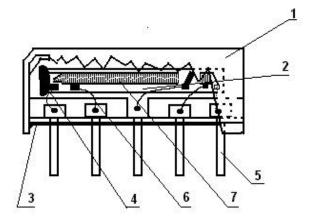
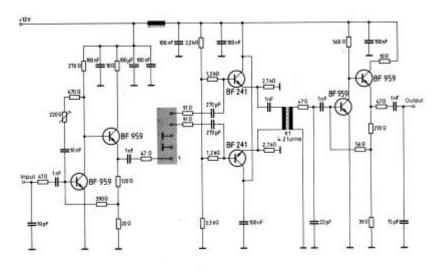

1. SCOPE

The SAW filter series have broad line up products meeting all broadcast standard including NTSC, PAL and SECAM systems. These filters are composed of two interdigital transducers on a single-crystal. piezoelectrical chip. They are used in electronic equipments such as TV and so on.


2.Construction

2.1 Dimension and materials

Type: AF389A1D



0: year(0,1,2,3,4,5,6,7,8,9) B:product in this quarter(A:1~3,B:4~6,C:7~9,D:10~12)

Components	Materials
1.Outer casing	PPS
2.Substrate	Lithium niobate
3.Base	Epoxy resin
4.Absorber	Epoxy resin
5.Lead	Cu alloy+Au plate
6.Bonding wire	AlSi alloy
7.Electrode	AI

2.2. Circuit construction, measurement circuit

Test circuit for SIP-5 filter Input impedance of the symmetrical post-amplifier: 2 k Ω in parallel with 3 pF

3.Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard rang of atmospheric conditions for making measurements and tests is as follows;

Ambient temperature	: 15 to 35
Relative humidity	: 25% to 85%
Air pressure	: 86kPa to 106kPa

Operating temperature rang

Operating temperature rang is the rang of ambient temperatures in which the filter can be operated continuously. $-10 \sim +60$

Storage temperature rang

Storage temperature rang is the rang of ambient temperatures at which the filter can be stored without damage.

Conditions are as specified elsewhere in these specifications. $-40 \sim +70$

<u>Reference temperature</u> +25

3.1 Maximum Rating

DC voltage	VDC	12	V	Between any terminals
AC voltage	Vpp	10	V	Between any terminals

3.2 Electrical Characteristics

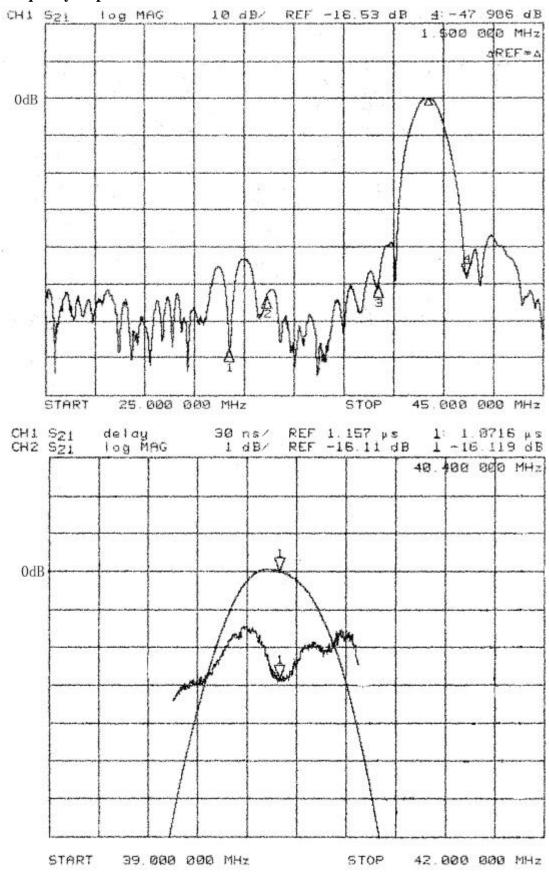
Source imp	edance	Zs=50				
Load imped	lance	Z _L =2k //3pF			,	Г _А =25
Iten	1	Freq	min	typ	max	
Insertion att Reference		40.40MHz	12.2	14.2	16.2	dB
			40.0	47.0	-	dB
Relative attenuation		38.40MHz	40.0	50.0	-	dB
Kelative att	Relative attenuation		36.0	42.0	-	dB
		32.40MHz	40.0	47.0	-	dB
25.00~38.40MHz		36.0	42.0	-	dB	
Sidelobe	Sidelobe 41.90~4		31.0	36.0	-	dB
Temperature coefficient			-72		ppm/k	

Characteristics of channel 2

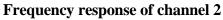
Source imp	edance	Zs=50				
Load imped	lance	$Z_L=2k$	//3pF			T _A =25
Iten	n	Freq	min	typ	max	
Insertion att Reference		33.40MHz	13.0	15.0	17.0	dB
		33.05MHz	-1.8	-0.3	1.2	dB
		32.90MHz	-1.4	0.1	1.6	dB
		32.40MHz	-1.7	-0.2	1.3	dB
		38.90MHz	37.0	45.0	-	dB
Relative att	Relative attenuation		24.0	30.0	-	dB
		30.90MHz	30.0	36.0	-	dB
		40.40MHz	34.0	40.0	-	dB
		40.90MHz	35.0	42.0	-	dB
			36.0	45.0	-	dB
Sidelobe 25.00~2		30.50MHz	36.0	42.0	-	dB
Sidelobe	40.40~	45.00MHz	31.0	38.0	-	dB
Temperature coefficient			-72		ppm/k	

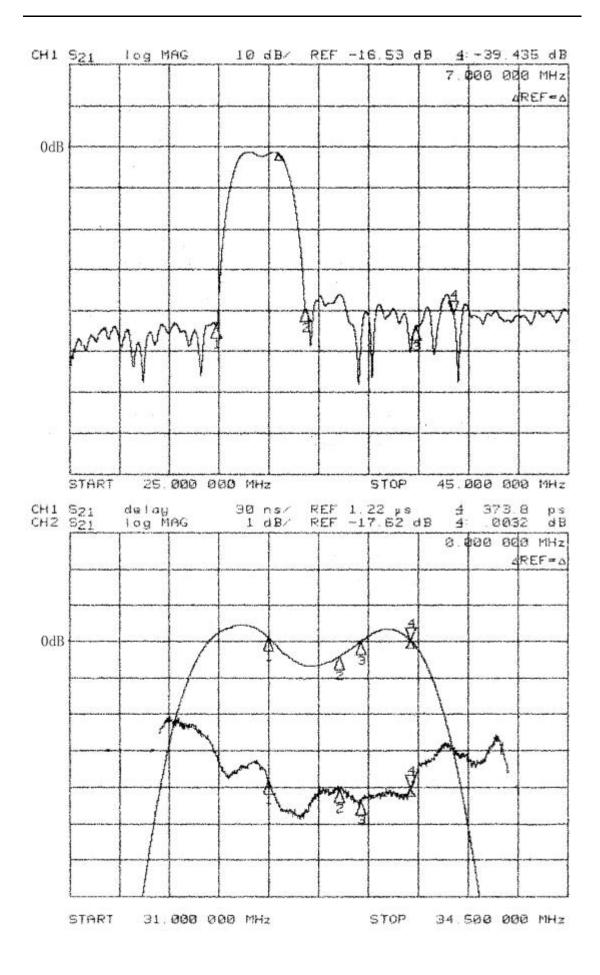
3.3 Environmental Performance Characteristics

Item Test condition	Allowable change of absolute
	Level at center frequency(dB)
High temperature test	< 1.0
70 1000H	< 1.0
Low temperature test	< 1.0
-40 1000H	< 1.0
Humidity test	< 1.0
40 90-95% 1000H	< 1.0
Thermal shock	< 1.0
-20 ==25 ==80 20 cycle	< 1.0


30M 10M 30M	
Solder temperature test	< 1.0
Sold temp.260 for 10 sec.	< 1.0
Soldering	More then 95% of total
Immerse the pins melt solder	area of the pins should
at 260 +5/-0 for 5 sec.	be covered with solder

3.4 Mechanical Test


Item	Allowable change of absolute
Test condition	Level at center frequency(dB)
Vibration test 600-3300rpm amplitude 1.5mm 3 directions 2 H each	<1.0
Drop test On maple plate from 1 m high 3 times	<1.0
Lead pull test Pull with 1 kg force for 30 seconds	<1.0
Lead bend test 90° bending with 500g weigh 2 times	<1.0


3.5 Voltage Discharge Test

Item	Allowable change of absolute
Test condition	Level at center frequency(dB)
Surge test	
Between any two electrode	
100V 1000pF 4Mohm	<1.0

Frequency response of channel 1

