
4 Quadrants Triacs

General Description

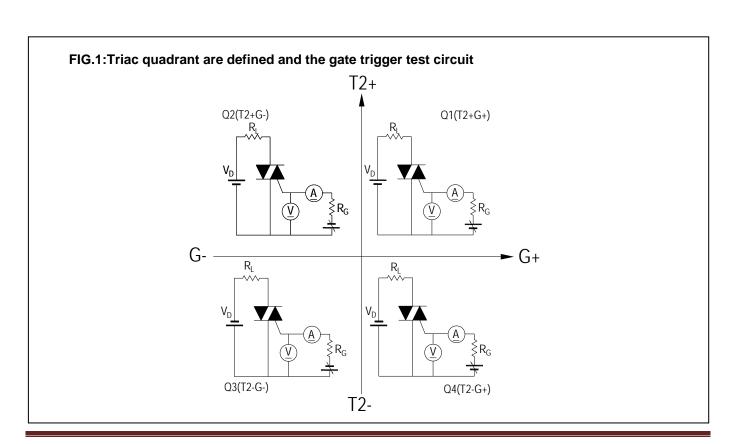
High current density due to mesa technology .the ADS6D triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, High power motor controls e.g. washing machines and vacuum cleaners,Rectifier-fed DC inductive loads e.g.DC motors and solenoids , motor speed controllers.

Features

- ◆ Repetitive Peak Off-State Voltage: 600Vand800V
- ◆ R.M.S On-State Current (I_{T(RMS)}= 6A)
- ◆ High Commutation dv/dt
- ◆ These Devices are Pb-Free and are RoHS Compliant

Absolute Maximum Ratings

Symbol	Items	Conditio	Ratings	Unit		
V_{DRM}	Depotitive Deals Off State Voltage	ADS6D60		600	V	
V_{RRM}	Repetitive Peak Off-State Voltage	Tj = 25°C	ADS6D80	800	V	
$I_{T(RMS)}$	R.M.S On-State Current	T _C = 110°C	6	Α		
I _{TSM}	Surge On-State Current	tp=20ms(50Hz)/tp=16.7ms	60/63	Α		
l ² t	I ² t for fusing	tp=10ms	20	A ² s		
dI/dt	Critical rate of rise of on-state	F = 120 Hz Tj = 125°C	Q1-Q2-Q3	50	Δ /	
	current	$I_{G} = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$	Q4	50	A/µs	
I _{GM}	Peak Gate Current	tp = 20 μs Tj = 125°C	4	Α		
$P_{G(AV)}$	Average Gate Power Dissipation(Tj=125°C)			1	W	
P_GM	Peak Gate Power Dissipation(tp=20us,Tj=125°C)			5	W	
Tj	Operating Junction Temperature			- 40 ~ 125	°C	
T _{STG}	Storage Temperature			- 40 ~ 150	°C	



Scan the QR code to view the latest product information

Electrical Characteristics (Tj = 25°C unless otherwise specified)

Symbol	Items	Conditions		ADS6D60D/80D)	Unit	
					Т	S	Blank	В	
I _{DRM}	Peak Forward Reverse Blocking		$V_{DRM} = V_{RRM}, T_{J} = 25^{\circ}C$	Max	5			uA	
I _{RRM}	Current		$V_{DRM} = V_{RRM}, T_{J} = 125^{\circ}C$	Max.	1			mA	
V_{TM}	Peak On-Sta	te Voltage	I_{TM} = 8.5A, t_p = 380 μ s	Max.	r. 1.55			V	
V_{GD}	Q1-Q2-Q3-Q4	Non – Trigger Gate Voltage	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_J = 125^{\circ}\text{C}$	Min.	0.2		V		
V_{GT}	Q1-Q2-Q3-Q4	GateTrigger Voltage		Max.	1.3		V		
	Q1-Q2-Q3	GateTrigger Current	$V_D = 12V$, $R_L = 33\Omega$	Max.	5	10	35	50	mA
I _{GT}	Q4				10	25	70	100	
I _H	Q1-Q2-Q3-Q4	Holding Current	I _T = 0.1A	Max.	10	25	35	60	mA
	Q1-Q3-Q4	Latabia a Ocumant	$T_{J} = 125^{\circ}C \qquad \qquad \begin{array}{c} \text{Min.} \\ \\ \text{Max.} \\ \\ \text{I}_{T} = 125^{\circ}C \\ \\ \text{Max.} \\ \\ \text{Max.} \\ \\ \text{Max.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{Max.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{Max.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{Max.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{Max.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{Max.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{Min.} \\ \\ \text{I}_{G} = 1.2 \text{ I}_{G} \\ \\ \text{I}_{G} = 1.2 $		15	30	40	60	
lι	Q2	Latching Current		20	40	60	90	mA	
dV/dt	Critical Rate of Rise of Off-State Voltage			Min.	10	20	200	400	V/µs
(dV/dt)c	Rate of Change of Commutating Current,			Min.	1	2	5	10	V/µs
R _{th(j-c)}	Junction to case (AC)		Max.	1.8			°C/W		
R _{th(j-a)}	Junction to ambient			Max.	100			°C/W	

ADV

FIG.2: Maximum on-state power dissipation

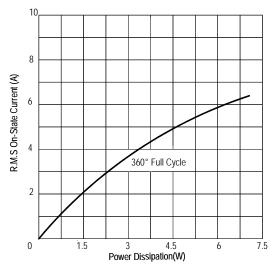


FIG.4: Maximum transient thermal impedance

FIG.3: Typical RMS on-state current VS Allowable case Temperature

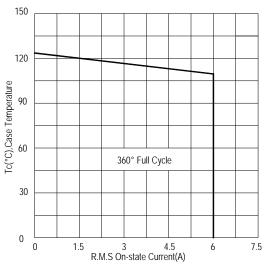


FIG.5: Rated surge on-state current (Non-Repetitive)

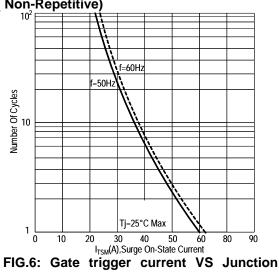


FIG.6: Gate trigger current VS Junction temperature

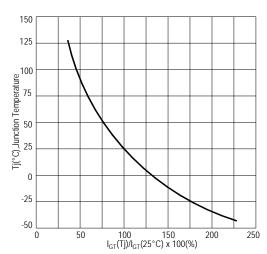


FIG.7:Holding current and Latching current VS Junction temperature

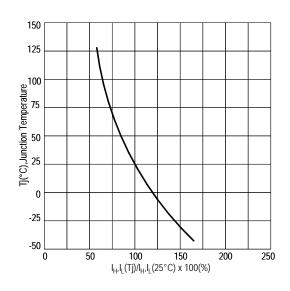


FIG.8: Gate trigger voltage VS Junction temperature

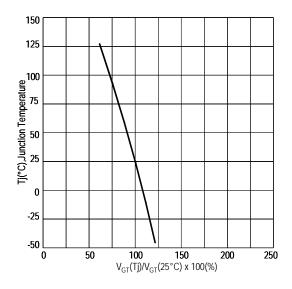
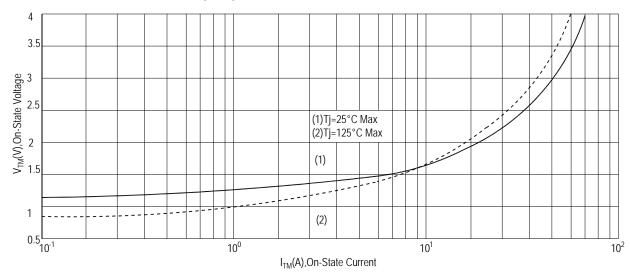
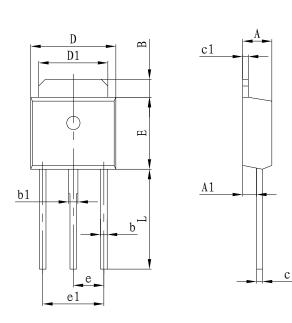
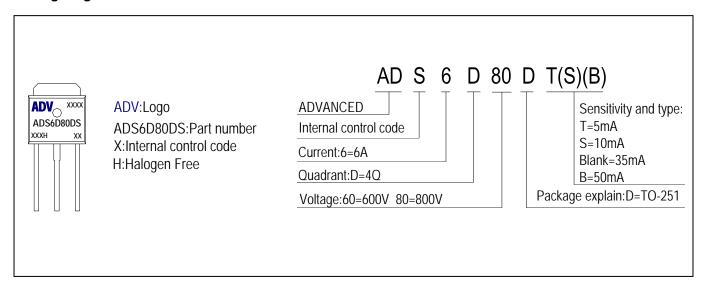




FIG.9: On-state characteristics(Max)



PACKAGE MECHANICAL DATA TO-251 Package Dimension

0		sions In	Dimensions In		
Symbol	IVIIIIIM	neters	Inches		
	Min	Max	Min	Max	
Α	2.200	2.400	0.087	0.094	
A1	0.900	1.100	0.035	0.043	
В	1.350	1.650	0.053	0.065	
b	0.500	0.700	0.020	0.028	
b1	0.700	0.900	0.028	0.035	
С	0.430	0.620	0.017	0.024	
c1	0.480	0.620	0.019	0.024	
D	6.350	6.700	0.252	0.264	
D1	5.100	5.400	0.200	0.213	
Е	6.000	6.200	0.236	0.244	
е	2.300TYP		0.091TYP		
e1	4.500	4.700	0.177	0.185	
L	8.900	9.400	0.350	0.370	

Making Diagram

Ordering information

Part number	Part number Package		Packing	Quantity			
ADS6D60D#	TO-251	ADS6D60D#	Tube	80pcs			
ADS6D80D#	TO-251	ADS6D80D#	Tube	80pcs			
Note:# = Gate Trigger Current Sensitivity and type							

ADS6D60D/80D

Notice

- 1. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any ADV products listed in this document, please confirm the latest product information with a ADV sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by ADV such as that disclosed through our website. (http://www.advsemi.com)
- 2. ADV has used reasonable care in compiling the information included in this document, but ADV assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 3. You should use the products described herein within the range specified by ADV, especially with respective the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. ADV shall have no liability for malfunctions or damages arising out of the use of ADV products beyond such specified ranges.
- 4. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. ADV makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or ADV products.
- 5. Although ADV endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a ADV product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 6. This document is provided for reference purposes only so that ADV customers may select the appropriate ADV products for their use. ADV neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of ADV or any third party with respect to the information in this document.
- 7. ADV shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 8. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from ADV.

6 / 6 www.advsemi.com Feb,2013 -Rev.3.02