National Semiconductor

AF104/AF105 DTMF AGC Amplifier

General Description

The AF104 AGC Amplifier is a direct coupled amplifier whose voltage gain is internally controlled by the output signal. The gain control feedback system is AC coupled so that DC signals do not affect the gain.

Features

- Optional gain adjustment
- High input impedance

- OdBm output level
- Internal reference
- Wide supply voltage range
- Input level range
- 100 k 📕 Frequency range

±9.0 V to ±18 V +30 dBm (2.45 V_{rms}) 500 Hz to 10 kHz

Connection Diagram

Ceramic Dual-In-Line Package HY24A AF104CJ AF105CJ

*Internally connected. DO NOT USE.

Absolute Maximum Ratings

Supply Voltage	±18V
Power Dissipation	1W
Input Voltage	±36V
Output Short Circuit Duration	Infinite
Lead Temperature (soldering, 10 sec.)	300°C
Operating Temperature Range	0°C to +70°C
Storage Temperature Range	–25°C to +100°C
Storage Temperature Hange	-25 C to $+100$ C

Electrical Characteristics $V_S = \pm 12V$ to $\pm 15V$, $T_A = 0^{\circ}C$ to 70°C, unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Level	Vo	Single 1 kHz tone of $-22 \le A \le +10 \text{dBm}$	0.35	0	0.35	dBm
Input Level	VIN		-20		+10	dBm
Input Impedance	Z _{IN}			100		kΩ
Open Loop Gain	AO	AF104 AF105	21.4 22.4	22 23	22.6 23.6	dB dB
Output Impedance	z _o			<1		Ω
Recovery Time		Input step from no signal, OdBm, 1 kHz tone		5		ms
Power Supply Voltage	VS		±9		±18	V
Power Supply Current V ⁺	1S+		, i	5.5	11	mA
V-	IS_			2.5	5	mA
Operating Frequency Range			0.5	0.3 To 12	10	kHz

Schematic Diagram

AF104/AF105

14

OPEN LOOP GAIN ADJUSTMENT

The open loop gain is internally set to 21dB but can be externally adjusted by adding one external resistor. The practical limits are 0dB to 40dB. When the gain is increased the bandwidth is decreased.

OUTPUT LEVEL ADJUSTMENT

The output level can be adjusted by connecting a 100k pot between pin 17 and ground with the wiper arm connected to pin 18. Output level can be adjusted

Test Circuits

 $\pm 10 dB$ without affecting other parameters such as loop time constant and recovery time.

EXTENDING LOW FREQUENCY RESPONSE

An external capacitor in parallel with the internal loop time constant capacitor will extend the low frequency response and lower the distortion through the AGC. It has the effect of slowing the response time due to the longer loop time constant. To maintain amplitude stability at low frequencies an external capacitor should be added in parallel with the loop coupling capacitor.

Output Level Adjust

AGC Loop Response

Typical Performance Characteristics

Transient Response

Input 0, 0.77V Step (1 kHz)

Output

Input OdBm, +6.0 dBm (1 kHz)

Output

21 545

Input —10dBm, —4.0 dBm (1 kHz)

Output

14