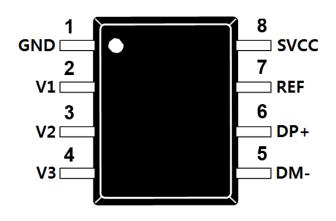


USB 高压充电接口芯片

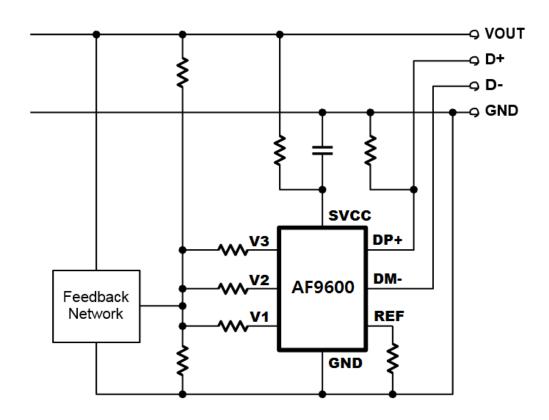

描述:

AF9600 是一款支持QC2.0 协议的低成本USB高压充电接口芯片,能够配合各种副边反馈的AC-DC 开关电源管理芯片满足输出电压。AF9600 能自动检测是否有支持QC2.0 的需要充电的设备接入,如果检测到接入的需充电设备不满足QC2.0,则默认为DC5V 输出。

特点:

- ●AF9600 是一款支持QC2.0 规范的低成本USB专用充电接口IC
- ●输出电压: DC5V、DC9V、DC12V 以 及DC20V
- ●兼容USB充电协议1.2 版本
- ●自动对充电适配器和被充电设备进 行USB 1.2充电协议握手
- ●默认输出DC5V。
- ●超低功耗
- ●在输出5V时,芯片功耗低于1mW
- ●完整的保护机制
- ●引脚开路及短路保护机制
- ●SOP-8封装

引脚排列图:


应用:

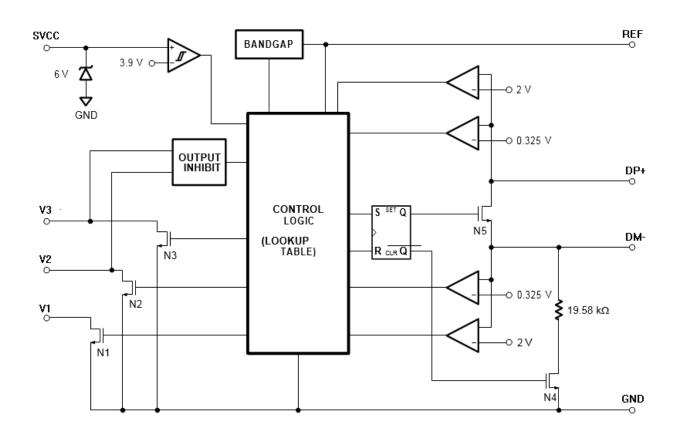
适用于智能手机、数码相机、笔记本等的充电设备

1/7

典型应用电路:

管脚定义:

		-			
序号	名称	功能描述			
1	GND	地			
2	V1	漏极输入输出调节开关,9V、12V、20V输出设置			
3	V2	漏极输入输出调节开关, 12V、20V 输出设置			
4	V3	漏极输入输出调节开关,20V 输出设置			
5	DM-	USB D-数据行输入			
6	DP+	USB D+数据行输入			
7	REF	连接内部带隙基准,通过电阻接地调节电流			
8	SVCC	连接点为外部旁路电容器,内部生成的电源电压			


2/7

订购信息:

封装	温度范围	定购型号	包装运输	产品打印
SOP-8	-40°C~80°C	AF9600	Tape and Reel	AF9600
501 0		7H 3000	3000pcs	XXXX

功能模块框图:

极限参数:

•	电源电压	SVCC	$-0.3V^{\sim}$	7V/DC
_	' 1 T 1/2 N ' 1 T 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5100	0.01	11/20

- 输出电压反馈控制脚 V1、V2、V3———— -0.3V~7V/DC
- 芯片内部基准设置脚 REF—————— -0.3V~7V/DC

- SOP-8, θ JA------ 60°C/W

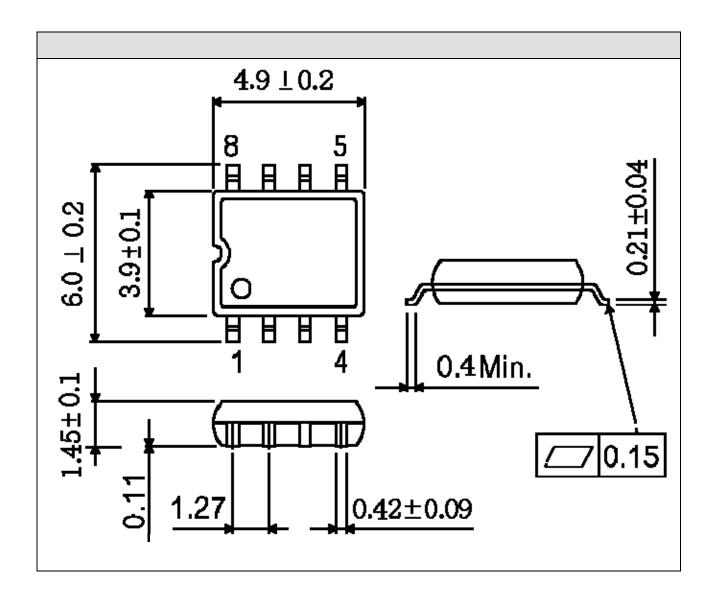
3/7

电气参数: (注:如没有特殊说明,下列测试条件均为Ta=25℃)

符号	参数	测试组	条件	最小值	典型值	最大值	单位	
SVCC	输入电压				3.9		V	
VUVLO	输入电压欠	Vin下降			3.8		V	
VCC Shunt Voltage	VCC 钳位电压	Ivcc=	3m A		6		V	
IVCC	芯片工作电流	Vin=4.3V N1=N2=N3			90		uA	
芯片内部基准设置								
REF	内部基准 电流设置脚	Vin=	4.3V	_	127K	_	Ω	
Vref	内部基准电压	Ref=1	127K	1.18	1.23	1.28	V	
输出电压反馈控制脚	」,连接一个电阻至			È				
Ron	N1 导通时 的导通电阻	N1 导通 N2=N3=0 Vin=4. 3V				300	Ω	
Ron	N2 导通时 的导通电阻	N2 导通 N1=N3=0 Vin=4. 3V				300	Ω	
Ron	N3 导通时 的导通电阻	N3 导通 N2=N1=0 Vin=4. 3V				300	Ω	
USB 数据输入脚								
Vdata(ref)	DATA Dete Voltage	DATA Detect Voltage		0.25	0.325	0.4	V	
Vselect(ref)	Output Voltage Select Reference			1.8	2.0	2.2	V	
Tdat-delay	D+、D-短路延时				10	20	mS	
Tglitch(BC)done	D+ High Glit Filter Time			1000	1250	1500	mS	
Tglitch(V)change	Output Glitch Filter Time			20	40	60	ms	
Rdm	Rdm D- Pulldown resistance			14.25	19.5	24.5	ΚΩ	

AF-V1.0 www.afsemi.com Analog Future

芯片工作原理:


- AF9600 是一款支持 QC2. 0 协议的 USB 高压充电接口芯片,芯片通过 D+、D-两个引脚的电平来判断需要输出的电压,然后通过 V1、V2 和 V3 这三个接入了电源反馈系统的端口,来控制输出电压达到需求值。当 SVCC 的电平达到 4V 后,芯片会在 20MS 之内开通 N5,以使D+和D-联通,并且保持V1、V2 和V3 几个口的开关管关断。芯片连接D+和D-,使得充电适配器和被充电设备进行USB1. 2 充电协议的握手,此时,适配器默认输出5V。当D+的电平超过0.325V 并且低于2.0V 持续时间超过1.25S 时,芯片进入QC2.0 模式,如果持续时间小于1.25S,则芯片继续处于USB1. 2 充电协议,默认为5V 输出。
- 当 AF9600 进入 QC2.0 模式,芯片会关断 N5,并且打开 N4,此时通过一颗内置的电阻 (19.5 KΩ) 在 1mS 之内,将 D一的电平拉低到 0V。此后,芯片将接受被充电设备发出 D+和D-的电平,来控制AC-DC 输出相应的电平,具体的输出电压和D+、D-的关系如下表:

DP+	DM-	输出电压	内部逻辑开关状态
0.6 V	0.6 V	12 V	N1 = N2 = On, N3 = Off
3.3 V	0.6 V	9 V	N1 = On, N2 = N3 = Off
3.3 V	3.3 V	20 V	N1 = N2 = N3 = On
0.6 V	GND	5 V (default)	N1 = N2 = N3 = Off

AF-V1.0 www.afsemi.com Analog Future

芯片封装图:

AF9383+AF9600 典型应用电路图:

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。

7/7

AF-V1.0 www.afsemi.com Analog Future