

SPECIFICATION FOR LCD MODULE

MODULE NO: AFS800480IDW1-5.0-A30 REVISION NO: 2.3

Customer s Approvai.		
	SIGNATURE	DATE
PREPARED BY (RD ENGINEER)		2009-7-30
CHECKED BY	-	
APPROVED BY		

Customer's Approval.

Record of Revisions

Rev.	Date	Sub-Model	Description of change
2.3	Jul, 30, 2009	A30	Formal Product Specification was first released.

Contents

1.0	General description	p.4
2.0	Absolute maximum ratings	p.5
3.0	Optical characteristics	p.6
4.0	Block diagram	p.10
5.0	Input interface pin assignment	p.11
6.0	Electrical characteristics	p.12
7.0	Reliability test items	p.17
8.0	Outline dimension	p.18
9.0	Package specification	p.19
10.0	General precaution	p.20

1.0 GENERAL DESCRIPTION

1.1 Introduction

Orient Display AFS800480IDW1-5.0-A30 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT LCD panel, a driving circuit and a back light system. This TFT LCD has a 5.0 (15:9) inch diagonally measured active display area with WVGA (800 horizontal by 480 vertical pixel) resolution.

1.2 Features

5.0 (15:9 diagonal) inch configuration6 bits + FRC driver with 1 channel TTL interfaceRoHS and Halogen-Free Compliance

1.3 Applications

Personal Navigation Device Multimedia applications and Others AV system

1.4 General information

ltem		Specification	Unit
Outline Dimension	on	118.5 x 77.55 x 3.4 (Typ.)	mm
Display area		108.0(H) x 64.8(V)	mm
Number of Pixel		800 RGB (H) x 480(V)	pixels
Pixel pitch		0.135(H) x 0.135(V)	mm
Pixel arrangement		RGB Vertical stripe	
Display mode		Normally white	
Surface treatmen	nt	Antiglare, Hard-Coating (3H)	
Weight		66 (Typ.)	g
Back-light		LED Side-light type	
Power	Logic System	0.7 (Max.)	W
Consumption	B/L System	0.98 (Max.)	W

1.5 Mechanical Information

	Item	Min.	Тур.	Max.	Unit
Module Vertica	Horizontal (H)	118.2	118.5	118.8	mm
	Vertical (V)	77.25	77.55	77.85	mm
	Depth (D)	-	3.4	3.7	mm
Weight (Without inverter)		-	66	-	g

2.0 ABSOLUTE MAXIMUM RATINGS

2.1 Electrical Absolute Rating

2.1.1 TFT LCD Module

Item	Symbol	Min.	Max.	Unit	Note
Power supply voltage	V_{DD}	-0.5	5.0	V	GND=0
Logic Signal Input Level	Vi	-0.3	V _{DD} +0.3	V	

2.1.2 Back-Light Unit

Item	Symbol	Тур.	Max.	Unit	Note
LED current	Ι _L	40	-	mA	(1)(2)(3)
LED voltage	V_L	23.1	-	V	(1)(2)(3)

Note

- (1) Permanent damage may occur to the LCD module if beyond this specification. Functional operation should be restricted to the conditions described under normal operating conditions.
- (2) Ta =25±2°C
- (3) Test Condition: LED current 40 mA. The LED lifetime could be decreased if operating IL is larger than 40mA.

2.2 Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Operating Temperature	T _{opa}	-20	70	$^{\circ}\mathbb{C}$	
Storage Temperature	T_{stg}	-30	80	$^{\circ}\!\mathbb{C}$	

3.0 OPTICAL CHARACTERISTICS

3.1 Optical specification

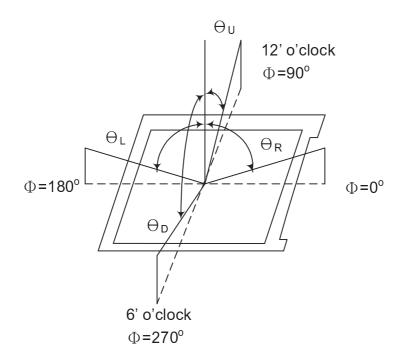
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast		CR		480	600	_		(1)(2)
Response	Rising	T_R			2	4		(4)(0)
time	Falling	T _F	⊖=0		6	12	msec	(1)(3)
White luminance (Center)		Y _L	Normal Viewing	320	400	_	cd/m ²	(1)(4)(7) (I _L =40mA)
Color		W _x	Angle	0.260	0.310	0.360		
chromaticity (CIE1931)	White	W _y		0.280	0.330	0.380		
	l low	Θ_{L}		65	75	_		(1)(4)
Viewing	Hor.	Θ_{R}		65	75	_		(1)(4)
angle) /o. n	θυ	CR>10	50	60	_		
	Ver.	Θ_{D}		60	70	_		
Brightness uniformity		B _{UNI}	⊖=0	70	_	_	%	(5)(7)
Optima View	Direction		6 O'clock					

3.2 Measuring Condition

Measuring surrounding: dark room

LED current I_L: 40mA

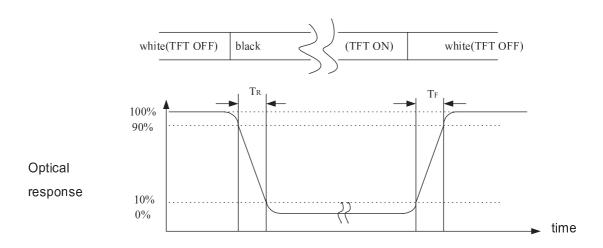
Ambient temperature: 25±2°C

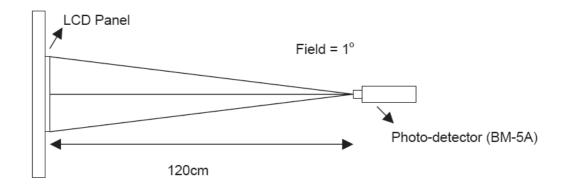

15min. warm-up time.

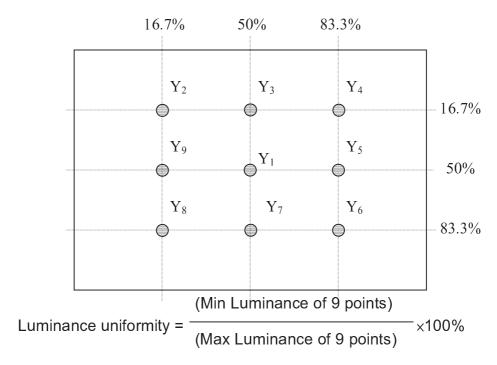
3.3 Measuring Equipment

FPM520 of Westar Display technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics.

Measuring spot size: 20 ~ 21m

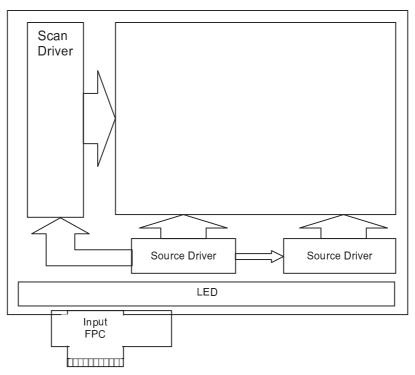

Note (1) Definition of Viewing Angle:

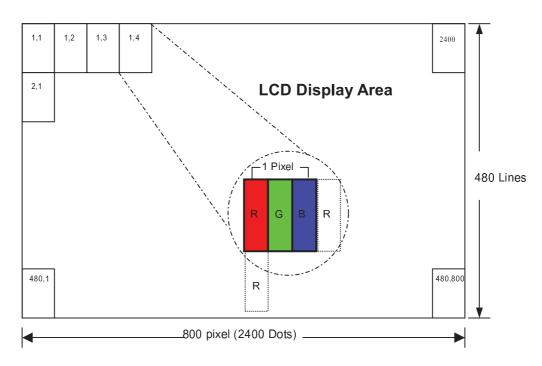

Note (2) Definition of Contrast Ratio (CR):


Measured at the center point of panel

Note (3) Definition of Response Time: Sum of T_{R} and T_{F}

Note (4) Definition of optical measurement setup




- Note (6) Rubbing Direction (The different Rubbing Direction will cause the different optima view direction.
- Note (7) Measured at the brightness of the panel when all terminals of LCD panel are electrically open.

4.0 BLOCK DIAGRAM

4.1 TFT LCD Module

4.2 Pixel Format

5.0 INPUT INTERFACE PIN ASSIGNMENT

FPC connector is used for electronics interface.

The recommended model is FH19SC-40S-0.5SH (51) manufactured by HIROSE.

Pin No.	Symbol	I/O	Function
1	V_{LED}	Р	Power for LED backlight cathode
2	V_{LED^+}	Р	Power for LED backlight anode
3	GND	Р	Power ground
4	V_{DD}	Р	Power voltage
5	R0		Red data (LSB)
6	R1	I	Red data
7	R2	- 1	Red data
8	R3		Red data
9	R4		Red data
10	R5	- 1	Red data
11	R6		Red data
12	R7		Red data (MSB)
13	G0	- 1	Green data (LSB)
14	G1		Green data
15	G2	I	Green data
16	G3	1	Green data
17	G4	1	Green data
18	G5	I	Green data
19	G6	1	Green data
20	G7	- 1	Green data (MSB)
21	B0	1	Blue data (LSB)
22	B1	I	Blue data
23	B2	- 1	Blue data
24	В3	1	Blue data
25	B4	I	Blue data
26	B5	1	Blue data
27	В6		Blue data
28	B7	1	Blue data (MSB)
29	DGND	- 1	Digital ground
30	DCLK	1	Pixel clock
31	DISP		Display on/ off
32	HSYNC		Horizontal sync signal
33	VSYNC		Vertical sync signal
34	DE		Data enable
35	NC	-	No Connect
36	GND	Р	Power ground
37	X1	I/O	Right electrode - differential analog
38	Y1	I/O	Bottom electrode - differential analog
39	X2	I/O	Left electrode - differential analog
40	Y2	I/O	Top electrode - differential analog

I/O: I: input, O: output, P: power

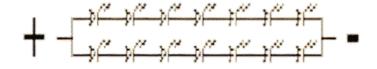
6.0 ELECTRICAL CHARACTERISTICS

6.1 TFT LCD Module

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	V_{DD}	3.0	3.3	3.6	V	
Input signal voltage	ViH	0.7 V _{DD}	-	V_{DD}	V	Note (1)
	ViL	GND	-	0.3 V _{DD}	V	Note (1)
Current of power supply	ldd	-	-	220	mA	$V_{DD} = 3.3V$

Note (1): HSYNC, VSYNC, DE, R/G/B Data

Note (2): GND=0V

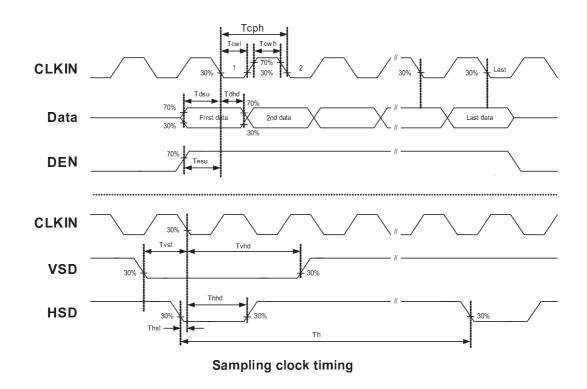

6.2 Back-Light Unit

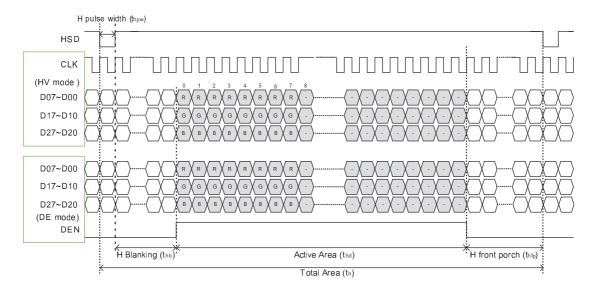
The backlight system is an edge-lighting type with 14 LED.

The characteristics of the LED are shown in the following tables.

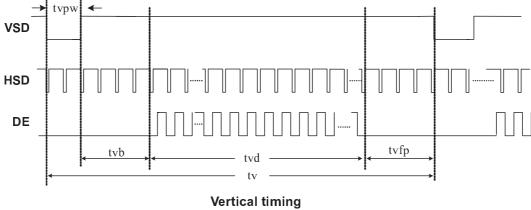
Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED current	IL	-	40	-	mA	(2)
LED voltage	VL	-	23.1	-	V	
Operating LED life time	Hr	10000	-	-	Hour	(1)(2)

- Note (1) LED life time (Hr) can be defined as the time in which it continues to operate under the condition: Ta=25±3 °C, typical IL value indicated in the above table until the brightness becomes less than 50%.
- Note (2) The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=40mA. The LED lifetime could be decreased if operating IL is larger than 40mA. The constant current driving method is suggested.

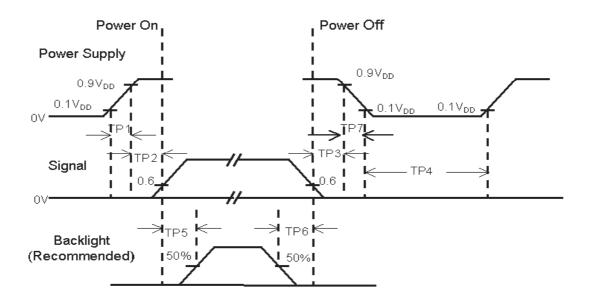



LED Light Bar Circuit

6.3 AC Characteristics


Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK cycle time	Tclk	25			ns	
DCLK frequency	fclk		33	40	MHz	
DCLK pulse duty	Tcwh	40	50	60	%	
VSYNC setup time	Tvst	8			ns	
VSYNC hold time	Tvhd	8			ns	
HSYNC setup time	Thst	8			ns	
HSYNC hold time	Thhd	8			ns	
Data setup time	Tdasu	8			ns	
Data hold time	Tdahd	8			ns	
DE setup time	Tdesu	8			ns	
DE hold time	Tdehd	8			ns	
Horizontal display area	Thd		800		Tcph	
HSYNC period time	Th		928		Tcph	
HSYNC width	Thwh	1	48		Tcph	
HSYNC back porch	Thbp		40		Tcph	
HSYNC front porch	Thfp		40		Tcph	
Vertical display area	Tvd		480		th	
VSYNC period time	Tv		525		th	
VSYNC width	Tvwh		3		th	
VSYNC back porch	Tvbp		29		th	
VSYNC front porch	Tvfp		13		th	

6.4 Timing Diagram of Interface Signal



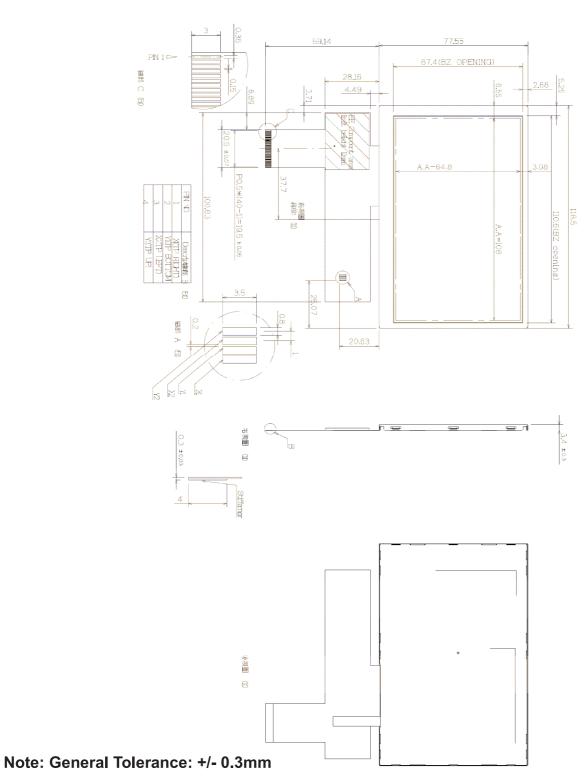
Horizontal display timing range

6.5 Power Sequence

Item	Min.	Тур.	Max.	Unit	Remark
TP1	0.5		10	msec	
TP2	0		50	msec	
TP3	0		50	msec	
TP4	1000			msec	
TP5	200			msec	
TP6	200			msec	
TP7	0.5		10	msec	

Note : (1) The supply voltage of the external system for the module input should be the same as the definition of V_{DD} .

- (2) Apply the lamp volatge within the LCD operation range. When the back-light turns on before the LCD operation or the LCD truns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signal on the low or keep a high impedance.
- **(4)** TP4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

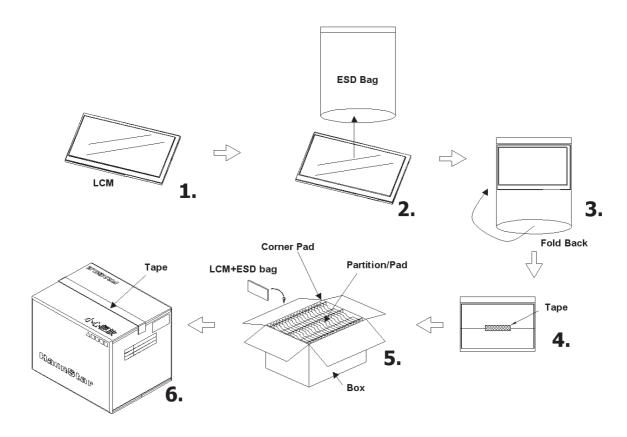

7.0 RELIABILITY TEST ITEMS

No.	ltem	Conditions	Remark
1	High Temperature Storage	Storage Ta=+80°C, 240hrs	
2	Low Temperature Storage	Ta=-30°C, 240hrs	
3	High Temperature Operation	Ta=+70°C, 240hrs	
4	Low Temperature Operation	Ta=-20°C, 240hrs	
5	High Temperature and High Humidity (operation)	Ta=+60°C, 90%RH, 240hrs	
6	Thermal Cycling Test (non operation)	-30° C(30min) \rightarrow +80°C(30min), 200cycles	
7	Electrostatic Discharge	±200V,200pF(0⊠) 1 time/each terminal	
8	Vibration	1.Random: 1.04Grms, 5~500Hz, X/Y/Z, 30min/each direction 2. Sine: Freq. Range: 8~33.3Hz Stoke: 1.3mm Sweep: 2.9G, 33.3~400Hz X/Z: 2hr, Y: 4hr, cyc: 15min	
9	Shock	100G, 6ms, ±X, ±Y, ±Z 3 time for each direction	JIS C7021, A-10 (Condition A)
10	Vibration (with carton)	Random: 0.015G^2/Hz, 5~200Hz -6dB/Octave, 200~400Hz XYZ each direction: 2hr	
11	Drop (with carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces	JIS Z0202

Note: There is no display function NG issue occurred, all the cosmetic specification is judged before the reliability stress.

8.0 OUTLINE DIMENSION

Unit: mm



9.0 PACKAGE SPECIFICATION

9.1 Packing form

LCM Model	LCM Qty. in the box	Inner Box Size (mm)	Notice
AFS800480IDW1-5.0-A30	200	466x242x304	

9.2 Packing assembly drawings

Items	Material	Notice
Box	Corrugated Paperboard	
Partition/Pad	Corrugated Paperboard	
Corner Pad	Corrugated Paperboard	
ESD bag	Corrugated Paperboard	

10.0 GENERAL PRECAUTION

10.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

10.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. Orient Display does not warrant the module, if customers disassemble or modify the module.

10.3 Breakage of LCD Panel

- 10.3.1.If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- 10.3.2. If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- 10.3.3. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- 10.3.4. Handle carefully with chips of glass that may cause injury, when the glass is broken.

10.4 Electric Shock

- 10.4.1. Disconnect power supply before handling LCD module.
- 10.4.2. Do not pull or fold the LED cable.
- 10.4.3. Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

10.5 Absolute Maximum Ratings and Power Protection Circuit

- 10.5.1. Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- 10.5.2. Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- 10.5.3. It's recommended to employ protection circuit for power supply.

10.6 Operation

- 10.6.1 Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- 10.6.2 Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- 10.6.3 When the surface is dusty, please wipe gently with absorbent cotton or other soft material.

- 10.6.4 Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may causes deformation or color fading.
- 10.6.5 When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzine or other adequate solvent.

10.7 Mechanism

Please mount LCD module by using mounting holes arranged in four corners tightly.

10.8 Static Electricity

- 10.8.1 Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- 10.8.2. Because LCD module use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

10.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

10.10 Disposal

When disposing LCD module, obey the local environmental regulations.