruments Incorporated

(4)

(3)

[•] f_{MOD} is the $\Delta\Sigma$ modulator frequency, f_{CLKIN} / 2

8.3.5 Clocking and Power Modes

An LVCMOS clock must be provided at the CLKIN pin continuously when the ADS131M06 is running in normal operation. The frequency of the clock can be scaled in conjunction with the power mode to provide a tradeoff between power consumption and dynamic range.

The PWR[1:0] bits in the CLOCK register allow the device to be configured in one of three power modes: high-resolution (HR) mode, low-power (LP) mode, and very low-power (VLP) mode. Changing the PWR[1:0] bits scales the internal bias currents to achieve the expected power levels. The external clock frequency must follow the guidance provided in the *Recommended Operating Conditions* table in the *Specifications* section corresponding to the intended power mode in order for the device to perform according to the specification.

8.3.6 $\Delta\Sigma$ Modulator

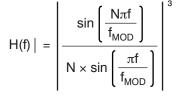
The ADS131M06 uses a delta-sigma ($\Delta\Sigma$) modulator to convert the analog input voltage to a one's density modulated digital bit-stream. The $\Delta\Sigma$ modulator oversamples the input voltage at a frequency many times greater than the output data rate. The modulator frequency, f_{MOD}, of the ADS131M06 is equal to half the frequency of the clock provided at the CLKIN pin.

The output of the modulator is fed back to the modulator input through a digital-to-analog converter (DAC) as a means of error correction. This feedback mechanism shapes the modulator quantization noise in the frequency domain to make the noise more dense at higher frequencies and less dense in the band of interest. The digital decimation filter following the $\Delta\Sigma$ modulator significantly attenuates the out-of-band modulator quantization noise, allowing the device to provide excellent dynamic range.

8.3.7 Digital Decimation Filter

The digital decimation filter significantly attenuates the out-of-band quantization noise from the $\Delta\Sigma$ modulator that is shaped in the frequency domain. The digital filter is a linear phase, finite impulse response (FIR), low-pass, third-order sinc filter (sinc³). The filter demodulates the output of the $\Delta\Sigma$ modulator by averaging. The data passing through the filter is decimated, or downsampled, to reduce the output frequency from the modulator frequency to the data rate. The decimation factor is called the *oversampling ratio* (*OSR*). The OSR is configurable and set by the OSR[2:0] bits in the CLOCK register. Table 4 lists the OSR settings and their corresponding output data rates for the nominal CLKIN frequencies.

The OSR determines the period for which the filter averages the modulator output that determines the filter bandwidth. The filter bandwidth directly affects the noise performance of the ADC because lower bandwidth results in lower noise whereas higher bandwidth results in higher noise. See Table 1 for the noise specifications for various OSR settings. There are eight OSR settings in the ADS131M06, allowing eight different data rate settings for any given master clock frequency.


Equation 5 calculates the z-domain transfer function for the digital filter.

$$|H(z)| = \left|\frac{1-Z^{-N}}{N(1-Z^{-1})}\right|^{3}$$

where:

• N is the OSR

Equation 6 calculates the transfer function in terms of the continuous-time frequency parameter f.

where:

N is the OSR

(6)

(5)

POWER MODE	NOMINAL CLKIN FREQUENCY	f _{MOD}	OSR	OUTPUT DATA RATE
			128	32 kSPS
			256	16 kSPS
			512	8 kSPS
	0.400 MUL	4 000 MUL	1024 (default)	4 kSPS
HR (default)	8.192 MHz	4.096 MHz	2048	2 kSPS
			4096	1 kSPS
			8192	500 SPS
			16384	250 SPS
			128	16 kSPS
	4.096 MHz 2.048	2.048 MHz	256	8 kSPS
			512	4 kSPS
LP			1024 (default)	2 kSPS
LP			2048	1 kSPS
			4096	500 SPS
			8192	250 SPS
			16384	125 SPS
		128	8 kSPS	
			256	4 kSPS
			512	2 kSPS
\// D	0.040 Mil-	4 004 MUL	1024 (default)	1 kSPS
VLP	2.048 MHz	1.024 MHz	2048	500 SPS
			4096	250 SPS
			8192	125 SPS
1			16384	62.5 SPS

Table 4. OSR Settings and Data Rates for Nominal Master Clock Frequencies

The filter has infinite attenuation at integer multiples of the data rate except for integer multiples of f_{MOD} . Like all digital filters, the digital filter response of the ADS131M06 repeats at integer multiples of the modulator frequency, f_{MOD} . The data rate and filter notch frequencies scale with f_{MOD} .

When possible, plan frequencies for unrelated periodic processes in the application for integer multiples of the data rate such that any parasitic effect they have on data acquisition is effectively cancelled by the notches of the digital filter. Avoid frequencies near integer multiples of f_{MOD} whenever possible because tones in these bands can alias to the band of interest.

Figure 26 to Figure 28 describe the digital filter response.

The sinc³ filter for a given channel requires time to settle after a channel is enabled, the channel multiplexer or gain setting is changed, or a resynchronization event occurs. See the *Synchronization* section for more details on resynchronization. Table 5 lists the settling time of the sinc³ filter for each OSR setting. The settling times correspond to slightly more than three conversion periods for each OSR, which means that data are settled by the fourth conversion period. The ADS131M06 does not gate unsettled data. Therefore, the host must account for the filter settling time and disregard unsettled data if any are read. The sinc³ filter settling time follows the values listed in Table 5 regardless of the phase calibration setting. See the *Channel Phase Calibration* section for more details about phase calibration. The exception to the times listed in Table 5 is when the device first powers up. At startup, a different fast settling filter is used to accelerate the time to generate the first conversion results. See the *Fast-Startup Response* section for more details about the digital filter settling at startup.

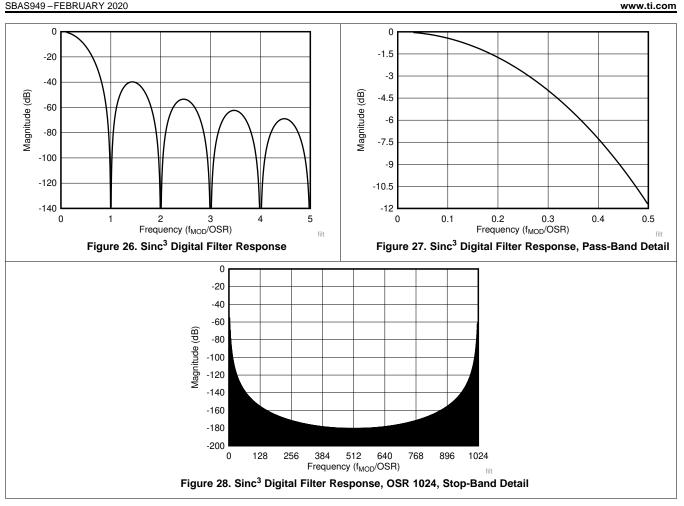
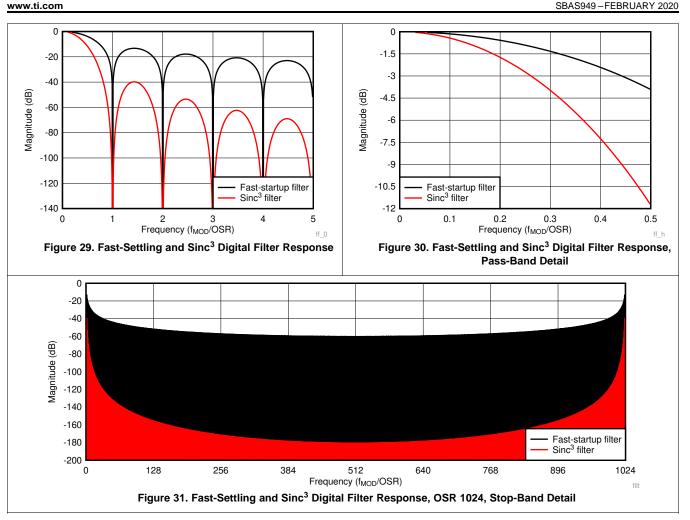


Table 5. Sinc³ Filter Settling Times


OSR	SETTLING TIME (t _{CLKIN})
128	860
256	1628
512	3164
1024	6236
2048	12380
4096	24668
8192	49244
16384	98396

8.3.7.1 Fast-Startup Response

The ADS131M06 starts up and generates conversion data very quickly following a supply ramp or reset. This behavior is achieved in part by using a dual digital filter path. When the device first starts up, data are generated using a first-order sinc filter. After two samples, the device switches to and remains in the sinc³ filter setting until the next time the device is powered down or reset. Figure 29 through Figure 31 illustrate the digital filter response of the fast-settling filter with the sinc³ filter response superimposed to illustrate the contrast. The fast-settling filter settling time is counterbalanced by wider bandwidth and less stop-band attenuation. Consequently, the noise performance when using this digital filter is not as high as with the sinc³ filter. The first two samples available from the ADS131M06 after a supply ramp or reset have the noise performance and frequency response consistent with the sinc³ filter. See the *Fast Startup After Power-On Reset (POR)* section for more details regarding the fast startup capabilities of the ADS131M06.

ADS131M06 SBAS949 – FEBRUARY 2020

8.3.8 DC Block Filter

The ADS131M06 includes an optional high-pass filter to eliminate any systematic offset or low-frequency noise. The filter is enabled by writing any value in the DCBLOCK[3:0] bits in the CD_TH_LSB register besides 0h. The DC block filter can be enabled and disabled on a channel-by-channel basis by the DCBLKn_DIS bit in the CHn_CFG register for each respective channel.

Figure 32 shows the topology of the DC block filter. Coefficient *a* represents a register configurable value that configures the cutoff frequency of the filter. The cutoff frequency is configured using the DCBLOCK[3:0] bits in the CD_TH_LSB register. Table 6 describes the characteristics of the filter for various DCBLOCK[3:0] settings. The data provided in Table 6 is provided for an 8.192-MHz CLKIN frequency and a 4-kSPS data rate. The frequency response of the filter response scales directly with the frequency of CLKIN and the data rate.

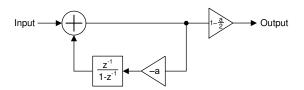


Figure 32. DC Block Filter Topology

	а	–3-dB	PASS-BAND A	TTENUATION ⁽¹⁾	SETTLING TI	ME (Samples)
DCBLOCK[3:0]	COEFFICIENT	CORNER ⁽¹⁾	50 Hz	60 Hz	SETTLED >99%	FULLY SETTLED
0h			DC bloc	k filter disabled		
1h	1/4	181 Hz	11.5 dB	10.1 dB	17	88
2h	1/8	84.8 Hz	5.89 dB	4.77 dB	36	187
3h	1/16	41.1 Hz	2.24 dB	1.67 dB	72	387
4h	1/32	20.2 Hz	657 mdB	466 mdB	146	786
5h	1/64	10.0 Hz	171 mdB	119 mdB	293	1585
6h	1/128	4.99 Hz	43.1 mdB	29.9 mdB	588	3182
7h	1/256	2.49 Hz	10.8 mdB	7.47 mdB	1178	6376
8h	1/512	1.24 Hz	2.69 mdB	1.87 mdB	2357	12764
9h	1/1024	622 mHz	671 µdB	466 µdB	4714	25540
Ah	1/2048	311 mHz	168 µdB	116 µdB	9430	51093
Bh	1/4096	155 mHz	41.9 µdB	29.1 µdB	18861	102202
Ch	1/8192	77.7 mHz	10.5 µdB	7.27 µdB	37724	204447
Dh	1/16384	38.9 mHz	2.63 µdB	1.82 µdB	75450	409156
Eh	1/32768	19.4 mHz	655 ndB	455 ndB	150901	820188
Fh	1/65536	9.70 mHz	164 ndB	114 ndB	301803	1627730

Table 6. DC Block Filter Characteristics

(1) Values given are for a 4-kSPS data rate with a 8.192-MHz CLKIN frequency.

8.3.9 Internal Test Signals

The ADS131M06 features an internal analog test signal that is useful for troubleshooting and diagnosis. A positive or negative DC test signal can be applied to the channel inputs through the input multiplexer. The multiplexer is controlled through the MUXn[1:0] bits in the CHn_CFG register. The test signals are created by internally dividing the reference voltage. The same signal is shared by all channels.

The test signal is nominally $2/15 \times V_{REF}$. The test signal automatically adjusts its voltage level with the gain setting such that the ADC always measures a signal that is $2/15 \times V_{Diff Max}$. For example, at a gain of 1, this voltage equates to 160 mV. At a gain of 2, this voltage is 80 mV.

8.3.10 Channel Phase Calibration

The ADS131M06 allows fine adjustment of the sample phase between channels through the use of channel phase calibration. This feature is helpful when different channels are measuring the outputs of different types of sensors that have different phase responses. For example, in power metrology applications, voltage can be measured by a voltage divider, whereas current is measured using a current transformer that exhibits a phase difference between its input and output signals. The differences in phase between the voltage and current measurement must be compensated to measure the power and related parameters accurately.

The phase setting of the different channels is configured by the PHASEn[9:0] bits in the CHn_CFG register corresponding to the channel whose phase adjustment is desired. The register value is a 10-bit two's complement value corresponding to the number of modulator clock cycles of phase offset compared to a reference phase of 0 degrees.

The mechanism for achieving phase adjustment derives from the $\Delta\Sigma$ architecture. The $\Delta\Sigma$ modulator produces samples continuously at the modulator frequency, f_{MOD}. These samples are filtered and decimated to the output data rate by the digital filter. The ratio between f_{MOD} and the data rate is the oversampling ratio (OSR). Each conversion result corresponds to an OSR number of modulator samples provided to the digital filter. When the different channels of the ADS131M06 have no programmed phase offset between them, the modulator clock cycles corresponding to the conversion results of the different channels are aligned in the time domain. Figure 33 depicts an example scenario where the voltage input to channel 1 has no phase offset from channel 0.

www.ti.com

ISTRUMENTS

EXAS

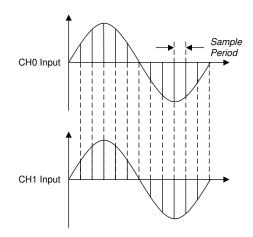


Figure 33. Two Channel Outputs With Equal Phase Settings

However, the sample period of one channel can be shifted with respect to another. If the inputs to both channels are sinusoids of the same frequency and the samples for these channels are retrieved by the host at the same time, the effect is that the phase of the channel with the modified sample period appears *shifted*. Figure 34 shows how the period corresponding to the samples are shifted between channels. Figure 35 shows how the samples appear as having generated a phase shift when they are retrieved by the host.

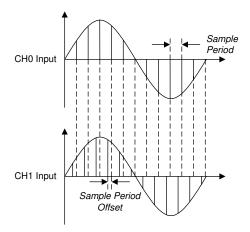


Figure 34. Channel 1 With a Positive Sample Phase Shift With Respect to Channel 0

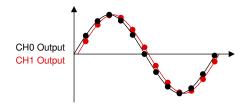


Figure 35. Channels 1 and 0 From the Perspective of the Host

The valid setting range is from -OSR / 2 to (OSR / 2) - 1, except for OSRs greater than 1024, where the phase calibration setting is limited to -512 to 511. If a value outside of -OSR / 2 and (OSR / 2) - 1 is programmed, the device internally clips the value to the nearest limit. For example, if the OSR setting is programmed to 128 and the PHASEn[9:0] bits are programmed to 0001100100b corresponding to 100 modulator clock cycles, the device sets the phase of the channel to 63 because that value is the upper limit of phase calibration for that OSR setting. Table 7 gives the range of phase calibration settings for various OSR settings.

OSR SETTING	PHASE OFFSET RANGE (t _{MOD})	PHASEn[9:0] BITS RANGE
128	-64 to 63	11 1100 0000b to 00 0011 1111b
256	-128 to 127	11 1000 0000b to 00 0111 1111b
512	-256 to 255	11 0000 0000b to 00 1111 1111b
1024	-512 to 511	10 0000 0000b to 01 1111 1111b
2048	-512 to 511	10 0000 0000b to 01 1111 1111b
4096	-512 to 511	10 0000 0000b to 01 1111 1111b
8192	-512 to 511	10 0000 0000b to 01 1111 1111b
16384	-512 to 511	10 0000 0000b to 01 1111 1111b

Table 7. Phase Calibration Setting Limits for Different OSR Settings

Follow these steps to create a phase shift larger than half the sample period for OSRs less than 2048:

- Create a phase shift corresponding to an integer number of sample periods by modifying the indices between channel data in software
- Use the phase calibration function of the ADS131M06 to create the remaining fractional sample period phase shift

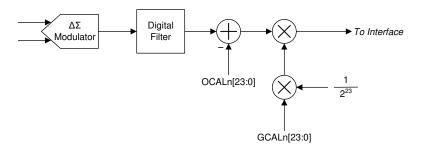
For example, to create a phase shift of 2.25 samples between channels 0 and 1, create a phase shift of two samples by aligning sample N in the channel 0 output data stream with sample N+2 in the channel 1 output data stream in the host software. Make the remaining 0.25 sample adjustment using the ADS131M06 phase calibration function.

The phase calibration settings of the channels affect the timing of the data-ready interrupt signal, DRDY. See the *Data Ready (DRDY)* section for more details regarding how phase calibration affects the DRDY signal.

8.3.11 Calibration Registers

The calibration registers allow for the automatic computation of calibrated ADC conversion results from preprogrammed values. The host can rely on the device to automatically correct for system gain and offset after the error correction terms are programmed into the corresponding device registers. The measured calibration coefficients must be store in external non-volatile memory and programmed into the registers each time the ADS131M06 powers up because the ADS131M06 registers are volatile.

The offset calibration registers are used to correct for system offset error, otherwise known as *zero error*. Offset error corresponds to the ADC output when the input to the system is zero. The ADS131M06 corrects for offset errors by subtracting the contents of the OCALn[23:0] register bits in the CHn_OCAL_MSB and CHn_OCAL_LSB registers from the conversion result for that channel before being output. There are separate CHn_OCAL_MSB and CHn_OCAL_MSB and CHnOCAL_LSB registers for each channel, which allows separate offset calibration coefficients to be programmed for each channel. The contents of the OCALn[23:0] bits are interpreted by the device as 24-bit two's complement values, which is the same format as the ADC data.


The gain calibration registers are used to correct for system gain error. Gain error corresponds to the deviation of gain of the system from its ideal value. The ADS131M06 corrects for gain errors by multiplying the ADC conversion result by the value given by the contents of the GCALn[23:0] register bits in the CHn_GCAL_MSB and CHn_GCAL_LSB registers before being output. There are separate CHn_GCAL_MSB and CHn_GCAL_LSB registers for each channel, which allows separate gain calibration coefficients to be programmed for each channel. The contents of the GCALn[23:0] bits are interpreted by the device as 24-bit unsigned values corresponding to linear steps ranging from gains of 0 to $2 - (1 / 2^{23})$. Table 8 describes the relationship between the GCALn[23:0] bit values and the gain calibration factor.

GCALn[23:0] VALUE	GAIN CALIBRATION FACTOR
000000h	0
000001h	1.19 × 10 ^{−7}
800000h	1
FFFFEh	$2 - 2.38 \times 10^{-7}$
FFFFFh	2 – 1.19 × 10 ⁻⁷

Table 8. GCALn[23:0] Bit Mapping

The calibration registers do not need to be enabled because they are always in use. The OCALn[23:0] bits have a default value of 000000h resulting in no offset correction. Similarly, the GCALn[23:0] bits default to 800000h resulting in a gain calibration factor of 1.

Figure 36 shows a block diagram illustrating the mechanics of the calibration registers on one channel of the ADS131M06.

Figure 36. Calibration Block Diagram

8.3.12 Fast Startup After Power-On Reset (POR)

The ADS131M06 begins generating conversion data shortly after startup. The fast startup feature is useful for applications such as circuit breakers powered from the mains that require a fast determination of the input voltage soon after power is applied to the device. Fast startup is accomplished via two mechanisms. First, the device internal power-supply circuitry is designed specifically to enable fast startup. Second, the digital decimation filter dynamically switches from a fast-settling filter to a sinc³ filter when the sinc³ filter has had time to settle.

After the supplies are ramped to 90% of their final <u>values</u>, the device requires t_{POR} for the internal circuitry to settle. The end of t_{POR} is indicated by a transition of DRDY from low to high. The transition of DRDY from low to high also indicates the SPI interface is ready to accept commands.

The $\Delta\Sigma$ modulators of the ADS131M06 require CLKIN to toggle after t_{POR} to begin working. The modulators begin sampling the input signal after a modulator settling time of 8 × t_{MOD} when CLKIN begins toggling. Therefore, provide a valid clock signal on CLKIN as soon as possible after the supply ramp to achieve the fastest possible startup time.

The data generated by the $\Delta\Sigma$ modulators are fed to the digital filter blocks. The data are provided to both the fast-settling filters and the sinc³ filters. The fast-settling filter requires only one data rate period to provide settled data. Meanwhile, the sinc³ filter requires three data rate periods to settle. The fast-settling filter generates the output data for the two interim ADC output samples indicated by DRDY transitioning from high to low when the sinc³ filter is settling. The device disables the fast-settling filter and provides conversion data from the sinc³ filter for the third and following samples. Figure 37 illustrates the timing of the fast-startup feature.

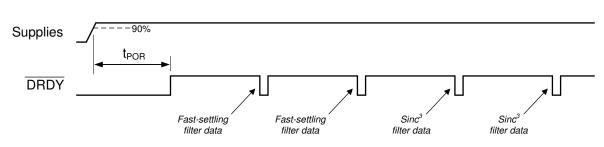


Figure 37. Fast-Settling Behavior

The fast-settling filter provides conversion data that are significantly noisier than the data that comes from the sinc³ filter, but allows the device to provide settled conversion data during the longer settling time of the more accurate sinc³ digital filter. The *Electrical Characteristics* table provides the noise specifications of the ADS131M06 when using the fast-settling filter. Figure 29 and Figure 31 compare the frequency domain transfer functions of the fast-settling filter to the sinc³ filter. If the level of precision provided by the fast-settling filter is insufficient even for the first samples immediately following startup, ignore the first two instances of DRDY toggling from high to low and begin collecting data on the third instance.

8.3.12.1 Startup Following Reset

The startup process following a RESET command (as described in the *RESET Command* section) or a pin reset using the SYNC/RESET pin is similar to what occurs after power up. There is no t_{POR} in the case of a command or pin reset because the supplies are already ramped. After reset, the device waits for the modulator settling time of 8 × t_{MOD} before providing modulator samples to the two digital filters. The fast-settling filter is enabled for the first two output samples.

8.3.13 Communication Cyclic Redundancy Check (CRC)

The ADS131M06 features a cyclic redundancy check (CRC) engine on both input and output data to mitigate SPI communication errors. The CRC word is 16 bits wide for either input or output CRC. Coverage includes all words in the SPI frame where the CRC is enabled, including padded bits in a 32-bit word size.

CRC on the SPI input is optional and can be enabled and disabled by writing the RX_CRC_EN bit in the MODE register. Input CRC is disabled by default. The device checks the provided input CRC against the CRC generated based on the input data. A CRC error occurs if the CRC words do not match. The device does not execute any commands for a failed CRC check if the received command is anything other than WREG where the number of registers to write is more than one. Write a single register at a time if CRC protection is desired for register writes. The device sets the CRC_ERR bit in the STATUS register for all cases of a CRC error.

Output CRC is not optional and always appears at the end of the output frame. The host can ignore the data if output CRC is not used.

There are two types of CRC polynomials available: CCITT CRC and ANSI CRC (CRC-16). The CRC setting determines the algorithm for both the input and output CRC. The CRC type is programmed by the CRC_TYPE bit in the MODE register. Table 9 lists the details of the two CRC types.

CRC TYPE	POLYNOMIAL	BINARY POLYNOMIAL
CCITT CRC	$x^{16} + x^{12} + x^5 + 1$	0001 0000 0010 0001
ANSI CRC	$x^{16} + x^{15} + x^2 + 1$	1000 0000 0000 0101

Table 9. CRC Types

8.3.14 Register Map CRC

The ADS131M06 performs a CRC on its own register map as a means to check for unintended changes to the registers. Enable the register map CRC by setting the REG_CRC_EN bit in the MODE register. When enabled, the device constantly calculates the register map CRC using each bit in the writable register space. The register addresses covered by the register map CRC on the ADS131M06 are 02h through 26h. The CRC is calculated beginning with the MSB of register 02h and ending with the LSB of register 26h using the polynomial selected in the CRC_TYPE bit in the MODE register.

The calculated CRC is a 16-bit value and is stored in the REGMAP_CRC register. The calculation is done using one register map bit per CLKIN period and constantly checks the result against the previous calculation. The REG_MAP bit in the STATUS register is set to flag the host if the register map CRC changes, including changes resulting from register writes. The bit is cleared by reading the STATUS register, or by the STATUS register being output as a response to the NULL command.

8.4 Device Functional Modes

Figure 38 shows a state diagram depicting the major functional modes of the ADS131M06 and the transitions between them.

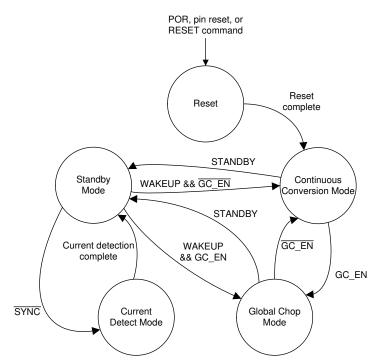


Figure 38. State Diagram Depicting Device Functional Modes

8.4.1 Power-Up and Reset

The ADS131M06 is reset in one of three ways: by a power-on reset (POR), by the <u>SYNC/RESET</u> pin, or by a RESET command. After a reset occurs, the configuration registers are reset to the default values and the device begins generating conversion data as soon as data are available.

8.4.1.1 Power-On Reset

Power-on reset (POR) is the reset that occurs when a valid supply voltage is first applied. The POR process requires t_{POR} from when the supply voltages reach 90% of their nominal value. Internal circuitry powers up and the registers are set to their default state during this time. The DRDY pin transitions from low to high immediately after t_{POR} indicating the SPI interface is ready for communication. The device ignores any SPI communication before this point.

8.4.1.2 SYNC/RESET Pin

The SYNC/RESET pin is an active low, dual-function pin that generates a reset if the pin is held low longer than $t_{w(RSL)}$. The device maintains a reset state until SYNC/RESET is returned high. The host must wait for at least t_{REGACQ} after SYNC/RESET is brought high before communicating with the device via SPI for the registers to assume their default values. Conversion data are generated immediately after the registers are reset to their default values, as described in the *Startup Following Reset* section.

Copyright © 2020, Texas Instruments Incorporated

Device Functional Modes (continued)

8.4.1.3 RESET Command

The ADS131M06 can be reset via the SPI RESET command (0011h). The device communicates in frames of a fixed length. See the *SPI Communication Frames* section for details regarding SPI data framing on the ADS131M06. The RESET command occurs in the first word of the data frame, but the command is not latched by the device until the entire frame is complete. After the response completes channel data and CRC words are clocked out. Terminating the frame early causes the RESET command to be ignored. Eight words are required to complete a frame on the ADS131M06.

A reset occurs immediately after the command is latched. The host must wait for t_{REGACQ} before communicating with the device to ensure the registers have assumed their default settings. Conversion data are generated immediately after the registers are reset to their default values, as described in the *Startup Following Reset* section.

8.4.2 Conversion Modes

There are two ADC conversion modes on the ADS131M06: continuous-conversion and global-chop mode. Continuous-conversion mode is a mode where ADC conversions are generated constantly by the ADC at a rate defined by f_{MOD} / OSR. Global-chop mode differs from continuous-conversion mode because global-chop periodically chops (or swaps) the inputs, which reduces system offset errors at the cost of settling time between the points when the inputs are swapped. In either continuous-conversion or global-chop mode, there are three power modes that provide flexible options to scale power consumption with bandwidth and dynamic range. The *Power Modes* section discusses these power modes in further detail.

8.4.2.1 Continuous-Conversion Mode

Continuous-conversion mode is the mode in which ADC data are generated constantly at the rate of f_{MOD} / OSR. New data are indicated by a DRDY falling edge at this rate. Continuous-conversion mode is intended for measuring AC signals because this mode allows for higher output data rates than global-chop mode.

8.4.2.2 Global-Chop Mode

In global-chop mode, the ADC swaps its inputs prior to generating each sample in order to reduce the offset error inherent to the inputs caused by slight mismatch in the internal circuitry. This mode is intended for applications that measure DC input signals with no or very low offset errors introduced by the application.

This mode always uses the sinc³ digital filter, which requires $3 \times OSR / f_{MOD}$ to generate a settled result. Therefore, the device waits for $3 \times OSR / f_{MOD}$ after the modulator begins sampling for the filter to settle before providing a sample result to the host.

The ADS131M06 allows a programmable delay (t_{GC_DLY}) between the end of the previous sample period and the beginning of the subsequent sample period after the inputs are chopped. This delay is to allow for the external input circuitry to settle because the chopping switches interface directly with the pins. The GC_DLY[3:0] bits in the CFG register configure the delay after chopping. The delay is measured in modulator clock periods from 2 to 65,536.

Phase calibration is automatically disabled in global-chop mode. A DRDY falling edge is generated each time a new sample is generated. The test signal cannot be measured in global-chop mode. Equation 7 describes the sample period in global-chop mode.

 $t_{SAMPLE} = t_{GC_DLY} + 3 \times OSR / f_{MOD}$

(7)

8.4.3 Power Modes

In both continuous-conversion and global-chop mode, there are three selectable power modes that allow scaling of power with bandwidth and performance: high-resolution (HR) mode, low-power (LP) mode, and very-low-power (VLP) mode. The mode is selected by the PWR[1:0] bits in the CLOCK register. See the *Recommended Operating Conditions* table in the *Specifications* section for restrictions on the CLKIN frequency for each power mode.

Device Functional Modes (continued)

8.4.4 Standby Mode

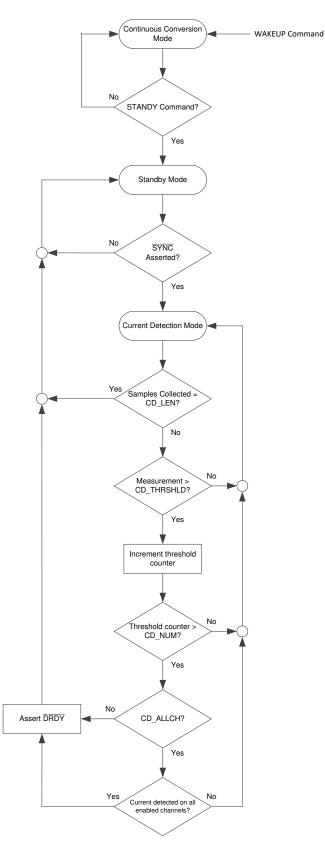
Standby mode is a low-power state in which all channels are disabled, and the reference and other non-essential circuitry are powered down. This mode differs from completely powering down the device because the device retains its register settings. Enter standby mode by sending the STANDBY command (0022h). Stop toggling CLKIN when the device is in standby mode to minimize device power consumption. Exit standby mode by sending the WAKEUP command (0033h).

8.4.5 Current-Detect Mode

Current-detect mode is a special mode that is helpful for applications requiring tamper detection when the equipment is in a low-power state. In this mode, the ADS131M06 collects a configurable number of samples at a nominal data rate of 2.7 kSPS and compares the absolute value of the results to a programmable threshold. If a configurable number of results exceed the threshold, the host is notified via a DRDY falling edge and the device returns to standby mode. Enter current-detect mode by providing a negative pulse on SYNC/RESET with a pulse duration less than $t_{w(RSL)}$ when in standby mode. Current-detect mode can only be entered from standby mode.

The device uses a limited power operating mode to generate conversions in current-detect mode. The conversion results are only used for comparison by the internal digital threshold comparator and are not accessible by the host. The device uses an internal oscillator that enables the device to capture the data without the use of the external clock input. Do not toggle CLKIN when in current-detect mode to minimize device power consumption. Do not place a capacitor on the REFIN pin if current-detect mode is used. Capacitance on this pin requires time to start up, and the resulting ADC conversions generated during current-detect mode are not valid when the voltage on the REFIN pin is charging.

Current-detect mode is configured in the CFG, THRSHLD_MSB, and THRSHLD_LSB registers. Enable and disable current-detect mode by toggling the CD_EN bit in the CFG register. The THRSHLD_MSB and THRSHLD_LSB registers contain the CD_THRSH[23:0] bits that represent the digital comparator threshold value during current detection.


The number of samples used for current detection are programmed by the CD_LEN[2:0] bits in the CFG register. The number of samples used for current detection range from 128 to 3584.

The programmable values in CD_NUM[2:0] configure the number of samples that must exceed the threshold for a detection to occur. The purpose of requiring multiple samples for detection is to control noisy values that may exceed the threshold, but do not represent a high enough power level to warrant action by the host. In summary, the conversion result must exceed the value programmed in CD_THRSH[23:0] a number of times as represented by the value stored in CD_NUM[2:0].

The device can be configured to notify the host based on any of the results from either individual channels, all channels, or any combination of channels. The CD_ALLCH bit in the CFG register determines how many channels are required to exceed the programmed thresholds to trigger a current detection. When the bit is 1, all enabled channels are required to meet the current detection requirements in order for the host to be notified. If the bit is 0, any enabled channel triggers a current detection notification if the requirements are met. Enable and disable channels using the CHn_EN bits in the CLK register to control which combination of channels must meet the requirements to trigger a current-detection notification.

Figure 39 illustrates a flow chart depicting the current-detection process on the ADS131M06.

Device Functional Modes (continued)

8.5 Programming

8.5.1 Interface

The ADS131M06 uses an SPI-compatible interface to configure the device and retrieve conversion data. The device always acts as an SPI slave; SCLK and CS are inputs to the interface. The interface operates in SPI mode 1 where CPOL = 0 and CPHA = 1. In SPI mode 1, the SCLK idles low and data are launched or changed only on SCLK rising edges; data are latched or read by the master and slave on SCLK falling edges. The interface is full-duplex, meaning data can be sent and received simultaneously by the interface. The device includes the typical SPI signals: SCLK, CS, DIN (MOSI), and DOUT (MISO). In addition, there are two other digital pins that provide additional functionality. The DRDY pin serves as a flag to the host to indicate new conversion data are available. The SYNC/RESET pin is a dual-function pin that allows synchronization of conversions to an external event and allows for a hardware device reset.

8.5.1.1 Chip Select (\overline{CS})

The \overline{CS} pin is an active low input signal that selects the device for communication. The device ignores any communication and DOUT is high impedance when \overline{CS} is held high. Hold \overline{CS} low for the duration of a communication frame to ensure proper communication. The interface is reset each time \overline{CS} is taken high.

8.5.1.2 Serial Data Clock (SCLK)

The SCLK pin is an input that serves as the serial clock for the interface. Output data on the DOUT pin transition on the rising edge of SCLK and input data on DIN are latched on the falling edge of SCLK.

8.5.1.3 Serial Data Input (DIN)

The DIN pin is the master out, slave in (MOSI) pin for the device. Serial commands are shifted in through the DIN pin by the device with each SCLK falling edge when the \overline{CS} pin is low.

8.5.1.4 Serial Data Output (DOUT)

The DOUT pin is the master in, slave out (MISO) pin for the device. The device shifts out command responses and ADC conversion data serially with each rising SCLK edge when the CS pin is low. This pin assumes a high-impedance state when CS is high.

8.5.1.5 Data Ready (DRDY)

The DRDY pin is an active low output that indicates when new conversion data are ready in conversion mode or that the requirements are met for current detection when in current-detect mode. Connect the DRDY pin to an input on the host to trigger periodic data retrieval in conversion mode. The period between each DRDY falling edge is the data rate period.

The timing of DRDY with respect to the sampling of a given channel on the ADS131M06 depends on the phase calibration setting of the channel and the state of the DRDY_SEL[1:0] bits in the MODE register. Setting the DRDY_SEL[1:0] bits to 00b configures DRDY to assert when the channel with the largest positive phase calibration setting, or the most lagging, has a new conversion result. When the bits are 01b, the device asserts DRDY each time any channel data are ready. Finally, setting the bits to either 10b or 11b configures the device to assert DRDY when the channel with the most negative phase calibration setting, or the most leading, has new conversion data. Changing the DRDY_SEL[1:0] bits has no effect on DRDY behavior in global-chop mode because phase calibration is automatically disabled in global-chop mode.

The timing of the first DRDY assertion after channels are enabled or <u>after a</u> synchronization pulse is provided depends on the phase calibration <u>setting</u>. If the channel that causes DRDY to assert has a phase calibration setting less than zero, the first DRDY assertion can be less than one sample period from the channel being enabled or the occurrence of the synchronization pulse. However, DRDY asserts in the next sample period if the phase setting puts the output timing too close to the beginning of the sample period.

Table 10 lists the phase calibration setting boundary at which DRDY either first asserts within a sample period, or in the next sample period. If the setting for the channel configured to control DRDY assertion is greater than the value listed in Table 10 for each OSR, DRDY asserts for the first time within a sample period of the channel being enabled or the synchronization pulse. If the phase setting value is equal to or more negative than the value in Table 10, DRDY asserts in the following sample period. See the *Synchronization* section for more information about synchronization.

Programming (continued)

Table 10. Phase Setting First DRDY Assertion Boundary

OSR	PHASE SETTING BOUNDARY	PHASEn[9:0] BIT SETTING BOUNDARY
128	-19	3EDh
256	-83	3ADh
512	-211	32Dh
1024	-467	22Dh
>1024	None	N/A

The DRDY_HIZ bit in the MODE register configures the state of the $\overline{\text{DRDY}}$ pin when deasserted. By default the bit is 0b, meaning the pin is actively driven high using a push-pull output stage. When the bit is 1b, DRDY behaves like an open-drain digital output. Use a 100-k Ω pullup resistor to pull the pin high when DRDY is not asserted.

The DRDY_FMT bit in the MODE register determines the format of the DRDY signal. When the bit is 0b, new data are indicated by DRDY changing from high to low and remaining low until either all of the conversion data are shifted out of the device, or remaining low and going high briefly before the next time DRDY transitions low. When the DRDY_FMT bit is 1b, new data are indicated by a short negative pulse on the DRDY pin. If the host does not read conversion data after the DRDY pulse when DRDY_FMT is 1b, the device skips a conversion result and does not provide another DRDY pulse until the second following instance when data are ready because of how the pulse is generated. See the *Collecting Data* for the First Time or After a Pause in Data Collection section for more information about the behavior of DRDY when data are not consistently read.

8.5.1.6 Conversion Synchronization or System Reset (SYNC/RESET)

The SYNC/RESET pin is a multi-function digital input pin that serves primarily to allow the host to synchronize conversions to an external process or to reset the device. See the *Synchronization* section for more details regarding the synchronization function. See the *SYNC/RESET Pin* section for more details regarding how the device is reset.

8.5.1.7 SPI Communication Frames

SPI communication on the ADS131M06 is performed in frames. Each SPI communication frame consists of several words. The word size is configurable as either 16 bits, 24 bits, or 32 bits by programming the WLENGTH[1:0] bits in the MODE register.

The interface is full duplex, meaning that the interface is capable of transmitting data on DOUT while simultaneously receiving data on DIN. The input frame that the host sends on DIN always begins with a command. The first word on the output frame that the device transmits on DOUT always begins with the response to the command that was written on the previous input frame. The number of words in a command depends on the command provided. For most commands, there are eight words in a frame. On DIN, the host provides the command, the command CRC if input CRC is enabled or a word of zeros if input CRC is disabled, and six additional words of zeros. Simultaneously on DOUT, the device outputs the response from the previous frame command, six words of ADC data representing the six ADC channels, and a CRC word. Figure 40 illustrates a typical command frame structure.

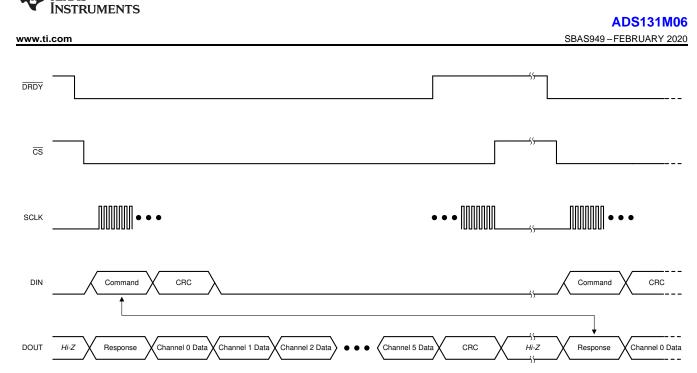


Figure 40. Typical Communication Frame

There are some commands that require more than eight words. In the case of a read register (RREG) command where more than a single register is read, the response to the command contains the acknowledgment of the command followed by the register contents requested, which may require a larger frame depending on how many registers are read. See the *RREG* section for more details on the RREG command.

In the case of a write register (WREG) command where more than a single register is written, the frame extends to accommodate the additional data. See the *WREG* section for more details on the WREG command.

See the *Commands* section for a list of all valid commands and their corresponding responses on the ADS131M06.

Under special circumstances, a data frame can be shortened by the host. See the *Short SPI Frames* section for more information about artificially shortening communication frames.

8.5.1.8 SPI Communication Words

EXAS

An SPI communication frame with the ADS131M06 is made of words. Words on DIN can contain commands, register settings during a register write, or a CRC of the input data. Words on DOUT can contain command responses, register settings during a register read, ADC conversion data, or CRC of the output data.

Words can be 16, 24, or 32 bits. The word size is configured by the WLENGTH[1:0] bits in the MODE register. The device defaults to a 24-bit word size. Commands, responses, CRC, and registers always contain 16 bits of actual data. These words are always most significant bit (MSB) aligned, and therefore the least significant bits (LSBs) are zero-padded to accommodate 24- or 32-bit word sizes. ADC conversion data are nominally 24 bits. The ADC truncates its eight LSBs when the device is configured for 16-bit communication. There are two options for 32-bit communication available for ADC data that are configured by the WLENGTH[1:0] bits in the MODE register. Either the ADC data can be LSB padded with zeros or the data can be MSB sign extended.

8.5.1.9 ADC Conversion Data

The device provides conversion data for each channel at the data rate. The time when data are available relative to DRDY asserting is determined by the channel phase calibration setting and the DRDY_SEL[1:0] bits in the MODE register when in continuous-conversion mode. All data are available immediately following DRDY assertion in global-chop mode. The conversion status of all channels is available as the DRDY[5:0] bits in the STATUS register. The STATUS register content is automatically output as the response to the NULL command.

Conversion data are 24 bits. The data LSBs are truncated when the device operates with a 16-bit word size. The LSBs are zero padded or the MSBs sign extended when operating with a 32-bit word size depending on the setting of the WLENGTH[1:0] bits in the MODE register.

Copyright © 2020, Texas Instruments Incorporated

Figure 42 illustrates an example of how to collect data after a period of the ADC running, but where no data are being retrieved. In this instance, the SYNC/RESET pin is used to clear the internal FIFOs and realign the ADS131M06 output data with the host.

Data are given in binary two's complement format. Use Equation 8 to calculate the size of one code (LSB). $1 \text{ LSB} = (2.4 / \text{Gain}) / 2^{24} = +\text{FSR} / 2^{23}$

A positive full-scale input V_{IN} ≥ +FSR – 1 LSB = 1.2 / Gain – 1 LSB produces an output code of 7FFFFFh and a

negative full-scale input ($V_{IN} \leq -FSR = -1.2$ / Gain) produces an output code of 800000h. The output clips at these codes for signals that exceed full-scale.

Table 11 summarizes the ideal output codes for different input signals.

Figure 41 shows the mapping of the analog input signal to the output codes.

•	1 0	
INPUT SIGNAL, $V_{IN} = V_{AINP} - V_{AINN}$	IDEAL OUTPUT CODE	
≥ FSR (2 ²³ – 1) / 2 ²³	7FFFFh	
FSR / 2 ²³	000001h	
0	000000h	
FSR / 2 ²³	FFFFFh	
≤ –FSR	800000h	

Table 11. Ideal Output Code versus Input Signal

Figure 41. Code Transition Diagram

8.5.1.9.1 Collecting Data for the First Time or After a Pause in Data Collection

Take special precaution when collecting data for the first time or when beginning to collect data again after a pause. The internal mechanism that outputs data contains a first-in-first-out (FIFO) buffer that can store two samples of data per channel at a time. The DRDY flag for each channel in the STATUS register remains set until both samples for each channel are read from the device. This condition is not obvious under normal circumstances when the host is reading each consecutive sample from the device. In that case, the samples are cleared from the device each time new data are generated so the DRDY flag for each channel in the STATUS register is cleared with each read. However, both slots of the FIFO are full if a sample is missed or if data are not read for a period of time. Either strobe the SYNC/RESET pin to re-synchronize conversions and clear the FIFOs, or quickly read two data packets when data are read for the first time or after a gap in reading data. This process ensures predictable DRDY pin behavior. See the Synchronization section for information about the synchronization feature. These methods do not need to be employed if each channel data was read for each output data period from when the ADC was enabled.

www.ti.com

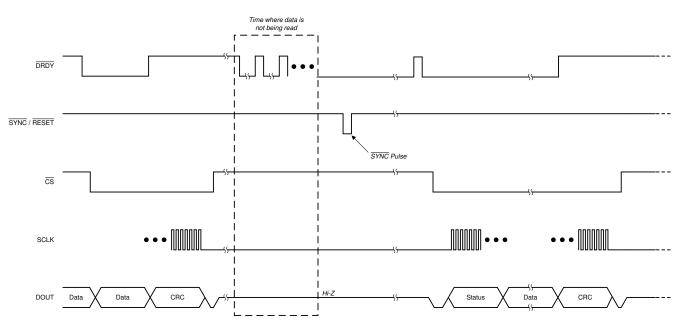


Figure 42. Collecting Data After a Hiatus Using the SYNC/RESET Pin

Another functionally equivalent method for clearing the FIFO after a hiatus in collecting data is to begin by reading two samples in quick succession. Figure 43 depicts this method. This example shows when the DRDY_FMT bit in the MODE register is set to 0b indicating DRDY is a level output. There is a very narrow pulse on DRDY immediately after the first set of data are shifted out of the device. This pulse may be too narrow for some microcontrollers to detect. Therefore, do not rely upon this pulse but instead immediately read out the second data set after the first data set. The host operates synchronous to the device after the second word is read from the device.

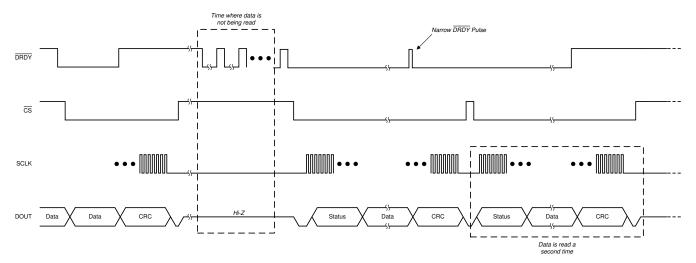


Figure 43. Collecting Data After a Hiatus by Reading Data Twice

8.5.1.10 Commands

Table 12 contains a list of all valid commands, a short description of their functionality, their binary command word, and the expected response that appears in the following frame.

COMMAND	DESCRIPTION	COMMAND WORD	RESPONSE
NULL	No operation	0000 0000 0000 0000	STATUS register
RESET	Reset the device	0000 0000 0001 0001	1111 1111 0010 0110
STANDBY	Place the device into standby mode	0000 0000 0010 0010	0000 0000 0010 0010
WAKEUP	Wake the device from standby mode to conversion mode	0000 0000 0011 0011	0000 0000 0011 0011
LOCK	Lock the interface such that only the NULL, UNLOCK, and RREG commands are valid	0000 0101 0101 0101	0000 0101 0101 0101
UNLOCK	Unlock the interface after the interface is locked	0000 0110 0101 0101	0000 0110 0101 0101
RREG	Read <i>nnn nnnn</i> plus 1 registers beginning at address a aaaa a	101a aaaa annn nnnn	dddd dddd dddd dddd or 111a aaa annn nnnn ⁽¹⁾
WREG	Write <i>nnn nnnn</i> plus 1 registers beginning at address <i>a</i> aaaa a	011 <i>a aaaa annn nnn</i> n	010 <i>a aaaa ammm</i> <i>mmmm⁽²⁾</i>

Table 12. Command Definitions

(1) When *nnn nnnn* is 0, the response is the requested register data *dddd dddd dddd dddd*. When *nnn nnnn* is greater than 0, the response begins with 111*a aaaa annn nnnn*, followed by the register data.

(2) In this case *mmm mmmm* represents the number of registers that are actually written minus one. This value may be less than *nnn nnnn* in some cases.

8.5.1.10.1 NULL (0000 0000 0000 0000)

The NULL command is the *no-operation* command that results in no registers read or written, and the state of the device remains unchanged. The intended use case for the NULL command is during ADC data capture. The command response for the NULL command is the contents of the STATUS register. Any invalid command also gives the NULL response.

8.5.1.10.2 RESET (0000 0000 0001 0001)

The RESET command resets the ADC to its register defaults. The command is latched by the device at the end of the frame. A reset occurs immediately after the command is latched. The host must wait for t_{REGACQ} after reset before communicating with the device to ensure the registers have assumed their default settings. The device sends an acknowledgment of FF26h when the ADC is properly RESET. The device responds with 0011h if the command word is sent but the frame is not completed and therefore the device is not reset. See the *RESET Command* section for more information regarding the operation of the reset command. Figure 44 illustrates a properly sent RESET command frame.

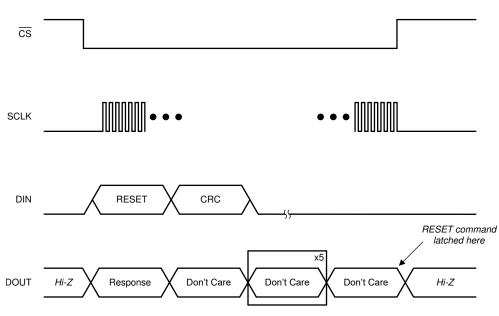


Figure 44. RESET Command Frame

8.5.1.10.3 STANDBY (0000 0000 0010 0010)

The STANDBY command places the device in a low-power standby mode. The command is latched by the device at the end of the frame. The device enters standby mode immediately after the command is latched. See the *Standby Mode* section for more information. This command has no effect if the device is already in standby mode.

8.5.1.10.4 WAKEUP (0000 0000 0011 0011)

The WAKEUP command returns the device to conversion mode from standby mode. This command has no effect if the device is already in conversion mode.

8.5.1.10.5 LOCK (0000 0101 0101 0101)

The LOCK command locks the interface, preventing the device from accidentally latching unwanted commands that can change the state of the device. When the interface is locked, the device only responds to the NULL, RREG, and UNLOCK commands. The device continues to output conversion data even when locked.

8.5.1.10.6 UNLOCK (0000 0110 0110 0110)

The UNLOCK command unlocks the interface if previously locked by the LOCK command.

8.5.1.10.7 RREG (101*a aaaa annn nnnn*)

The RREG is used to read the device registers. The binary format of the command word is 101a aaaa annn nnnn, where a aaaa a is the binary address of the register to begin reading and nnn nnnn is the unsigned binary number of consecutive registers to read minus one. There are two cases for reading registers on the ADS131M06. When reading a single register (*nnn nnnn* = 000 0000b), the device outputs the register contents in the command response word of the following frame. If multiple registers are read using a single command (*nnn nnnn* > 000 0000b), the device outputs the requested register data sequentially in order of addresses.

8.5.1.10.7.1 Reading a Single Register

Read a single register from the device by specifying *nnn nnnn* as zero in the RREG command word. As with all SPI commands on the ADS131M06, the response occurs on the output in the frame following the command. Instead of a unique acknowledgment word, the response word is the contents of the register whose address is specified in the command word. Figure 45 shows an example of reading a single register.

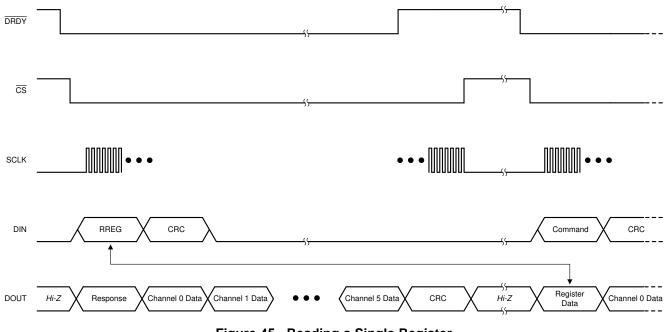


Figure 45. Reading a Single Register

8.5.1.10.7.2 Reading Multiple Registers

Multiple registers are read from the device when nnn nnnn is specified as a number greater than zero in the RREG command word. Like all SPI commands on the ADS131M06, the response occurs on the output in the frame following the command. Instead of a single acknowledgment word, the response spans multiple words in order to shift out all requested registers. Continue toggling SCLK to accommodate outputting the entire data stream. ADC conversion data are not output in the frame following an RREG command to read multiple registers. Figure 46 shows an example of reading multiple registers.

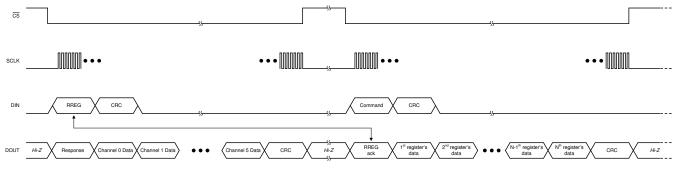


Figure 46. Reading Multiple Registers

8.5.1.10.8 WREG (011a aaaa annn nnnn)

The WREG command allows writing an arbitrary number of contiguous device registers. The binary format of the command word is 011*a* aaaa annn nnnn, where a aaaa a is the binary address of the register to begin writing and *nnn nnnn* is the unsigned binary number of consecutive registers to write minus one. Send the data to be written immediately following the command word. Write the intended contents of each register into individual words, MSB aligned.

If the input CRC is enabled, write this CRC after the register data. The registers are written to the device as they are shifted into DIN. Therefore, a CRC error does not prevent an erroneous value from being written to a register. An input CRC error during a WREG command sets the CRC_ERR bit in the STATUS register.

The device ignores writes to read-only registers or to out-of-bounds addresses. Gaps in the register map address space are still included in the parameter *nnn nnnn*, but are not writeable so no change is made to them. The response to the WREG command that occurs in the following frame appears as 010*a aaaa ammm mmmm* where *mmm mmmm* is the number of registers actually written minus one. This number can be checked by the host against *nnn nnnn* to ensure the expected number of registers are written.

Figure 47 shows a typical WREG sequence. In this example, the number of registers to write is larger than the number of ADC channels and, therefore, the frame is extended beyond the ADC channels and output CRC word. Ensure all of the ADC data and output CRC are shifted out during each transaction where new data are available. Therefore, the frame must be extended beyond the number of words required to send the register data in some cases.

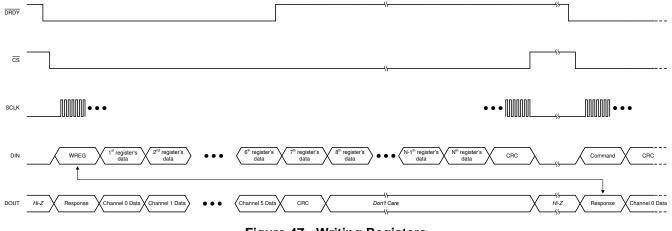


Figure 47. Writing Registers

8.5.1.11 Short SPI Frames

The SPI frame can be shortened to only send commands and receive responses if the ADCs are disabled and no ADC data are being output by the device. Read out all of the expected output data words from each sample period if the ADCs are enabled. Reading all of the data output with each frame ensures predictable DRDY pin behavior. If reading out all the data on each output data period is not feasible, see the *Collecting Data for the First Time or After a Pause in Data Collection* section on how to begin reading data again after a pause from when the ADCs were last enabled.

A short frame is not possible when using the RESET command. A full frame must be provided for a device reset to take place when providing the RESET command.

8.5.2 Synchronization

Synchronization can be performed by the host to ensure the ADC conversions are synchronized to an external event. For example, synchronization can realign the data capture to the expected timing of the host if a glitch on the clock causes the host and device to become out of synchronization.

Provide a negative pulse on the $\overline{SYNC/RESET}$ pin with a duration less than $t_{w(RSL)}$ but greater than a CLKIN period to trigger synchronization. The device internally compares the leading negative edge of the pulse to its internal clock that tracks the data rate. The internal data rate clock has timing equivalent to the DRDY pin if configured to assert with a phase calibration setting of 0b. If the negative edge on $\overline{SYNC/RESET}$ aligns with the internal data rate clock, the device is determined to be synchronized and therefore no action is taken. If there is misalignment, the digital filters on the device are reset to be synchronized with the $\overline{SYNC/RESET}$ pulse. Conversions are immediately restarted when the $\overline{SYNC/RESET}$ pin is toggled in global-chop mode.

The phase calibration settings on all channels are retained during synchronization. Thus, channels with non-zero phase calibration settings generate conversion results less than a data rate period after the synchronization event occurs. However, the results can be corrupted and are not settled until the respective channels have at least three conversion cycles for the sinc³ filter to settle.

8.6 Registers

Table 13 lists the ADS131M06 registers.

		Table 13. Registers	
Address	Acronym	Register Name	Section
00h	ID	ID Register	Go
01h	STATUS	STATUS Register	Go
02h	MODE	MODE Register	Go
03h	CLOCK	CLOCK Register	Go
04h	GAIN1	GAIN1 Register	Go
05h	GAIN2	GAIN2 Register	Go
06h	CFG	CFG Register	Go
07h	THRSHLD_MSB	Threshold MSB Register	Go
08h	THRSHLD_LSB	Threshold LSB Register	Go
09h	CH0_CFG	Channel 0 CFG Register	Go
0Ah	CH0_OCAL_MSB	Channel 0 Offset Calibration MSB Register	Go
0Bh	CH0_OCAL_LSB	Channel 0 Offset Calibration LSB Register	Go
0Ch	CH0_GCAL_MSB	Channel 0 Gain Calibration MSB Register	Go
0Dh	CH0_GCAL_LSB	Channel 0 Gain Calibration LSB Register	Go
0Eh	CH1_CFG	Channel 1 CFG Register	Go
0Fh	CH1_OCAL_MSB	Channel 1 Offset Calibration MSB Register	Go
10h	CH1_OCAL_LSB	Channel 1 Offset Calibration LSB Register	Go
11h	CH1_GCAL_MSB	Channel 1 Gain Calibration MSB Register	Go
12h	CH1_GCAL_LSB	Channel 1 Gain Calibration LSB Register	Go
13h	CH2_CFG	Channel 2 CFG Register	Go
14h	CH2_OCAL_MSB	Channel 2 Offset Calibration MSB Register	Go
15h	CH2_OCAL_LSB	Channel 2 Offset Calibration LSB Register	Go
16h	CH2_GCAL_MSB	Channel 2 Gain Calibration MSB Register	Go
17h	CH2_GCAL_LSB	Channel 2 Gain Calibration LSB Register	Go
18h	CH3_CFG	Channel 3 CFG Register	Go
19h	CH3_OCAL_MSB	Channel 3 Offset Calibration MSB Register	Go
1Ah	CH3_OCAL_LSB	Channel 3 Offset Calibration LSB Register	Go
1Bh	CH3_GCAL_MSB	Channel 3 Gain Calibration MSB Register	Go
1Ch	CH3_GCAL_LSB	Channel 3 Gain Calibration LSB Register	Go
1Dh	CH4_CFG	Channel 4 CFG Register	Go
1Eh	CH4_OCAL_MSB	Channel 4 Offset Calibration MSB Register	Go
1Fh	CH4_OCAL_LSB	Channel 4 Offset Calibration LSB Register	Go
20h	CH4_GCAL_MSB	Channel 4 Gain Calibration MSB Register	Go
21h	CH4_GCAL_LSB	Channel 4 Gain Calibration LSB Register	Go
22h	CH5_CFG	Channel 5 CFG Register	Go
23h	CH5_OCAL_MSB	Channel 5 Offset Calibration MSB Register	Go
24h	CH5_OCAL_LSB	Channel 5 Offset Calibration LSB Register	Go
25h	CH5_GCAL_MSB	Channel 5 Gain Calibration MSB Register	Go
26h	CH5_GCAL_LSB	Channel 5 Gain Calibration LSB Register	Go
3Eh	REGMAP_CRC	Register Map CRC Register	Go
3Fh	RESERVED	Reserved Register	Go

Table 13. Registers

Complex bit access types are encoded to fit into small table cells. Table 14 shows the codes that are used for access types in this section.

	1	
Access Type	Code	Description
Read Type		
R	R	Read
Write Type		
W	W	Write
Reset or Default	Value	
-n		Value after reset or the default value

Table 14. Access Type Codes

8.6.1 ID Register (Address = 00h) [reset = 26xxh]

ID is shown in Figure 48 and described in Table 15.

Return to the Summary Table.

Figure 48. ID Register

15	14	13	12	11	10	9	8
RESERVED					CHAN	CNT	
R-0010b				R-0110b			
7	6	5	4	3	2	1	0
			RESER	VED			
R-xxxxxxb							

Table 15. ID Register Field Descr	iptions
-----------------------------------	---------

Bit	Field	Туре	Reset	Description
15:12	RESERVED	R	0010b	Reserved
11:8	CHANCNT	R	0110b	Channel count, always reads 0110b.
7:0	RESERVED	R	xxxxxxxb	Reserved Values are subject to change without notice

8.6.2 STATUS Register (Address = 01h) [reset = 0500h]

STATUS is shown in Figure 49 and described in Table 16.

Return to the Summary Table.

Figure 49. STATUS Register

15	14	13	12	11	10	9	8
LOCK	F_RESYNC	REG_MAP	CRC_ERR	CRC_TYPE	RESET	WLEI	NGTH
R-0b	R-0b	R-0b	R-0b	R-0b	R-1b	R-	01b
7	6	5	4	3	2	1	0
RESERVED	RESERVED	DRDY5	DRDY4	DRDY3	DRDY2	DRDY1	DRDY0
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

Bit	Field	Туре	Reset	Description	
15	LOCK	R	0b	SPI interface lock indicator	
				0b = Unlocked (default)	
				1b = Locked	
14	F_RESYNC	R	0b	ADC resynchronization indicator. Bit is set each time the ADC resynchronizes.	
				0b = No resynchronization (default)	
				1b = Resynchronization occurred	
13	REG_MAP	R	0b	Register map CRC fault indicator	
				0b = No change in the register map CRC (default)	
				1b = Register map CRC changed	
12	CRC_ERR	R	0b	SPI input CRC error indicator	
				0b = No CRC error (default)	
				1b = Input CRC error occured	
11	CRC_TYPE	R	0b	CRC type	
				0b = 16 bit CCITT (default)	
				1b = 16 bit ANSI	
10	RESET	R	1b	Reset status	
				0b = Not reset	
				1b = Reset occured (default)	
9:8	WLENGTH	R	01b	Data word length	
				00b = 16 bit	
				01b = 24 bits (default)	
				10b = 32 bits - zero padding	
				11b = 32 bits - sign extension for 24 bit ADC data	
7:6	RESERVED	R	00b	Reserved	
5	DRDY5	R	0b	Channel 5 ADC data available indicator	
				0b = No new data available	
				1b = New data are available	
4	DRDY4	R	0b	Channel 4ADC data available indicator	
				0b = No new data available	
				1b = New data are available	
L	1	1	I		

Table 16.	STATUS Registe	r Field Descri	intions (continued)	\$
	or Aroo Registe			commucu	,

Bit	Field	Туре	Reset	Description	
3	DRDY3	R	0b	Channel 3 ADC data available indicator	
				0b = No new data available	
				1b = New data are available	
2	DRDY2	R	0b	Channel 2 ADC data available indicator	
				0b = No new data available	
				1b = New data are available	
1	DRDY1	R	0b	Channel 1 ADC data available indicator	
				0b = No new data available	
				1b = New data are available	
0	DRDY0	R	0b	Channel 0 ADC data available indicator	
				0b = No new data available	
				1b = New data are available	

8.6.3 MODE Register (Address = 02h) [reset = 0510h]

MODE is shown in Figure 50 and described in Table 17.

Return to the Summary Table.

Figure 50. MODE Register

15	5 14	13	12	11	10	9	8
	RESERVED	REG_CRC_EN	RX_CRC_EN	CRC_TYPE	RESET	WLEI	NGTH
	R/W-00b	R/W-0b	R/W-0b	R/W-0b	R/W-1b	R/W	-01b
7	6	5	4	3	2	1	0
	RESERVED		TIMEOUT	DRDY	_SEL	DRDY_HiZ	DRDY_FMT
	R/W-000b		R/W-1b	R/W	-00b	R/W-0b	R/W-0b

Table 17. MODE	Register Field	Descriptions
	Register Field	Descriptions

Bit	Field	Туре	Reset	Description
15:14	RESERVED	R/W	00b	Reserved
13	REG_CRC_EN	R/W	Ob	Register Map CRC enable 0b = Disabled (default) 1b = Enabled
12	RX_CRC_EN	R/W	Ob	SPI input CRC enable 0b = Disabled (default) 1b = Enabled
11	CRC_TYPE	R/W	Ob	SPI and register map CRC type 0b = 16-bit CCITT (default) 1b = 16-bit ANSI
10	RESET	R/W	1b	Reset, write 0b to clear this bit in the STATUS register 0b = No reset 1b = Reset happened (default by definition)
9:8	WLENGTH	R/W	01b	Data word length 00b = 16 bits 01b = 24 bits (default) 10b = 32 bits: LSB zero padding 11b = 32 bits: MSB sign extension
7:5	RESERVED	R/W	000b	Reserved
4	TIMEOUT	R/W	1b	SPI Timeout enable 0b = Disabled 1b = Enabled (default)
3:2	DRDY_SEL	R/W	00b	DRDY pin signal source selection 00b = Most lagging enabled channel (default) 01b = Logic OR of all the enabled channels 10b = Most leading enabled channel 11b = Most leading enabled channel
1	DRDY_HiZ	R/W	Ob	DRDY pin state when conversion data is not available 0b = Logic high (default) 1b = High impedance
0	DRDY_FMT	R/W	Ob	DRDY signal format when conversion data is available 0b = Logic low (default) 1b = Low pulse with a fixed duration

Copyright © 2020, Texas Instruments Incorporated

8.6.4 CLOCK Register (Address = 03h) [reset = FF0Eh]

CLOCK is shown in Figure 51 and described in Table 18.

Return to the Summary Table.

Figure 51. CLOCK Register

15	14	13	12	11	10	9	8
RESERVED	RESERVED	CH5_EN	CH4_EN	CH3_EN	CH2_EN	CH1_EN	CH0_EN
R/W-0b	R/W-0b	R/W-1b	R/W-1b	R/W-1b	R/W-1b	R/W-1b	R/W-1b
7	6	5	4	3	2	1	0
XTAL_DIS	EXTREF_EN	RESERVED		OSR		P٧	VR
R/W-0b	R/W-0b	R/W-0b		R/W-011b		R/W	′-10b

Bit	Field	Туре	Reset	Description
15:14	RESERVED	R	00b	Reserved
13	CH5_EN	R/W	1b	Channel 5 ADC enable
				0b = Disabled
				1b = Enabled (default)
12	CH4_EN	R/W	1b	Channel 4 ADC enable
				0b = Disabled
				1b = Enabled (default)
11	CH3_EN	R/W	1b	Channel 3 ADC enable
				0b = Disabled
				1b = Enabled (default)
10	CH2_EN	R/W	1b	Channel 2 ADC enable
				0b = Disabled
				1b = Enabled (default)
9	CH1_EN	R/W	1b	Channel 1 ADC enable
				0b = Disabled
				1b = Enabled (default)
8	CH0_EN	R/W	1b	Channel 0 ADC enable
				0b = Disabled
				1b = Enabled (default)
7	XTAL_DIS	R/W	0b	Crystal oscillator disable
				0b = Enabled (default)
				1b = Disabled
6	EXTREF_EN	R/W	0b	External reference enable
				0b = Disabled (default)
				1b = Enabled
5	RESERVED	R/W	0b	Reserved

	ADS131M06	
SBAS949-FEBRUARY 2020	SBAS949-FEBRUARY 2020	

Submit Documentation Feedback

48

Bit	Field	Туре	Reset	Description
4:2	OSR	R/W	011b	Modulator oversampling ratio
				000b = 128
				001b = 256
				010b = 512
				011b = 1024 (default)
				100b = 2048
				101b = 4096
				110b = 8192
				111b = 16256
1:0	PWR	R/W	10b	Power mode
				00b = Very-low-power
				01b = Low-power
				10b = High-resolution (default)
				11b = High-resolution

Table 18. CLOCK Register Field Descriptions (continued)

www.ti.com

Copyright © 2020, Texas Instruments Incorporated

8.6.5 GAIN1 Register (Address = 4h) [reset = 0000h]

GAIN1 is shown in Figure 52 and described in Table 19.

Return to the Summary Table.

Figure 52. GAIN1 Register

15	14	13	12	11	10	9	8
RESERVED		PGAGAIN3		RESERVED		PGAGAIN2	
R/W-0b		R/W-000b		R/W-0b		R/W-000b	
7	6	5	4	3	2	1	0
7 RESERVED	6	5 PGAGAIN1	4	3 RESERVED	2	1 PGAGAIN0	0

Table 19. GAIN1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R/W	0b	Reserved
14:12	PGAGAIN3	R/W	000b	PGA gain for channel 3 000b = 1 (default) 001b = 2 010b = 4 011b = 8 100b = 16 101b = 32 110b = 64 111b = 128
11	RESERVED	R/W	Ob	Reserved
10:8	PGAGAIN2	R/W	000b	PGA gain for channel 2 000b = 1 (default) 001b = 2 010b = 4 011b = 8 100b = 16 101b = 32 110b = 64 111b = 128
7	RESERVED	R/W	0b	Reserved
6:4	PGAGAIN1	R/W	000b	PGA gain for channel 1 000b = 1 (default) 001b = 2 010b = 4 011b = 8 100b = 16 101b = 32 110b = 64 111b = 128
3	RESERVED	R/W	0b	Reserved

ADS131M06 SBAS949-FEBRUARY 2020

www.ti.com

Field Туре Reset Bit Description 2:0 PGAGAIN0 R/W 000b PGA gain for channel 0 000b = 1 (default) 001b = 2 010b = 4 011b = 8 100b = 16 101b = 32 110b = 64 111b = 128

Table 19. GAIN1 Register Field Descriptions (continued)

8.6.6 GAIN2 Register (Address = 5h) [reset = 0000h]

GAIN2 is shown in Figure 53 and described in Table 20.

Return to the Summary Table.

Figure 53. GAIN2 Register

15	14	13	12	11	10	9	8
RESERVED							
	R/W-0000000000000b						
7	6	5	4	3	2	1	0
RESERVED	PGAGAIN5			RESERVED		PGAGAIN4	
R/W-0b	R/W-000b			R/W-0b		R/W-000b	

Table 20. GAIN2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:7	RESERVED	R/W	000000000 b	Reserved
6:4	PGAGAIN5	R/W	000b	PGA gain for channel 5
				000b = 1
				001b = 2
				010b = 4
				011b = 8
				100b = 16
				101b = 32
				110b = 64
				111b =128
3	RESERVED	R/W	0b	Reserved
2:0	PGAGAIN4	R/W	000b	PGA gain for channel 4
				000b = 1
				001b = 2
				010b = 4
				011b = 8
				100b = 16
				101b = 32
				110b = 64
1				111b = 128

8.6.7 CFG Register (Address = 06h) [reset = 0600h]

CFG is shown in Figure 54 and described in Table 21.

Return to the Summary Table.

Figure 54. CFG Register

15	14	13	12	11	10	9	8
	RESERVED			GC	_DLY		GC_EN
	R/W-000b			R/W-	-0011b		R/W-0b
7	6	5	4	3	2	1	0
CD_ALLCH	CD_ALLCH CD_NUM			CD_LEN			CD_EN
R/W-0b					R/W-000b		R/W-0b

Bit	Field	Туре	Reset	Description
15:13	RESERVED	R/W	000b	Reserved
12:9	GC_DLY	R/W	0011Ь	Global-chop delay in modulator clock periods before measurement begins 0000b = 2 0001b = 4 0010b = 8 0011b = 16 (default) 0100b = 32 0101b = 64
				0110b = 128
				0111b = 256 1000b = 512
				1000b = 312 1001b = 1024
				1010b = 2048
				1011b = 4096
				1100b = 8192
				1101b = 16384
				1110b = 32768
				1111b = 65536
8	GC_EN	R/W	0b	Global-chop enable
				0b = Disabled (default)
				1b = Enabled
7	CD_ALLCH	R/W	0b	Current-detect channels required to trigger detection
				0b = Any channel (default)
				1b = All channels
6:4	CD_NUM	R/W	000b	Number of current-detect exceeded thresholds to trigger a detection 000b = 1 (default)
				001b = 2
				010b = 4
				010b = 4 011b = 8
				100b = 16
				101b = 32
				110b = 64
				111b = 128

Table 21. CFG Register Field Descriptions

Туре Reset Bit Field Description 3:1 CD_LEN R/W 000b Current-detect measurement length in conversion periods 000b = 128 (default) 001b = 256 010b = 512 011b = 768 100b = 1280 101b = 1792 110b = 2560 111b = 3584 0 CD_EN R/W 0b Current-detect mode enable 0b = Disabled (default) 1b = Enabled

Table 21. CFG Register Field Descriptions (continued)

Copyright © 2020, Texas Instruments Incorporated

8.6.8 THRSHLD_MSB Register (Address = 07h) [reset = 0000h]

THRSHLD_MSB is shown in Figure 55 and described in Table 22.

Return to the Summary Table.

Figure 55. THRSHLD_MSB Register

15	14	13	12	11	10	9	8		
CD_TH_MSB									
R/W-0000000000000b									
7	6	5	4	3	2	1	0		
	CD_TH_MSB								
	R/W-00000000000b								

Table 22. THRSHLD_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	CD_TH_MSB	R/W	000000000 0000000b	Current-detect mode threshold register bits [23:8]. Value provided in two's complement format.

8.6.9 THRSHLD_LSB Register (Address = 08h) [reset = 0000h]

THRSHLD_LSB is shown in Figure 56 and described in Table 23.

Return to the Summary Table.

Figure 56. THRSHLD_LSB Register

15	14	13	12	11	10	9	8
			CD_TH	_LSB			
			R/W-0000	0000b			
7	6	5	4	3	2	1	0
	RESE	RVED		DCBLOCK			
	R-00)00b			R/W-0	000b	

Table 23. THRSHLD_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	CD_TH_LSB	R/W	0000000b	Current-detect mode threshold register bits [7:0] Value provided in two's complement format
7:4	RESERVED	R	0000b	Reserved
3:0	DCBLOCK	R/W	0000b	DC Block filter setting See Table 6 for details

8.6.10 CH0_CFG Register (Address = 09h) [reset = 0000h]

CH0_CFG is shown in Figure 57 and described in Table 24.

Return to the Summary Table.

Figure 57. CH0_CFG Register

15	14	13	12	11	10	9	8	
			PHA					
			R/W-0000	000000b				
7	6	5	4	3	2	1	0	
PHA	SE0	RESERVED			DCBLK0_DIS	М	UX0	
R/W-0000	000000b	R-000b			R/W-0b	R/W-00b		

Table 24. CH0_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:6	PHASE0	R/W	00000000 0b	Channel 0 phase delay Phase delay in modulator clock cycles provided in two's complement format. See Table 7 for details.
5:3	RESERVED	R	000b	Reserved
2	DCBLK0_DIS	R/W	Ob	Channel 0 DC Block filter disable 0b = Controlled by DCBLOCK[3:0] (default) 1b = Disabled for this channel
1:0	MUX0	R/W	00b	Channel 0 input select 00b = AIN0P and AIN0N (default) 01b = ADC inputs shorted 10b = Positive DC test signal 11b = Negative DC test signal

8.6.11 CH0_OCAL_MSB Register (Address = 0Ah) [reset = 0000h]

CH0_OCAL_MSB is shown in Figure 58 and described in Table 25.

Return to the Summary Table.

Figure 58. CH0_OCAL_MSB Register

15	14	13	12	11	10	9	8		
OCAL0_MSB									
R/W-00000000000000b									
7	6	5	4	3	2	1	0		
	OCAL0_MSB								
	R/W-00000000000b								

Table 25. CH0_OCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	OCAL0_MSB	R/W	00000000 0000000b	Channel 0 offset calibration register bits [23:8]. Value provided in two's complement format.

8.6.12 CH0_OCAL_LSB Register (Address = 0Bh) [reset = 0000h]

CH0_OCAL_LSB is shown in Figure 59 and described in Table 26.

Return to the Summary Table.

Figure 59. CH0_OCAL_LSB Register

15	14	13	12	11	10	9	8		
	OCAL0_LSB								
	R/W-0000000b								
7	6	5	4	3	2	1	0		
	RESERVED								
	R-0000000b								

Table 26. CH0_OCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	OCAL0_LSB	R/W	0000000b	Channel 0 offset calibration register bits [7:0]. Value provided in two's complement format.
7:0	RESERVED	R	0000000b	Reserved

8.6.13 CH0_GCAL_MSB Register (Address = 0Ch) [reset = 8000h]

CH0_GCAL_MSB is shown in Figure 60 and described in Table 27.

Return to the Summary Table.

Figure 60. CH0_GCAL_MSB Register

15	14	13	12	11	10	9	8		
GCAL0_MSB									
R/W-1000000000000b									
7	6	5	4	3	2	1	0		
	GCAL0_MSB								
	 R/W-10000000000b								

Table 27. CH0_GCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	GCAL0_MSB	R/W		Channel 0 gain calibration register bits [23:8] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$

8.6.14 CH0_GCAL_LSB Register (Address = 0Dh) [reset = 0000h]

CH0_GCAL_LSB is shown in Figure 61 and described in Table 28.

Return to the Summary Table.

Figure 61. CH0_GCAL_LSB Register

15	14	13	12	11	10	9	8
	GCAL0_LSB						
			R/W-000	00000b			
7	6	5	4	3	2	1	0
	RESERVED						
			R-0000	0000b			

Table 28. CH0_GCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	GCAL0_LSB	R/W	0000000b	Channel 0 gain calibration register bits [7:0] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$
7:0	RESERVED	R	0000000b	Reserved

8.6.15 CH1_CFG Register (Address = 0Eh) [reset = 0000h]

CH1_CFG is shown in Figure 62 and described in Table 29.

Return to the Summary Table.

Figure 62. CH1_CFG Register

15	14	13	12	11	10	9	8
			PHA	SE1			
			R/W-0000	000000b			
7	6	5	5 4 3			1	0
PHA	SE1		RESERVED		DCBLK1_DIS	MU	JX1
R/W-0000	000000b		R-000b		R/W-0b	R/W	/-00b

Table 29. CH1 CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:6	PHASE1	R/W	00000000 0b	Channel 1 phase delay Phase delay in modulator clock cycles provided in two's complement format. See Table 7 for details.
5:3	RESERVED	R	000b	Reserved
2	DCBLK1_DIS	R/W	Ob	Channel 1 DC Block filter disable 0b = Controlled by DCBLOCK[3:0] (default) 1b = Disabled for this channel
1:0	MUX1	R/W	00Ь	Channel 1 input select 00b = AIN1P and AIN1N (default) 01b = ADC inputs shorted 10b = Positive DC test signal 11b = Negative DC test signal

8.6.16 CH1_OCAL_MSB Register (Address = 0Fh) [reset = 0000h]

CH1_OCAL_MSB is shown in Figure 63 and described in Table 30.

Return to the Summary Table.

Figure 63. CH1_OCAL_MSB Register

15	14	13	12	11	10	9	8
	OCAL1_MSB						
			R/W-000000	d00000000b			
7	6	5	4	3	2	1	0
	OCAL1_MSB						
	R/W-0000000000000						

Table 30. CH1_OCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	OCAL1_MSB	R/W	00000000 0000000b	Channel 1 offset calibration register bits [23:8] Value provided in two's complement format

8.6.17 CH1_OCAL_LSB Register (Address = 10h) [reset = 0000h]

CH1_OCAL_LSB is shown in Figure 64 and described in Table 31.

Return to the Summary Table.

Figure 64. CH1_OCAL_LSB Register

15	14	13	12	11	10	9	8
	OCAL1_LSB						
			R/W-000	00000b			
7	6	5	4	3	2	1	0
	RESERVED						
			R-0000	0000b			

Table 31. CH1_OCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	OCAL1_LSB	R/W	0000000b	Channel 1 offset calibration register bits [7:0] Value provided in two's complement format
7:0	RESERVED	R	0000000b	Reserved

8.6.18 CH1_GCAL_MSB Register (Address = 11h) [reset = 8000h]

CH1_GCAL_MSB is shown in Figure 65 and described in Table 32.

Return to the Summary Table.

Figure 65. CH1_GCAL_MSB Register

15	14	13	12	11	10	9	8	
	GCAL1_MSB							
			R/W-100000	d00000000b				
7	6	5	4	3	2	1	0	
	GCAL1_MSB							
R/W-1000000000b								

Table 32. CH1_GCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	GCAL1_MSB	R/W	10000000 0000000b	Channel 1 gain calibration register bits [23:8] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1)/2^{24}$

8.6.19 CH1_GCAL_LSB Register (Address = 12h) [reset = 0000h]

CH1_GCAL_LSB is shown in Figure 66 and described in Table 33.

Return to the Summary Table.

Figure 66. CH1_GCAL_LSB Register

15	14	13	12	11	10	9	8
	GCAL1_LSB						
			R/W-000	00000b			
7	6	5	4	3	2	1	0
	RESERVED						
	R-0000000b						

Table 33. CH1_GCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	GCAL1_LSB	R/W	0000000b	Channel 1 gain calibration register bits [7:0] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$
7:0	RESERVED	R	0000000b	Reserved

8.6.20 CH2_CFG Register (Address = 13h) [reset = 0000h]

CH2_CFG is shown in Figure 67 and described in Table 34.

Return to the Summary Table.

Figure 67. CH2_CFG Register

15	14	13	12	11	10	9	8
			PHA	SE2			
			R/W-000000000b				
7	6	5	4	3	2	1	0
PHA	SE2	RESERVED			DCBLK2_DIS	М	UX2
R/W-0000	000000b	R-000b			R/W-0b	R/V	V-00b

Table 34. CH2 CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:6	PHASE2	R/W	00000000 0b	Channel 2 phase delay Phase delay in modulator clock cycles provided in two's complement format. See Table 7 for details.
5:3	RESERVED	R	000b	Reserved
2	DCBLK2_DIS	R/W	Ob	Channel 2 DC Block filter disable 0b = Controlled by DCBLOCK[3:0] (default) 1b = Disabled for this channel
1:0	MUX2	R/W	00Ь	Channel 2 input select 00b = AIN2P and AIN2N (default) 01b = ADC inputs shorted 10b = Positive DC test signal 11b = Negative DC test signal

8.6.21 CH2_OCAL_MSB Register (Address = 14h) [reset = 0000h]

CH2_OCAL_MSB is shown in Figure 68 and described in Table 35.

Return to the Summary Table.

Figure 68. CH2_OCAL_MSB Register

15	14	13	12	11	10	9	8	
OCAL2_MSB								
R/W-0000000000000b								
7	7 6 5 4 3 2 1 0							
OCAL2_MSB								
	R/W-000000000000000000000000000000000000							

Table 35. CH2_OCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	OCAL2_MSB	R/W	00000000 0000000b	Channel 2 offset calibration register bits [23:8] Value provided in two's complement format

8.6.22 CH2_OCAL_LSB Register (Address = 15h) [reset = 0000h]

CH2_OCAL_LSB is shown in Figure 69 and described in Table 36.

Return to the Summary Table.

Figure 69. CH2_OCAL_LSB Register

15	14	13	12	11	10	9	8
			OCAL2	2_LSB			
	R/W-0000000b						
7	6	5	4	3	2	1	0
	RESERVED						
	R-0000000b						

Table 36. CH2_OCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	OCAL2_LSB	R/W	0000000b	Channel 2 offset calibration register bits [7:0] Value provided in two's complement format
7:0	RESERVED	R	0000000b	Reserved

8.6.23 CH2_GCAL_MSB Register (Address = 16h) [reset = 8000h]

CH2_GCAL_MSB is shown in Figure 70 and described in Table 37.

Return to the Summary Table.

Figure 70. CH2_GCAL_MSB Register

15	14	13	12	11	10	9	8	
GCAL2_MSB								
R/W-1000000000000b								
7	6	5	4	3	2	1	0	
GCAL2_MSB								
	R/W-1000000000000b							

Table 37. CH2_GCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	GCAL2_MSB	R/W	10000000 0000000b	Channel 2 gain calibration register bits [23:8] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$

8.6.24 CH2_GCAL_LSB Register (Address = 17h) [reset = 0000h]

CH2_GCAL_LSB is shown in Figure 71 and described in Table 38.

Return to the Summary Table.

Figure 71. CH2_GCAL_LSB Register

15	14	13	12	11	10	9	8	
			GCAL2	2_LSB				
	R/W-0000000b							
7	6	5	4	3	2	1	0	
	RESERVED							
	R-0000000b							

Table 38. CH2_GCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	GCAL2_LSB	R/W	0000000b	Channel 2 gain calibration register bits [7:0] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$
7:0	RESERVED	R	0000000b	Reserved

8.6.25 CH3_CFG Register (Address = 18h) [reset = 0000h]

CH3_CFG is shown in Figure 72 and described in Table 39.

Return to the Summary Table.

Figure 72. CH3_CFG Register

15	14	13	12	11	10	9	8
			PHA	SE3			
			R/W-000000000b				
7	6	5	5 4 3			1	0
PHA	SE3	RESERVED			DCBLK3_DIS	MU	JX3
R/W-0000	000000b	R-000b			R/W-0b	R/M	/-00b

Table 39. CH3 CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description				
15:6	PHASE3	R/W	00000000 0b	Channel 3 phase delay Phase delay in modulator clock cycles provided in two's complement format. See Table 7 for details.				
5:3	RESERVED	R	000b	Reserved				
2	DCBLK3_DIS	R/W	Ob	Channel 3 DC Block filter disable 0b = Controlled by DCBLOCK[3:0] (default) 1b = Disabled for this channel				
1:0	MUX3	R/W	00b	Channel 3 input select 00b = AIN3P and AIN3N (default) 01b = ADC inputs shorted 10b = Positive DC test signal 11b = Negative DC test signal				

8.6.26 CH3_OCAL_MSB Register (Address = 19h) [reset = 0000h]

CH3_OCAL_MSB is shown in Figure 73 and described in Table 40.

Return to the Summary Table.

Figure 73. CH3_OCAL_MSB Register

15	14	13	12	11	10	9	8		
OCAL3_MSB									
R/W-0000000000000b									
7	6	5	4	3	2	1	0		
	OCAL3_MSB								
	R/W-00000000000b								

Table 40. CH3_OCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	OCAL3_MSB	R/W	000000000 0000000b	Channel 3 offset calibration register bits [23:8] Value provided in two's complement format

8.6.27 CH3_OCAL_LSB Register (Address = 1Ah) [reset = 0000h]

CH3_OCAL_LSB is shown in Figure 74 and described in Table 41.

Return to the Summary Table.

Figure 74. CH3_OCAL_LSB Register

15	14	13	12	11	10	9	8		
	OCAL3_LSB								
	R/W-0000000b								
7	6	5	4	3	2	1	0		
	RESERVED								
	R-0000000b								

Table 41. CH3_OCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	OCAL3_LSB	R/W	0000000b	Channel 3 offset calibration register bits [7:0] Value provided in two's complement format
7:0	RESERVED	R	0000000b	Reserved

8.6.28 CH3_GCAL_MSB Register (Address = 1Bh) [reset = 8000h]

CH3_GCAL_MSB is shown in Figure 75 and described in Table 42.

Return to the Summary Table.

Figure 75. CH3_GCAL_MSB Register

15	14	13	12	11	10	9	8		
GCAL3_MSB									
R/W-1000000000000b									
7	6	5	4	3	2	1	0		
	GCAL3_MSB								
	R/W-10000000000b								

Table 42. CH3_GCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	GCAL3_MSB	R/W		Channel 3 gain calibration register bits [23:8] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$

8.6.29 CH3_GCAL_LSB Register (Address = 1Ch) [reset = 0000h]

CH3_GCAL_LSB is shown in Figure 76 and described in Table 43.

Return to the Summary Table.

Figure 76. CH3_GCAL_LSB Register

15	14	13	12	11	10	9	8		
	GCAL3_LSB								
	R/W-0000000b								
7	6	5	4	3	2	1	0		
	RESERVED								
	R-0000000b								

Table 43. CH3_GCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	GCAL3_LSB	R/W	0000000b	Channel 3 gain calibration register bits [7:0] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$
7:0	RESERVED	R	0000000b	Reserved

8.6.30 CH4_CFG Register (Address = 1Dh) [reset = 0000h]

CH4_CFG is shown in Figure 77 and described in Table 44.

Return to the Summary Table.

Figure 77. CH4_CFG Register

15	14	13	12	11	10	9	8	
	PHASE4							
			R/W-0000	000000b				
7	6	5	4	3	2	1	0	
PHA	SE4	RESERVED			DCBLK4_DIS	М	UX4	
R/W-0000	000000b	R-000b			R/W-0b	R/W-00b		

Table 44. CH4 CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:6	PHASE4	R/W	00000000 0b	Channel 4 phase delay Phase delay in modulator clock cycles provided in two's complement format. See Table 7 for details.
5:3	RESERVED	R	000b	Reserved
2	DCBLK4_DIS	R/W	Ob	Channel 4 DC Block filter disable 0b = Controlled by DCBLOCK[3:0] (default) 1b = Disabled for this channel
1:0	MUX4	R/W	00Ь	Channel 4 input select 00b = AIN4P and AIN4N (default) 01b = ADC inputs shorted 10b = Positive DC test signal 11b = Negative DC test signal

8.6.31 CH4_OCAL_MSB Register (Address = 1Eh) [reset = 0000h]

CH4_OCAL_MSB is shown in Figure 78 and described in Table 45.

Return to the Summary Table.

Figure 78. CH4_OCAL_MSB Register

15	14	13	12	11	10	9	8		
	OCAL4_MSB								
R/W-00000000000000b									
7	6	5	4	3	2	1	0		
	OCAL4_MSB								
	R/W-00000000000b								

Table 45. CH4_OCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	OCAL4_MSB	R/W	00000000 0000000b	Channel 4 offset calibration register bits [23:8] Value provided in two's complement format

8.6.32 CH4_OCAL_LSB Register (Address = 1Fh) [reset = 0000h]

CH4_OCAL_LSB is shown in Figure 79 and described in Table 46.

Return to the Summary Table.

Figure 79. CH4_OCAL_LSB Register

15	14	13	12	11	10	9	8
			OCAL	4_LSB			
			R/W-000	00000b			
7	6	5	4	3	2	1	0
	RESERVED						
	R-0000000b						

Table 46. CH4_OCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	OCAL4_LSB	R/W	0000000b	Channel 4 offset calibration register bits [7:0] Value provided in two's complement format
7:0	RESERVED	R	0000000b	Reserved

8.6.33 CH4_GCAL_MSB Register (Address = 20h) [reset = 8000h]

CH4_GCAL_MSB is shown in Figure 80 and described in Table 47.

Return to the Summary Table.

Figure 80. CH4_GCAL_MSB Register

15	14	13	12	11	10	9	8	
	GCAL4_MSB							
			R/W-100000	d00000000b				
7	6	5	4	3	2	1	0	
	GCAL4_MSB							
	R/W-1000000000000b							

Table 47. CH4_GCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	GCAL4_MSB	R/W	10000000 0000000b	Channel 4 gain calibration register bits [23:8] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$

8.6.34 CH4_GCAL_LSB Register (Address = 21h) [reset = 0000h]

CH4_GCAL_LSB is shown in Figure 81 and described in Table 48.

Return to the Summary Table.

Figure 81. CH4_GCAL_LSB Register

15	14	13	12	11	10	9	8
	GCAL4_LSB						
			R/W-000	00000b			
7	6	5	4	3	2	1	0
	RESERVED						
	R-0000000b						

Table 48. CH4_GCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	GCAL4_LSB	R/W	0000000b	Channel 4 gain calibration register bits [7:0] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$
7:0	RESERVED	R	0000000b	Reserved

8.6.35 CH5_CFG Register (Address = 22h) [reset = 0000h]

CH5_CFG is shown in Figure 82 and described in Table 49.

Return to the Summary Table.

Figure 82. CH5_CFG Register

15	14	13	12	11	10	9	8	
			PHASE5					
			R/W-0000	000000b				
7	6	5	5 4 3			1	0	
PHA	SE5	RESERVED			DCBLK5_DIS	M	JX5	
R/W-0000	000000b	R-000b			R/W-0b	R/W	/-00b	

Table 49. CH5_CFG Register Field Descriptions

-								
Bit	Field	Туре	Reset	Description				
15:6	PHASE5	R/W	00000000 0b	Channel 5 phase delay Phase delay in modulator clock cycles provided in two's complement format. See Table 7 for details.				
5:3	RESERVED	R	000b	Reserved				
2	DCBLK5_DIS	R/W	Ob	Channel 5 DC Block filter disable 0b = Controlled by DCBLOCK[3:0] (default) 1b = Disabled for this channel				
1:0	MUX5	R/W	00b	Channel 5 input select 00b = AIN5P and AIN5N (default) 01b = ADC inputs shorted 10b = Positive DC test signal 11b = Negative DC test signal				

8.6.36 CH5_OCAL_MSB Register (Address = 23h) [reset = 0000h]

CH5_OCAL_MSB is shown in Figure 83 and described in Table 50.

Return to the Summary Table.

Figure 83. CH5_OCAL_MSB Register

15	14	13	12	11	10	9	8	
	OCAL5_MSB							
			R/W-000000	d00000000b				
7	6	5	4	3	2	1	0	
	OCAL5_MSB							
	R/W-00000000000000b							

Table 50. CH5_OCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	OCAL5_MSB	R/W	000000000 0000000b	Channel 5 offset calibration register bits [23:8] Value provided in two's complement format

8.6.37 CH5_OCAL_LSB Register (Address = 24h) [reset = 0000h]

CH5_OCAL_LSB is shown in Figure 84 and described in Table 51.

Return to the Summary Table.

Figure 84. CH5_OCAL_LSB Register

15	14	13	12	11	10	9	8
			OCAL	5_LSB			
			R/W-000	00000b			
7	6	5	4	3	2	1	0
	RESERVED						
	R-0000000b						

Table 51. CH5_OCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	OCAL5_LSB	R/W	0000000b	Channel 5 offset calibration register bits [7:0] Value provided in two's complement format
7:0	RESERVED	R	0000000b	Reserved

8.6.38 CH5_GCAL_MSB Register (Address = 25h) [reset = 8000h]

CH5_GCAL_MSB is shown in Figure 85 and described in Table 52.

Return to the Summary Table.

Figure 85. CH5_GCAL_MSB Register

15	14	13	12	11	10	9	8	
GCAL5_MSB								
R/W-1000000000000b								
7	6	5	4	3	2	1	0	
GCAL5_MSB								
R/W-1000000000000b								

Table 52. CH5_GCAL_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	GCAL5_MSB	R/W		Channel 5 gain calibration register bits [23:8] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$

8.6.39 CH5_GCAL_LSB Register (Address = 26h) [reset = 0000h]

CH5_GCAL_LSB is shown in Figure 86 and described in Table 53.

Return to the Summary Table.

Figure 86. CH5_GCAL_LSB Register

15	14	13	12	11	10	9	8
GCAL5_LSB							
R/W-0000000b							
7	6	5	4	3	2	1	0
RESERVED							
R-0000000b							

Table 53. CH5_GCAL_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	GCAL5_LSB	R/W	0000000b	Channel 5 gain calibration register bits [7:0] Unsigned number for the gain range from 0.0 to $2.0 \cdot (2^{24} - 1) / 2^{24}$
7:0	RESERVED	R	0000000b	Reserved

8.6.40 REGMAP_CRC Register (Address = 3Eh) [reset = 0000h]

REGMAP_CRC is shown in Figure 87 and described in Table 54.

Return to the Summary Table.

Figure 87. REGMAP_CRC Register

15	14	13	12	11	10	9	8			
REG_CRC										
R-000000000000b										
7	6	5	4	3	2	1	0			
REG_CRC										
R-00000000000b										

Table 54. REGMAP_CRC Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	REG_CRC	R	00000000 000000b	Register map CRC value

8.6.41 RESERVED Register (Address = 3Fh) [reset = 0000h]

RESERVED is shown in Figure 88 and described in Table 55.

Return to the Summary Table.

Figure 88. RESERVED Register

15	14	13	12	11	10	9	8			
RESERVED										
R/W-0000000000000b										
7	6	5	4	3	2	1	0			
RESERVED										
R/W-000000000000b										

Table 55. RESERVED Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	RESERVED	R/W	000000000 0000000b	Reserved Always write 0000h

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Unused Inputs and Outputs

Leave any unused analog inputs floating or connect them to AGND.

Do not float unused digital inputs because excessive power-supply leakage current can result. Tie all unused digital inputs to the appropriate levels, DVDD or DGND. Leave the DRDY pin unconnected if unused.

9.1.2 Antialiasing

An analog low-pass filter is required in front of each of the channel inputs to prevent out-of-band noise and interferers from coupling into the band of interest. Because the ADS131M06 is a delta-sigma ADC, the integrated digital filter provides substantial attenuation for frequencies outside of the band of interest up to the frequencies adjacent to f_{MOD} . Therefore, a single-order RC filter provides sufficient antialiasing protection in the vast majority of applications.

Choosing the values of the resistor and capacitor depends on the desired cutoff frequency, limiting source impedance for the ADC inputs, and providing enough instantaneous charge to the ADC input sampling circuit through the filter capacitor. Figure 89 shows the recommended filter component values. These recommendations are sufficient for CLKIN frequencies between 2 MHz and 8.2 MHz.

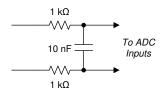


Figure 89. Recommended Antialiasing Circuitry

Application Information (continued)

9.1.3 Minimum Interface Connections

Figure 90 depicts how the ADS131M06 can be configured for the minimum number of interface pins. This configuration is useful when using data isolation to minimize the number of isolation channels required or when the microcontroller (MCU) pins are limited.

The CLKIN pin requires an LVCMOS clock that can be either generated by the MCU or created using a local LVCMOS output device. Tie the <u>SYNC/RESET</u> pin to DVDD in hardware if unused. The DRDY pin can be left floating if unused. Connect either <u>SYNC/RESET</u> or DRDY to the MCU to ensure the MCU stays synchronized to ADC conversions. If the MCU provides CLKIN, the CLKIN periods can be counted to determine the sample period rather than forcing synchronization using the <u>SYNC/RESET</u> pin or monitoring the <u>DRDY</u> pin. <u>Synchronization cannot</u> be regained if a <u>bit</u> error occurs on the clock and samples can be missed if the SYNC/RESET or DRDY pins are not used. CS can be tied low in hardware if the ADS131M06 is the only device on the SPI bus. Ensure the data input and output CRC are enabled and are used to guard against faulty register reads and writes if CS is tied low permanently.

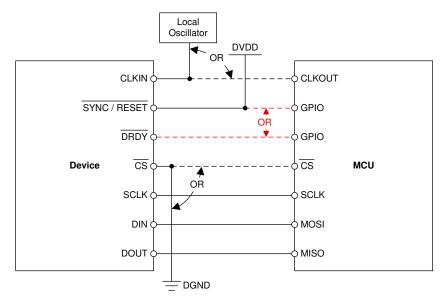


Figure 90. Minimum Connections Required to Operate the ADS131M06

Application Information (continued)

9.1.4 Power Metrology Applications

Each channel of the ADS131M06 is identical, giving designers the flexibility to sense voltage or current with any channel. Simultaneous sampling allows the application to calculate instantaneous power for any simultaneous voltage and current measurement. This section provides a diagram depicting the common energy metrology configuration that can be used with the ADS131M06. A Rogowski coil can alternatively be used to sense current in the following example wherever a CT is used. The integration to determine the current flowing through the Rogowski coil is done digitally if that modification is made. RC antialiasing filters are not shown in the following diagrams for simplicity, but are recommended for all channels.

Figure 91 shows a three-phase configuration where live currents are monitored using CTs and the phase voltages are measured using a voltage divider.

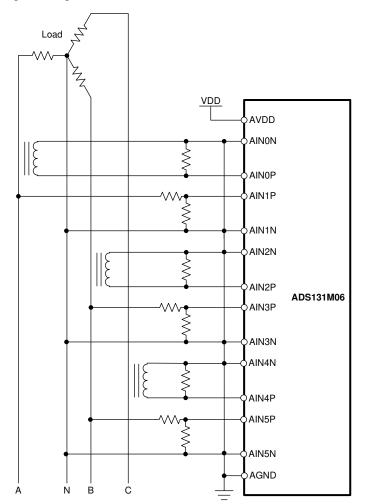


Figure 91. Three-Phase Current and Voltage Measurement Front-End

Application Information (continued)

9.1.5 Multiple Device Configuration

Multiple ADS131M06 devices can be arranged to capture all signals simultaneously. The same clock must be provided to all devices and the SYNC/RESET pins must be strobed simultaneously at least one time to align the sample periods internally between devices. The phase settings of each device can be changed uniquely, but the host must take care to record which channel in the group of devices represents the *zero* phase.

The devices can also share the SPI bus where only the \overline{CS} pins for each device are unique. Each device can be addressed sequentially by asserting \overline{CS} for the device that the host wishes to communicate with. The DOUT pin remains high impedance when the \overline{CS} pin is high, allowing the DOUT lines to be shared between devices as long as no two devices sharing the bus simultaneously have their \overline{CS} pins low. Figure 92 shows multiple devices configured for simultaneous data acquisition while sharing the SPI bus.

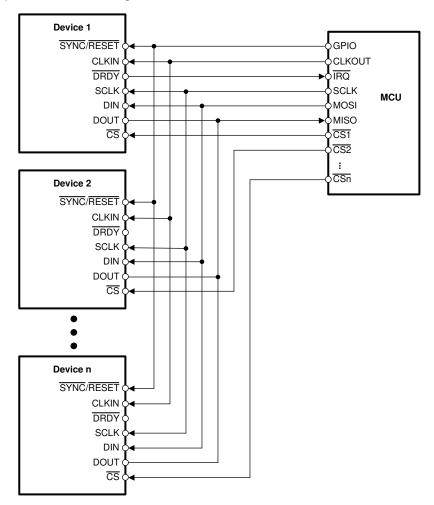


Figure 92. Multiple Device Configuration

Application Information (continued)

9.1.6 Code Example

This section contains example pseudocode for a simple program that configures and streams data from the ADS131M06. The pseudocode is written to resemble C code. The code uses several descriptive precompilerdefined constants that are indicated in upper case. The definitions are not included for brevity. The program works in three sections: MCU initialization, ADC configuration, and data streaming. This code is not optimized for using the fast startup feature of the ADS131M06.

The MCU is initialized by enabling the necessary peripherals for this example. These peripherals include an SPI port, a GPIO configured as an input for the ADS131M06 DRDY output, a clock output to connect to the ADS131M06 CLKIN input, and a direct memory access (DMA) module that streams data from the SPI port into memory without significant processor intervention. The SPI port is configured to a 24-bit word size because the ADC default SPI word size is 24 bits. The CS pin is configured to remain low as long as the SPI port is busy so that it does not de-assert in the middle of a frame.

The ADC is configured through register writes. A function referred to as *adcRegisterWrite* writes an ADC register using the SPI peripheral. No CRC data integrity is used in this example for simplicity, but is recommended. The ADC outputs are initially disabled so short frames can be written during initialization consistent with the guidance provided in the *Short SPI Frames* section. The ADC is configured to output DRDY as pulses, the gain is changed to 32 for channels 1 and 3, and the DC block filter is used with a corner frequency of 622 mHz. Finally, the ADC word size is changed to 32 bits with an MSB sign extension to accommodate the MCU memory length and to allow for 32-bit DMA transfers. All other settings are left as defaults.

Data streaming is performed by using an interrupt that is configured to trigger on a negative edge received on the GPIO connected to the <u>DRDY</u> pin. The interrupt service routine, referred to as *DRDYinterrupt*, sends six 32-bit dummy words to assert CS CS and to toggle SCLK for the length of the entire ADC output frame. The ADC output frame consists of one 32-bit status word, four 32-bit ADC conversion data words, and an optional 32-bit CRC word. The frame is long enough for output CRC even though the CRC word is disabled in this example. The DMA module is configured to trigger upon receiving data on the SPI input. The DMA automatically sends the ADC data to a predetermined memory location as soon as the data are shifted into the MCU through the SPI input.

```
numFrameWords = 8;
                         // Number of words in a full ADS131M06 SPI frame
unsigned long spiDummyWord[numFrameWords] =
                0x00000000,
    {
              0x00000000,
                  0x00000000,
                  0x00000000.
             0x00000000,
                  0x00000000,
                  0x00000000,
        0x00000000};
                        // Dummy word frame to write ADC during ADC data reads
bool firstRead = true; // Flag to tell us if we are reading ADC data for the
                         // first time
signed long adcData;
                         // Location where DMA will store ADC data in memory,
                         // length defined elsewhere
Interrupt the MCU each time DRDY asserts when collecting data
* /
DRDYinterupt(){
    if(firstRead){
                             // Clear the ADC's 2-deep FIFO on the first read
        for(i=0; i<numFrameWords; i++){</pre>
            SPI.write(spiDummyWord + i);
        for(i=0; i<numFrameWords; i++){</pre>
            SPI.read();
        firstRead = false; // Clear the flag
                             // Let the DMA start sending ADC data to memory
        DMA.enable();
    }
    for (i=0; i<numFrameWords; i++) {</pre>
                                         // Send the dummy data to the ADC to get
                                         // the ADC data
        SPI.write(spiDummyWord + i);
```


}

Application Information (continued)

```
}
/*
adcRegisterWrite
Short function that writes one ADC register at a time. Blocks return until SPI
is idle. Returns false if the word length is wrong.
param
addrMask:
                16-bit register address mask
                data to write
data:
adcWordLength: word length which ADC expects. Either 16, 24 or 32.
return
true if word length was valid
false if not
bool adcRegisterWrite(unsigned short addrMask, unsigned short data,
    unsigned char adcWordLength) {
    unsigned char shiftValue;
                                    // Stores the amount of bit shift based on
                                    // ADC word length
    if(adcWordLength==16){
        shiftValue = 0;
                                    // If length is 16, no shift
    }else if(adcWordLength==24){
        shiftValue = 8;
                                    // If length is 24, shift left by 8
    }else if(adcWordLength==32){
        shiftValue = 16;
                                    // If length is 32, shift left by 16
    }else{
        return false;
                                    // If not, invalid length
    }
    SPI.write((WREG_OPCODE |
                                // Write address and opcode
        addrMask) << shiftValue);// Shift to accommodate ADC word length
    SPI.write(data << shiftValue);// Write register data</pre>
                                // Wait for data to complete sending
    while(SPI.isBusy());
    return true;
}
/*
main routine
*/
main(){
    enableSupplies();
    GPIO.inputEnable('input'); // Enable GPIO connected to DRDY
    clkout.enable(8192000);
                               // Enable 8.192 MHz clock to CLKIN
    SPI.enable();
                                // Enable SPI port
    SPI.wordLengthSet(24);
                               // ADC default word length is 24 bits
    SPI.configCS(STAY_ASSERTED);// Configure CS to remain asserted until frame
                                // is complete
    while(!GPIO.read()){}
                                // Wait for DRDY to go high indicating it is ok
                                // to talk to ADC
    adcRegisterWrite(CLOCK_ADDR,
                                            // Write CLOCK register
        ALL_CH_DISABLE_MASK
                                            // Turn off all channels so short
                                            // frames can be written during
                                            // config
        OSR_1024_MASK | PWR_HR_MASK, 24);
                                            // Re-write defaults for other bits
                                            // in CLOCK register
    adcRegisterWrite(MODE_ADDR,
                                            // Write MODE register
        RESET_MASK | DRDY_FMT_PULSE_MASK | // Clear the RESET flag, make DRDY
                                            // active low pulse
        WLENGTH 24 MASK |
                                            // Re-write defaults for other bits
        SPI_TIMEOUT_MASK, 24;
                                            // in MODE register
    adcRegisterWrite(GAIN1_ADDR,
                                            // Write GAIN1 register
        PGAGAIN3_32_MASK |
                                            // Set channels 1 and 3 PGA gain to
        PGAGAIN1_32_MASK, 24);
                                            // 32 in this example
                                            // Leave channels 0 and 2 at default
```


Application Information (continued)

```
// gain of 1
adcRegisterWrite(THRSHLD_LSB_ADDR,
                                       // Write THRSHLD_LSB register
   0x09, 24);
                                       // Set DCBLOCK filter to have a
                                       // corner frequency of 622 mHz
                         // Configure DMA to trigger when data comes in
DMA.triggerSet(SPI);
                           // on the MCU SPI port
DMA.txAddrSet(SPI.rxAddr());// Set the DMA to take from the incoming SPI
                          // port
                          // Set the DMA to send ADC data to a predefined
DMA.rxAddrSet(&adcData);
                          // memory location
adcRegisterWrite(MODE_ADDR,
                                      // Write MODE register
   WLENGTH_32_SIGN_EXTEND_MASK | // Make ADC word size 32 bits to
                                      // accommodate DMA
   DRDY_FMT_PULSE_MASK |
                                      // Re-write other set bits in MODE
   SPI_TIMEOUT_MASK, 24);
                                      // register
SPI.wordLengthSet(32);
                                      // Set SPI word size to 32 bits to
                                      // accomodate DMA
adcRegisterWrite(CLOCK_ADDR,
                                      // Write CLOCK register
                                      // Turn on all ADC channels
   ALL_CH_ENABLE_MASK
   OSR_1024_MASK | PWR_HR_MASK, 32); // Re-write defaults for other bits
                                      // in CLOCK register
GPIO.interuptEnable(); // Enable DRDY interrupt and begin streaming data
```

9.1.7 Troubleshooting

}

Table 56 lists common issues faced when designing with the ADS131M06 and the corresponding solutions. This list is not comprehensive.

ISSUE	POSSIBLE ROOT CAUSE	POSSIBLE SOLUTION
The DRDY pin is toggling at half the expected frequency.	ADC conversion data are not being read. The two-deep ADC data FIFO overflows and triggers DRDY one time every two ADC data periods.	Read data after each $\overline{\text{DRDY}}$ falling edge after following the recommendations given in the <i>Collecting Data for the First Time or After</i> <i>a Pause in Data Collection</i> section.
The F_RESYNC bit is set in the STATUS word even though this bit was already cleared.	The SYNC/RESET pin is being toggled asynchronously to CLKIN.	The SYNC/RESET pin functions as a constant synchronization check, rather than a <i>convert start</i> pin. See the <i>Synchronization</i> section for more details on the intended usage of the SYNC/RESET pin.
The same ADC conversion data are output twice before changing.	The entire frame is not being sent to the ADC. The ADC does not recognize data as being read. Therefore, the two-deep ADC data FIFO overflows one time every two data periods.	Read all data words in the output data frame, including those for channels that are disabled.

Table 56. Troubleshooting Common Issues Using the ADS131M06

9.2 Typical Application

This section describes a class 0.1 three-phase energy measurement front-end using the ADS131M06. The ADC samples the outputs of the CTs and voltage dividers to measure the current and voltage (respectively) of each leg of the AC mains. The design can achieve high accuracy across a wide input current range (0.05 A – 100 A) and supports high sampling frequencies necessary for advanced power quality features such as individual harmonic analysis. Using the ADS131M06 to sample the CT output provides designers greater flexibility in the choice of metrology microcontrollers when compared to an integrated system-on-a-chip (SoC) and dedicated application-specific products.

Figure 93 shows the front-end for the three-phase energy measurement design.

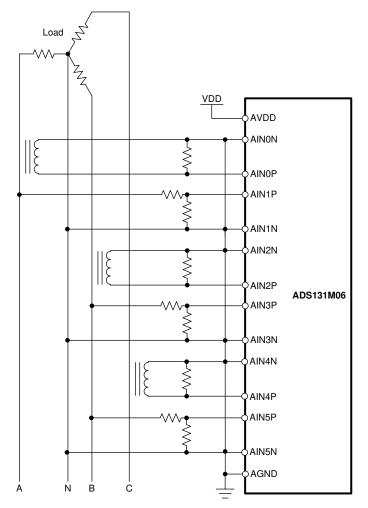


Figure 93. Three-Phase Metrology Design Front-End

TEXAS INSTRUMENTS

www.ti.com

Typical Application (continued)

9.2.1 Design Requirements

Table 57. Key System Specifications

FEATURES	DESCRIPTION
Number of phases	3 phase: three currents and three voltages measured
E-meter accuracy class	Class 0.1
Current sensor	Current transformer
Current range	0.05 A–100 A
Voltage range	100 V – 240 V
System nominal frequency	50 Hz or 60 Hz
Measured parameters	 Active, reactive, apparent power and energy Root mean square (RMS) current and voltage Power factor Line frequency

9.2.2 Detailed Design Procedure

A current sensor connects to the current channels and a simple voltage divider is used for the corresponding voltage measurement. The CT has an associated burden resistor that must be connected at all times to protect the measuring device. The selection of the CT and the burden resistor is made based on the manufacturer and current range required for energy measurements. The voltage divider resistors for the voltage channel are selected to ensure the mains voltage is divided down to adhere to the normal input voltage ranges of the ADS131M06.

In this design, the ADS131M06 interacts with a microcontroller (MCU) in the following manner:

- The CLKIN clock used by the ADS131M06 device is provided by the MCU
- When new ADC samples are ready, the ADS131M06 device asserts its DRDY pin, which alerts the MCU that new samples are available
- After being alerted of new samples, the MCU uses one of its SPI interfaces to retrieve the voltage and current samples from the ADS131M06

9.2.2.1 Voltage Measurement Front-End

The nominal voltage from the mains is from 100 V - 240 V so this voltage must be scaled down to be sensed by an ADC. Figure 94 shows the analog front-end used for this voltage scaling.

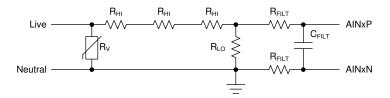


Figure 94. Voltage Measurement Front-End

The analog front-end for voltage consists of a spike protection variator (R_V), a voltage divider network (R_{HI} and R_{LO}), and an RC low-pass filter (R_{FILT} and C_{FILT}).

Equation 9 shows how to calculate the range of differential voltages fed to the voltage ADC channel for a given mains voltage and the selected voltage divider resistor values.

$$V_{ADC} = \pm V_{RMS} \times \sqrt{2} \times \frac{R_{LO}}{3R_{HI} + R_{LO}}$$

(9)

 R_{HI} is 300 k Ω and R_{LO} is 750 Ω in this design. For a mains voltage of 240 V (as measured between the line and neutral), the input signal to the voltage ADC has a voltage swing of ±256 mV (182 mV_{RMS}) based on Equation 9 and the selected resistor values. This voltage is well within the ±1.2-V input voltage range that can be sensed by the ADS131M06 for the selected PGA gain value of 1 that is used for the voltage channels.

9.2.2.2 Current Measurement Front-End

The analog front-end for current inputs is different from the analog front-end for the voltage inputs. Figure 95 shows the analog front-end used for a current channel.

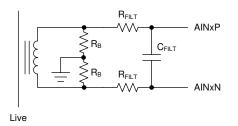


Figure 95. Current Measurement Front-End

The analog front-end for current consists of burden resistors for the current transformers (R_B) and an RC low-pass filter (R_{FILT} and C_{FILT}) that functions as an antialias filter.

Two identical burden resistors in series are used with the common point being connected to GND instead of using one burden resistor for best THD performance. This split-burden resistor configuration ensures that the waveforms fed to the positive and negative terminals of the ADC are 180 degrees out-of-phase with each other, which provides the best THD results with this ADC. The total burden resistance is selected based on the current range used and the turns ratio specification of the CT (this design uses CTs with a turns ratio of 2000). The total value of the burden resistor for this design is 12.98 Ω .

Equation 10 shows how to calculate the range of differential voltages fed to the current ADC channel for a given maximum current, CT turns ratio, and burden resistor value.

$$V_{ADC} = \pm I_{RMS} \times 2R_B \times \sqrt{2/N_{CT}}$$

Based on the maximum RMS current of 100 A, a CT turns ratio N_{CT} of 2000, and a burden resistor R_B of 12.98 Ω of this design, the input signal to the current ADC has a voltage swing of ±918 mV maximum (649 mV_{RMS}) when the maximum current rating of the meter (100 A) is applied. This ±918-mV maximum input voltage is well within the ±1.2-V input range of the device for the selected PGA gain of 1 that is used for the current channels.

9.2.2.3 ADC Setup

The ADS131M06 receives its clock from the MCU in this design. The ADS131M06 is configured in HR mode and the MCU provides an 8.192-MHz master clock, which is within the allowable clock frequency range for HR mode. The MCU SPI port that is used to communicate with the ADS131M06 is configured to CPOL = 0 and CPHA = 1. The SPI clock frequency is configured to be 8.192 MHz so that all conversion data can be shifted out of the device successfully within the sample period. When powered on, the MCU configures the ADS131M06 registers with the following settings using SPI register writes.

- GAIN1 and GAIN2 register settings: PGA gain of 1 is used for all ADC channels.
- CHx_CNG register settings (where x is the channel number): All ADC channel inputs are connected to the external ADC pins and the channel phase delay set to 0 for each channel. The channel phase setting can also be configured in this register. This design uses an integer number of output samples for phase calibration so the processing is done in software completely.
- CLOCK register settings: OSR = 512, all channels enabled, and HR mode.

After the ADS131M06 registers are properly initialized, the MCU is configured to generate a GPIO interrupt whenever a falling edge occurs on the DRDY pin, which indicates that the ADS131M06 has new samples available.

The clock fed to the CLKIN pin of the ADS131M06 is internally divided by two to generate the modulator clock. The output data rate of the ADS131M06 is therefore $f_{MOD} / OSR = f_{CLKIN} / (2 \times OSR) = 8$ kSPS.

9.2.2.4 Calibration

Certain signal chain errors can be corrected through a single room temperature calibration. The ADS131M06 has the capability to store calibration values and use the values to correct the results in real time. Among those errors that can be corrected in real time with the ADS131M06 are offset error, gain error, and phase error.

Offset calibration is performed by determining the measured output of the signal chain when the input is zero voltage for a voltage channel or zero current for a current channel. The value can be measured and recorded in external non-volatile memory for each channel. When the system is deployed, these values can be provided to the CHn_OCAL_MSB and CHn_OCAL_LSB registers for the corresponding channels. The ADS131M06 then subtracts these values from its conversion results prior to providing them to the host. Alternatively, the integrated DC block filter can be used to implement offset correction.

Similar to offset error correction, system gain error can be determined prior to deployment and can be used to correct the gain error on each channel in real time. Gain error is defined as the percentage difference in the ADC transfer function from its PGA gain corrected ideal value of 1. This error can be determined by measuring the results from both a maximum and minimum input signal, finding the difference between these results, and dividing by the difference between the ideal difference. Equation 11 describes how to calculate gain error.

$$Gain Error = 1 - \frac{V_{,I_{Max,Measured}} - V_{,I_{Min,Measured}}}{V_{,I_{Max}} - V_{,I_{Min}}}$$
(11)

To correct for gain error, divide each offset-corrected conversion result by the measured gain. The ADS131M06 multiplies each conversion result by the calibration factor stored in the CHn_GCAL_MSB and CHn_GCAL_LSB registers according to the method described in the *Calibration Registers* section. The host can program the measured inverted gain values for each channel into these registers to have them automatically corrected for each sample.

The ADS131M06 can also correct for system phase error introduced by sensors. For this design, the CT introduces some phase error into the system. This design uses a software method for phase correction, but the ADS131M06 can perform this function in real time. The system must first measure the phase relationships between the various channels. Then, define one channel as *phase 0*. Subsequently, the PHASEn bits in the CHn_CFG registers corresponding to the various other channels can be edited to correct their phase relationship relative to the phase 0 channels.

9.2.2.5 Formulae

This section describes the formulas used for the power and energy calculations. Voltage and current samples are obtained at a sampling rate of 8000 Hz. All samples that are taken in approximately one-second (1 sec) frames are kept and used to obtain the RMS values for voltage and current for each phase.

Power and energy are calculated for active and reactive energy samples of one frame. These samples are phase-corrected. Then phase active and reactive powers are calculated through the following formulas:

$$P_{\text{Actual.ph}} = \frac{1}{N_{\text{samples}}} \sum_{n=0}^{N_{\text{samples}}-1} v[n] \times i[n]$$

$$P_{\text{Reactive.ph}} = \frac{1}{N_{\text{samples}}} \sum_{n=0}^{N_{\text{samples}}-1} v[n-n_{90^{\circ}}] \times i[n]$$
(12)
(13)

 $P_{Apparent.ph}^2 = P_{Actual.ph}^2 + P_{Reactive.ph}^2$

where:

- v[n] = Voltage sample
- i[n] = Current sample
- N_{samples} = Number of samples in the approximately 1-second frame
- v[n-n_{90°}] = Voltage sample with a 90° phase shift
- P_{ACTUAL,ph} = Instantaneous actual power for the measured phase
- P_{REACTIVE} = Instantaneous reactive power for the measured phase
- P_{APPARENT,ph} = Instantaneous apparent power for the measured phase

(14)

The 90° phase shift approach is used for two reasons:

- 1. This approach allows accurate measurement of the reactive power for very small currents
- 2. This approach conforms to the measurement method specified by IEC and ANSI standards

The calculated mains frequency is used to calculate the 90° shifted voltage sample. Because the frequency of the mains varies, the mains frequency is first measured accurately to phase shift the voltage samples accordingly.

To get an exact 90° phase shift, interpolation is used between two samples. For these two samples, a voltage sample slightly more than 90 degrees before the current sample and a voltage sample slightly less than 90° before the current sample are used. The phase shift implementation of the application consists of an integer part and a fractional part. The integer part is realized by providing an N samples delay. The fractional part is realized by a one-tap FIR filter.

The cumulative power values can be calculated by summing the per phase power results. The cumulative energy can be calculated by multiplying the cumulative power by the number of samples in the packet.

The host calculates the frequency in terms of samples-per-mains cycle by counting zero crossings of the sine wave. Equation 15 converts this result from a samples-per-mains cycle to Hertz.

Frequency (Hz) = Data rate (samples / second) / Frequency (samples / cycle)

(15)

After the active power and apparent power are calculated, the absolute value of the power factor is calculated. In the internal representation of power factor of the system, a positive power factor corresponds to a capacitive load and a negative power factor corresponds to an inductive load. The sign of the internal representation of power factor is determined by whether the current leads or lags voltage, which is determined in the background process. Therefore, Equation 16 and Equation 17 calculate the internal representation of the power factor:

$PF = P_{ACTUAL} / P_{APPARENT}$, if capacitive load	(16)
$PF = -P_{ACTUAL} / P_{APPARENT}$, if inductive load	(17)

9.2.3 Application Curves

A source generator was used to provide the voltages and currents to the system. In this design, a nominal voltage of 240 V between the line and neutral, a calibration current of 10 A, and a nominal frequency of 60 Hz were used for each phase.

When the voltages and currents are applied to the system, the design outputs the cumulative active energy pulses and cumulative reactive energy pulses at a rate of 6400 pulses per kilowatt hour. This pulse output was fed into a reference meter that determined the energy percentage error based on the actual energy provided to the system and the measured energy as determined by the active and reactive energy output pulse of the system.

The current was varied from 50 mA to 100 A for the cumulative active energy error and cumulative reactive energy error testing. A phase shift of 0°, 60°, and -60° was applied between the voltage and current waveforms fed to the design for cumulative active energy testing. Based on the error from the active energy output pulse, several plots of active energy percentage error versus current were created for 0°, 60°, and -60° phase shifts. For the cumulative reactive energy error testing, a similar process was followed except that 30°, 60°, -30°, and -60° phase shifts were used, and the cumulative reactive energy error was plotted instead of the cumulative active energy error. In the cumulative active and reactive energy testing, the sum of the energy reading of each phase was tested for accuracy.

In addition to testing active energy by varying current, active energy was also tested by varying the RMS voltage from 240 V to 15 V and measuring the active energy percentage error.

The front-end was calibrated before obtaining the following results. The active energy results are within 0.1% at 0° phase shift. At 60° and -60° phase shift, which is allowed to have relaxed accuracy in electricity meter standards, the trend where the results deviate at higher currents is from the CT phase shift varying across current.

Table 58 shows the cumulative active energy accuracy results with changing voltage. Table 59 shows the cumulative active energy results with varying current. Figure 96 shows a plot of the values in Table 59.

Versus Voltage, Two-Voltage Mode							
VOLTAGE (V) % ERROR							

= 0

Ourselative Diseas Astive Ensure 0/ Ensure

•	•
VOLTAGE (V)	% ERROR
240	0.0353
120	0.022
60	0.016
30	0.014
15	0.013

Table 59. Cumulative Phase Active Energy % ErrorVersus Current

CURRENT (A)	0°	60°	–60 °
0.05	0.019	0.045	-0.032
0.10	0.006	0.058	-0.032
0.25	0.0125	0.045	-0.0385
0.50	0.006	0.032	-0.032
1.00	0.015	0.045	-0.019
2.00	0.003	0.045	-0.039
5.00	0.006	0.024	-0.012
10.00	0.01	0.0165	0
20.00	-0.007	0.002	-0.013
30.00	0.002	-0.007	0.0085
40.00	0	-0.016	0.019
50.00	-0.003	-0.035	0.042
60.00	0.002	-0.047	0.053
70.00	0.009	-0.047	0.063
80.00.	0.007	-0.05	0.067
90.00	0.013	-0.045	0.08
100.00	0.0223	-0.04	0.092

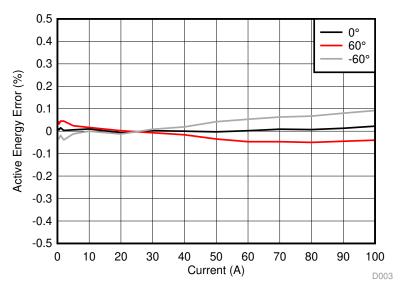


Table 60 shows the cumulative reactive energy accuracy results with changing current. Figure 97 shows a plot of the values in Table 59.

CURRENT (A)	30°	60°	–30°	–60 °						
0.05	-0.003	0.004	-0.023	-0.027						
0.10	-0.037	-0.013	0.011	-0.008						
0.25	-0.067	-0.027	0.043	0.002						
1.00	-0.044	-0.021	0.0415	0.011						
5.00	-0.036	-0.0183	0.022	0.001						
10.00	-0.03	-0.012	0.014	-0.003						
20.00	-0.041	-0.026	-0.0035	-0.013						
40.00	-0.01	-0.016	-0.021	-0.016						
60.00	0.025	-0.0007	-0.047	-0.0247						
80.00	0.041	0.0085	-0.048	-0.021						
100.00	0.054	0.02	-0.044	-0.012						

Table 60. Cumulative Reactive Energy % Error Versus Current

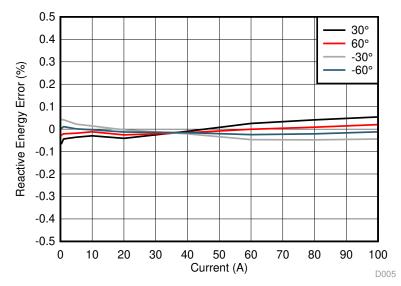


Figure 97. Cumulative Reactive Energy % Error Versus Current

10 Power Supply Recommendations

10.1 CAP Pin Behavior

The ADS131M06 core digital voltage of 1.8 V is created from an internal LDO from DVDD. The CAP pin outputs the LDO voltage created from the DVDD supply and requires an external bypass capacitor. When operating from DVDD > 2.7 V, place a 220-nF capacitor on the CAP pin to DGND. If DVDD \leq 2 V, tie the CAP pin directly to the DVDD pin and decouple the star-connected pins using a 100-nF capacitor to DGND.

10.2 Power-Supply Sequencing

The power supplies can be sequenced in any order but the analog and digital inputs must never exceed the respective analog or digital power-supply voltage limits.

10.3 Power-Supply Decoupling

Good power-supply decoupling is important to achieve optimum performance. AVDD and DVDD must each be decoupled with a 1-µF capacitor. Place the bypass capacitors as close to the power-supply pins of the device as possible with low-impedance connections. Using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics are recommended for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins can offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground planes. The analog and digital ground are recommended to be connected together as close to the device as possible.

11 Layout

11.1 Layout Guidelines

For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal traces on this layer. However, depending on restrictions imposed by specific end equipment, a dedicated ground plane may not be practical. If ground plane separation is necessary, make a direct connection of the planes at the ADC. Do not connect individual ground planes at multiple locations because this configuration creates ground loops.

Route digital traces away from all analog inputs and associated components in order to minimize interference.

Use COG capacitors on the analog inputs. Use ceramic capacitors (for example, X7R grade) for the power-supply decoupling capacitors. High-K capacitors (Y5V) are not recommended. Place the required capacitors as close as possible to the device pins using short, direct traces. For optimum performance, use low-impedance connections on the ground-side connections of the bypass capacitors.

When applying an external clock, be sure the clock is free of overshoot and glitches. A source-termination resistor placed at the clock buffer often helps reduce overshoot. Glitches present on the clock input can lead to noise within the conversion data.

11.2 Layout Example

Figure 98 illustrates an example layout of the ADS131M06 requiring a minimum of two PCB layers. In general, analog signals and planes are partitioned to the left and digital signals and planes to the right.

Layout Example (continued)

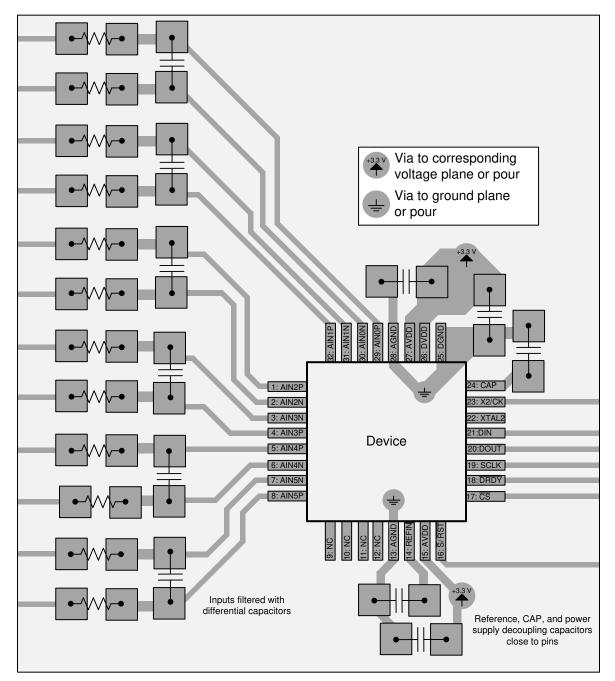


Figure 98. Layout Example

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, One-phase shunt electricity meter reference design using standalone ADCs design guide
- Texas Instruments, *High accuracy split-phase CT electricity meter reference design using standalone ADCs* design guide

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7-Mar-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
ADS131M06IPBS	ACTIVE	TQFP	PBS	32	250	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	131M06	Samples
ADS131M06IPBSR	ACTIVE	TQFP	PBS	32	1000	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	131M06	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

ROHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

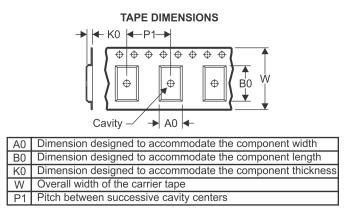
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

7-Mar-2020


PACKAGE MATERIALS INFORMATION

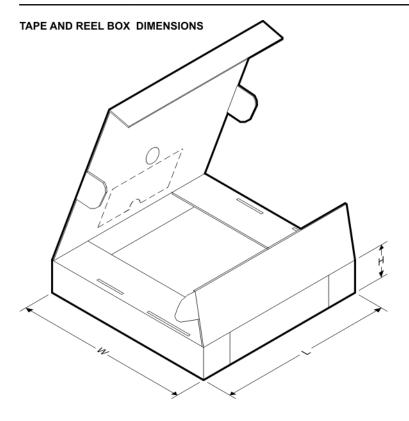
www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All	dimensions are nominal	

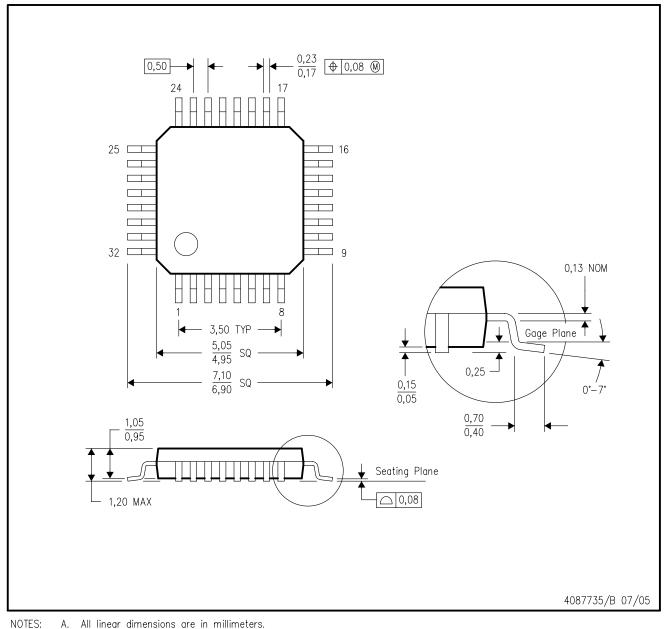

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS131M06IPBSR	TQFP	PBS	32	1000	330.0	16.4	7.2	7.2	1.5	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Mar-2020

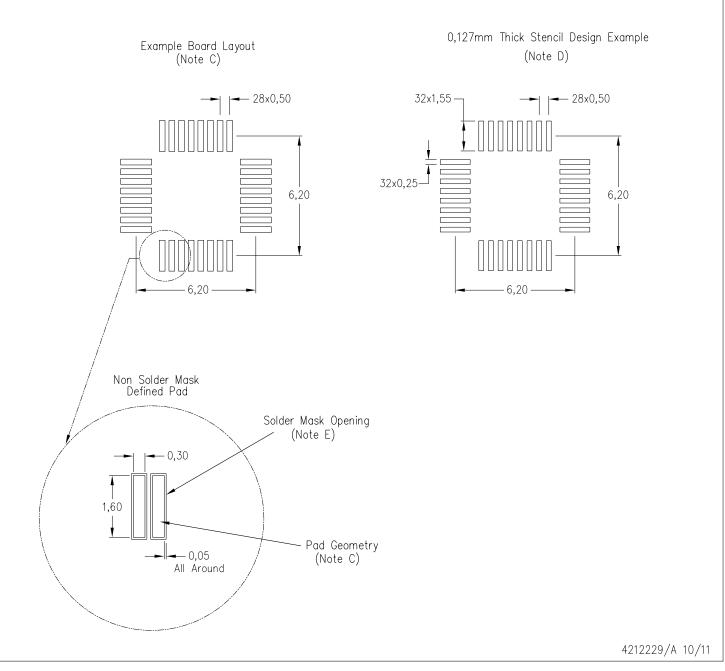


*All dimensions are nominal

Device Package Typ		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ADS131M06IPBSR	TQFP	PBS	32	1000	367.0	367.0	38.0	

PBS (S-PQFP-G32)

PLASTIC QUAD FLATPACK



B. This drawing is subject to change without notice.

PBS (S-PQFP-G32)

PLASTIC QUAD FLATPACK

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - E. Customers should contact their board fabrication site for recommended solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated