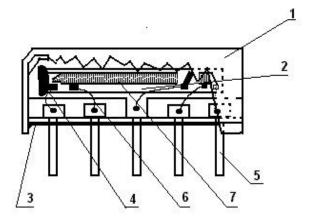
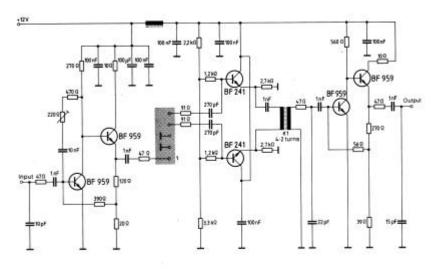

1.SCOPE

The SAW filter series have broad line up products meeting all broadcast standard including NTSC,PAL and SECAM systems. These filters are composed of two interdigital transducers on a single-crystal. piezoelectrical chip. They are used in electronic equipments such as TV and so on.


2.Construction

2.1 Dimension and materials

Type : AF389A2M



0: year(0,1,2,3,4,5,6,7,8,9) B:product in this quarter(A:1~3,B:4~6,C:7~9,D:10~12)

Components	Materials
1.Outer casing	PPS
2.Substrate	Lithium niobate
3.Base	Epoxy resin
4.Absorber	Epoxy resin
5.Lead	Cu alloy+Au plate
6.Bonding wire	AlSi alloy
7.Electrode	AI

2.2. Circuit construction, measurement circuit

Test circuit for SIP-5 filter Input impedance of the symmetrical post-amplifier: 2 k Ω in parallel with 3 pF

3.Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard rang of atmospheric conditions for making measurements and tests is as follows;

Ambient temperature	: 15 to 35
Relative humidity	: 25% to 85%
Air pressure	: 86kPa to 106kPa

Operating temperature rang

Operating temperature rang is the rang of ambient temperatures in which the filter can be

operated continuously. $-10 \sim +60$

Storage temperature rang

Storage temperature rang is the rang of ambient temperatures at which the filter can be stored

without damage.

Conditions are as specified elsewhere in these specifications. $-40 \sim +70$

<u>Reference temperature</u> +25

3.1 Maximum Rating

DC voltage	VDC	12	V	Between any terminals
AC voltage	Vpp	10	V	Between any terminals

3.2 Electrical Characteristics

Source imp	edance	Zs=50	1			
Load impeda	impedance Z _L =2k		. //3pF			T _A =25
Iten	1	Freq	min	typ	max	
Insertion att Reference		40.40MHz	11.6	14.1	16.6	dB
	Relative attenuation		38.0	45.0	-	dB
Polotivo ott			38.0	45.0	-	dB
Relative att			34.0	44.0	-	dB
			36.0	45.0	-	dB
Sidelobe 25.00~3		38.40MHz	35.0	42.0	-	dB
Sidelobe	41.90~	45.00MHz	33.0	40.0	-	dB
Temperature coefficient			-72		ppm/k	

Characteristics of channel 1 (switching input pin 2 connected to ground pin 3)

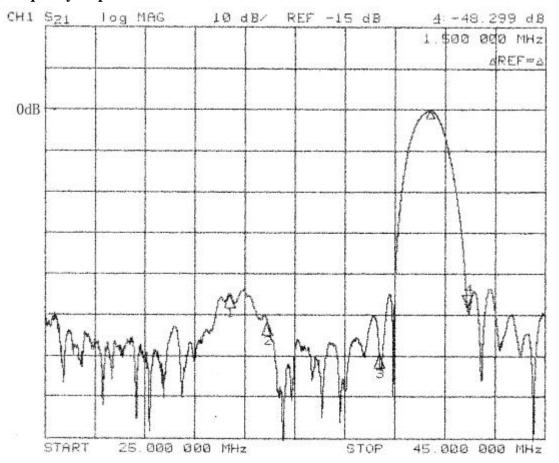
Characteristics of channel 2 (switching input pin 2 connected to input pin 1)

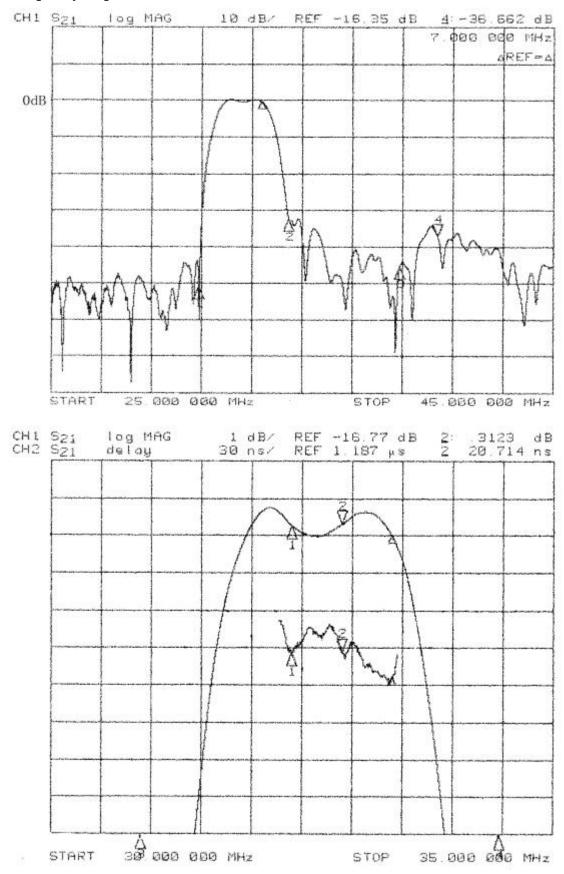
Source imp	edance	Zs=50				
Load imped	lance	$Z_L=2k$. //3pF			T _A =25
Iten	n	Freq	min	typ	max	
Insertion att Reference		33.40MHz	12.9	15.4	17.9	dB
			-1.9	-0.4	1.1	dB
		32.90MHz	-1.6	-0.1	1.4	dB
			-1.6	-0.1	1.4	dB
		38.90MHz	35.0	45.0	-	dB
Relative att	enuation	34.47MHz	24.0	32.0	-	dB
		30.90MHz	30.0	40.0	-	dB
		40.40MHz	32.0	40.0	-	dB
			32.0	45.0	-	dB
		41.40MHz	32.0	40.0	-	dB
Sidelobe 25.00	25.00~	30.50MHz	35.0	42.0	-	dB
Sidelobe	40.40~45.00MHz		30.0	38.0	-	dB
Temperature coefficient			-72		ppm/k	

3.3 Environmental Performance Characteristics

Item Test condition	Allowable change of absolute Level at center frequency(dB)
High temperature test 70 1000H	< 1.0
Low temperature test -40 1000H	< 1.0
Humidity test 40 90-95% 1000H	< 1.0
Thermal shock	< 1.0

-20 ==25 ==80 20 cycle 30M 10M 30M	
Solder temperature test Sold temp.260 for 10 sec.	< 1.0
Soldering Immerse the pins melt solder at 260 +5/-0 for 5 sec.	More then 95% of total area of the pins should be covered with solder


3.4 Mechanical Test


Item	Allowable change of absolute
Test condition	Level at center frequency(dB)
Vibration test	
600-3300rpm amplitude 1.5mm	<1.0
3 directions 2 H each	
Drop test	<1.0
On maple plate from 1 m high 3 times	<1.0
Lead pull test	<1.0
Pull with 1 kg force for 30 seconds	<1.0
Lead bend test	<1.0
90° bending with 500g weigh 2 times	<1.0

3.5 Voltage Discharge Test

Item	Allowable change of absolute
Test condition	Level at center frequency(dB)
Surge test	
Between any two electrode	
Toov 1000pF 4Mohm	<1.0

3.6 Frequency response Frequency response of channel 1

Frequency response of channel 2