

1 Watt CLASS-AB Audio Power Amplifier

Features

PSRR at 217Hz, VDD = 5V (Fig. 1) 62dB(typ.)
Power Output at 5.0V & 1% THD 1W(typ.)
Power Output at 3.3V & 1% THD 400mW(typ.)
Shutdown Current 0.1µA(typ.)

General Description

The AF4890 is an audio power amplifier primarily designed for demanding applications in mobile phones and other portable communication device applications. It is capable of delivering 1 watt of continuous average power to an 8Ω BTL load with less than 1% distortion (THD+N) from a 5V DC power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components.

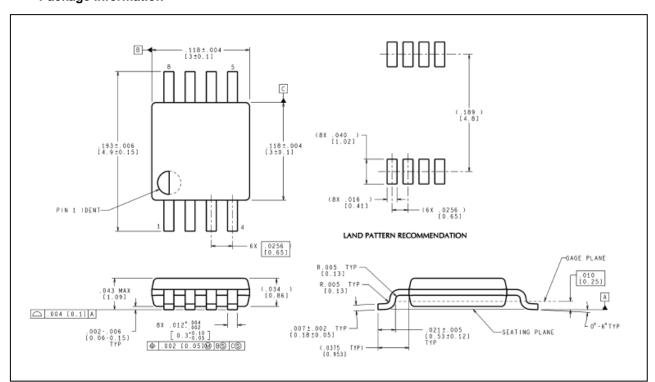
The AF4890 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The AF4890 features a low-power consumption shutdown mode, which is achieved by driving the shutdown pin with logic low.

Additionally, the AF4890 features an internal thermal shutdown protection mechanism.

The AF4890 contains advanced pop & click circuitry which eliminates noises which would otherwise occur during turn-on and turn-off transitions.

The AF4890 is unity-gain stable and can be configured by external gain-setting resistors.

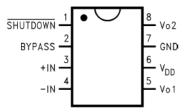

Applications

Mobile Phones

PDAs

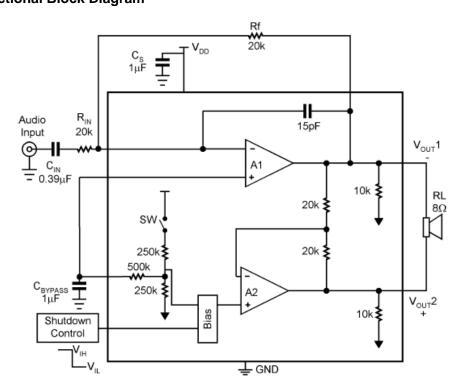
Portable electronic devices

Package Information


AF-V2.0 Analog Future

1/11

PIN CONFIGURATION


Mini Small Outline (MSOP) Package

PIN ASSIGNMENT

PIN NUMBER MSOP8	NAME	FUNCTION
1	Shutdown	Shutdown
2	Bypass	Bypass
3	+IN	Input 1
4	-IN	Input 2
5	Vo1	Output 1
6	VDD	VDD
7	GND	Ground
8	Vo2	Output 2

• Functional Block Diagram

• Absolute Maximum Ratings @T_A = 25°C unless otherwise noted

Supply Voltage ------6.0V

Power Dissipation ----- Internally Limited

ESD Susceptibility-----2000V

Junction Temperature -----150°C

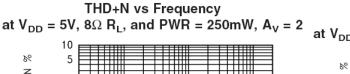
• **Electrical Characteristics** VDD = 5V Unless otherwise specified. Limits apply for TA = 25°C.)

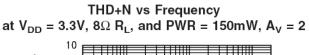
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
IDD	Quiescent Power	Vin=0V, IO=0A, No Load	_	4	8	mA
	Supply Current	Vin=0V,IO=0A,8Ω Load	_	5	10	
ISD	Shutdown Current	VSHUTDOWN = 0V	_	0.1	2	μΑ
	Shutdown		1.2	2.5	_	V
VSDIH ⁽¹⁾	Voltage Input					
	High					
) (OD!!	Shutdown		_	_	0.4	V
VSDIL	Voltage Input Low					
VOS	Output Ofsett		_	7	50	mV
	Voltage					
DOLLT OND	Resistor Output		7.0	8.5	9.7	kΩ
ROUT-GND	to GND					
PO.	Output Power	THD = 2% (max);	0.8 1.0	_	W	
PO	(8Ω)	f = 1 kHz 8Ω Load				
TWU	Wake-up time		_	170	220	ms
	Thermal		150	170	190	$^{\circ}\mathbb{C}$
TSD	Shutdown					
	Temperature					
THD+N	Total Harmonic	Po = 0.4 Wrms; f = 1kHz	_	0.1	_	%
	Distortion+Noise					
		Vripple = 200mVsine p-p	55	62	_	dB
PSRR	Power Supply	f=217Hz				
PSRR	Rejection Ratio	Vripple = 200mVsine p-p		66		
		f=1kHz				
TSDT	Shut Down Time	8Ω Load	_	1.0	_	ms

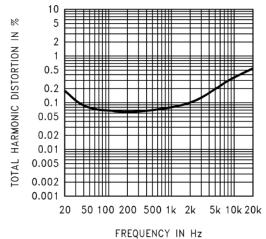
VDD = 3V Unless otherwise specified. Limits apply for TA = 25°C.)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
IDD	Quiescent Power	Vin=0V,IO=0A,No Load	_	3.5	7	mA
IDD	Supply Current	Vin=0V,IO=0A,8Ω Load		4.5	9	
ISD	Shutdown Current	VSHUTDOWN = 0V	_	0.1	2	μΑ
VSDIH (1)	Shutdown		1.2	1.5	_	V

3/11

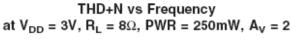

AF-V2.0 Analog Future

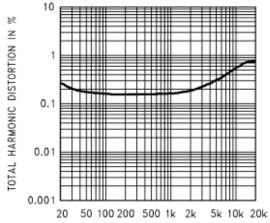

	Voltage Input					
	High					
VSDIL	Shutdown		_	_	0.4	V
	Voltage Input Low					
vos	Output Ofsett		_	7	50	mV
	Voltage					
ROUT-GND	Resistor Output		7.0	8.5	9.7	kΩ
	to GND					
PO	Output Power	THD = 2% (max);	0.28	0.31	_	W
PO	(8Ω)	f = 1 kHz 8Ω Load				
TWU	Wake-up time		_	170	220	ms
	Thermal		150	170	190	$^{\circ}\mathbb{C}$
TSD	Shutdown					
	Temperature					
THD+N	Total Harmonic	Po = 0.4 Wrms; f = 1kHz	_	0.1	_	%
	Distortion+Noise	F0 - 0.4 WIIIIS, I - IKHZ				
		Vripple = 200mVsine p-p	45	56	_	dB
PSRR	Power Supply	f=217Hz				
FORK	Rejection Ratio	Vripple = 200mVsine p-p		62		
		f=1kHz				
TSDT	Shut Down Time	8Ω Load	_	1.0	_	ms


Note: (1) Enable the device, the shutdown pin voltages should be higher than 0.5VDD.

• Typical Performance Characteristics

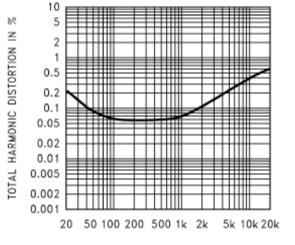
NOT THE TOTAL TH

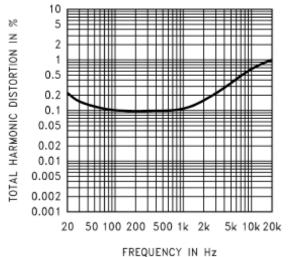




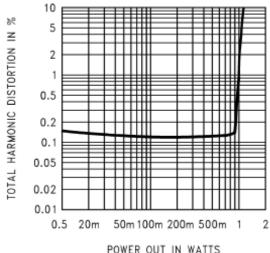
4/11

AF-V2.0 Analog Future



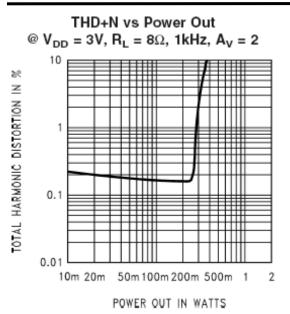

FREQUENCY IN Hz

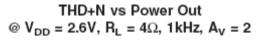
THD+N vs Frequency @ $V_{DD} = 2.6V$, $R_L = 8\Omega$, PWR = 100mW, $A_V = 2$

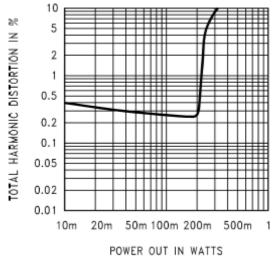


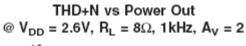
FREQUENCY IN Hz

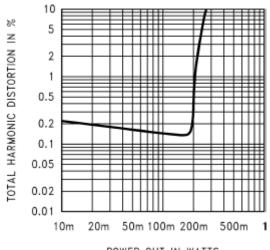
THD+N vs Frequency @ $V_{DD} = 2.6V$, $R_L = 4\Omega$, PWR = 100mW, $A_V = 2$

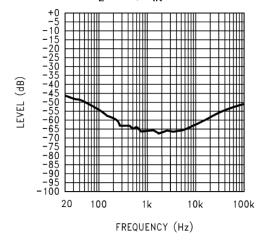

THD+N vs Power Out @ $V_{DD} = 5V$, $R_L = 8\Omega$, 1kHz, $A_V = 2$

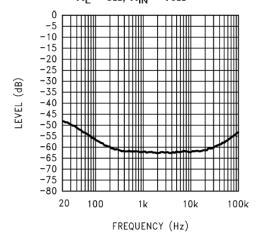


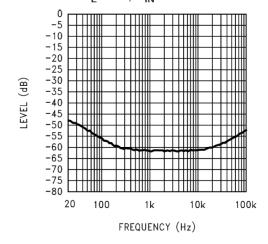

POWER OUT IN WATTS

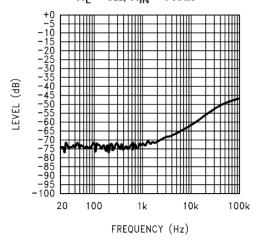


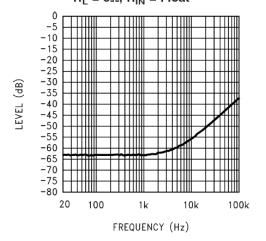


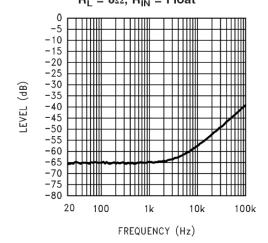



POWER OUT IN WATTS

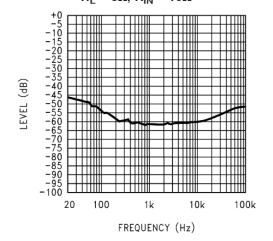

Power Supply Rejection Ratio (PSRR) @ A_V = 2 V_{DD} = 5V, V_{ripple} = 200mvp-p R_L = 8Ω , R_{IN} = 10Ω

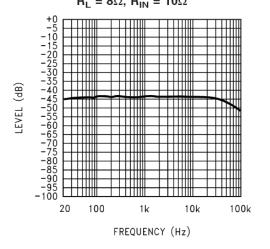

Power Supply Rejection Ratio (PSRR) @ A_V = 4 V_{DD} = 5V, V_{ripple} = 200mvp-p R_L = 8Ω , R_{IN} = 10Ω

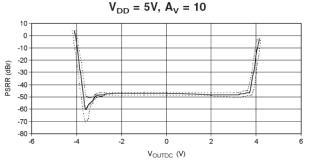

Power Supply Rejection Ratio (PSRR) @ A_V = 4 V_{DD} = 3V, V_{ripple} = 200mvp-p, R_L = 8Ω , R_{IN} = 10Ω

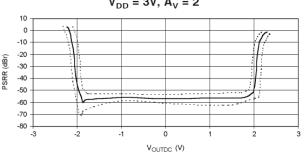

Power Supply Rejection Ratio (PSRR) @ A_V = 2 V_{DD} = 5V, V_{ripple} = 200mvp-p R_L = 8Ω , R_{IN} = Float

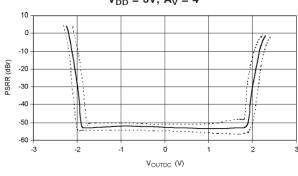
Power Supply Rejection Ratio (PSRR) @ A_V = 4 V_{DD} = 5V, V_{ripple} = 200mvp-p R_L = 8Ω , R_{IN} = Float

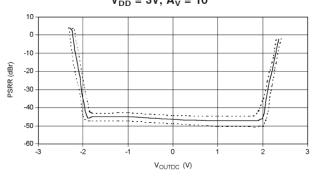

Power Supply Rejection Ratio (PSRR) @ $A_V = 4$ $V_{DD} = 3V$, $V_{ripple} = 200 mvp-p$, $R_L = 8\Omega$, $R_{IN} = Float$


7/11

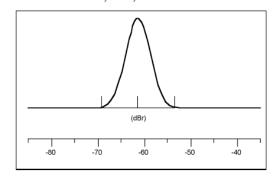

Power Supply Rejection Ratio (PSRR) @ A_V = 2 V_{DD} = 3.3V, V_{ripple} = 200mvp-p, R_L = 8Ω , R_{IN} = 10Ω

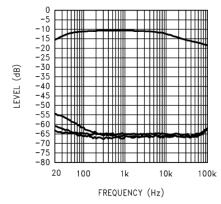

Power Supply Rejection Ratio (PSRR) @ A_V = 2 V_{DD} = 2.6V, V_{ripple} = 200mvp-p, R_L = 8Ω , R_{IN} = 10Ω

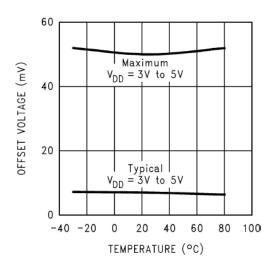

PSRR vs DC Output Voltage

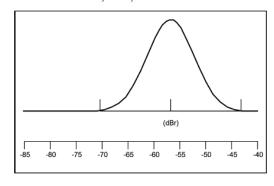

PSRR vs DC Output Voltage $V_{DD} = 3V$, $A_V = 2$

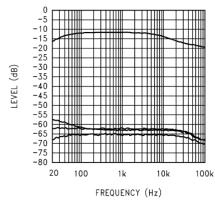
PSRR vs DC Output Voltage $V_{DD} = 3V$, $A_{V} = 4$

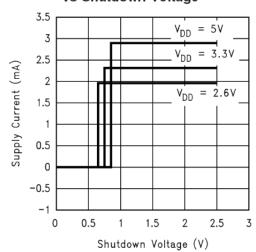

PSRR vs DC Output Voltage $V_{DD} = 3V$, $A_V = 10$

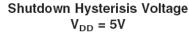


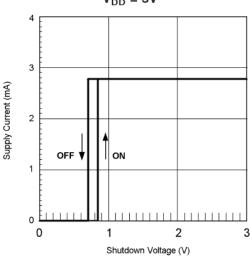

PSRR Distribution $V_{DD} = 5V$ 217Hz, 200mvp-p, -30, +25, and +80°C


Power Supply Rejection Ration vs Bypass Capacitor Size V_{DD} = 5V, Input Grounded = 10 Ω , Output Load = 8 Ω

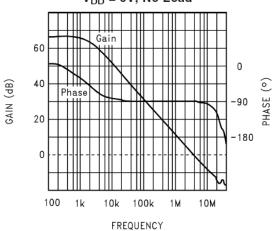

Output Offset Voltage

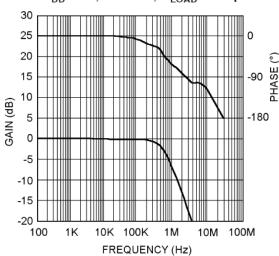

PSRR Distribution $V_{DD} = 3V$ 217Hz, 200mvp-p, -30, +25, and +80°C

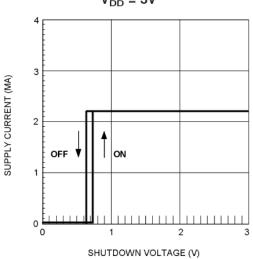

Power Supply Rejection Ration vs $\text{Bypass Capacitor Size} \\ \text{V}_{\text{DD}} = \text{3V, Input Grounded} = \text{10}\Omega, \text{Output Load} = \text{8}\Omega \\$

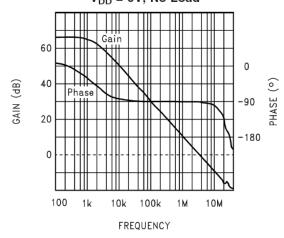


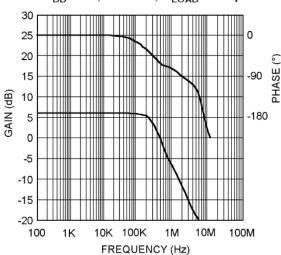
Supply Current vs Shutdown Voltage





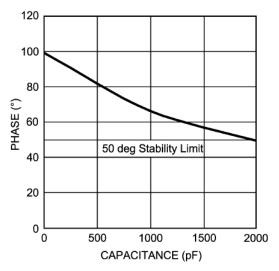

Open Loop Frequency Response $V_{\rm DD}$ = 5V, No Load


Gain / Phase Response, $A_V = 2$ $V_{DD} = 5V$, 8Ω Load, $C_{LOAD} = 500pF$

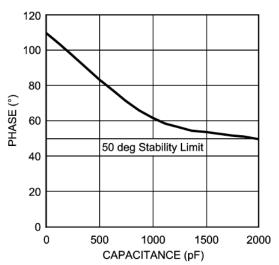

Shutdown Hysterisis Voltage $V_{\rm DD} = 3V$

Open Loop Frequency Response $V_{DD} = 3V$, No Load

Gain / Phase Response, $A_V = 4$ $V_{DD} = 5V$, 8Ω Load, $C_{LOAD} = 500pF$



10 / 11



Phase Margin vs C_{LOAD} , A_V = 2 V_{DD} = 5V, 8Ω Load Capacitance to gnd on each output

Phase Margin vs C_{LOAD} , $A_V = 4$ $V_{DD} = 5V$, 8Ω Load Capacitance to gnd on each output

DISCLAIMER

ANALOG FUTURE COMPANY RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. ANALOG FUTURE DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE A STATISTICAL SUMMARY BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDE FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G., OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.