

48Vdc Input,12Vdc@8.3A Output Quarter-Brick Converter AGQ100-48S12

Description

The AGQ100-48S12 is a single output DC-DC converter with standard quarter-brick outline and pin configuration. It delivers up to 8.3A output current with 12.0V output voltage. Above 92.9% efficiency and excellent thermal performance make it an ideal choice to supply power in telecom and datacom application. It can work under -40°C ~ +85°C.

Operational Features

- Delivering up to 8.3A output current
- High efficiency: 92.9% typ., at full load
- Wide input range: 36V ~ 75V
- Excellent thermal performance
- No minimum load requirement
- RoHS 5 compliant

Control Features

- Remote control function (negative or positive logic optional)
- Remote output sense
- Trim function: -20% ~ +10%

Protection Features

- Input under voltage lockout
- Output over current protection
- Output over voltage protection
- Over temperature protection

Mechanical Features

- Industry standard quarter-brick pin-out outline
- Open frame structure
- Pin length: 3.8mm

Safety & EMC

- Meet latest safety standards UL 60950-1, CSA-C22.2 NO.60950-1, IEC/EN 60950-1 and GB4943
- Approved by UL and TUV
- Meet 2006/95/EEC and 93/68/EEC directives which facilitate CE marking in user's end product
- Meet conducted emission's requirements of FCC Class A and EN55022 Class A, tested with external filter
- Material meets UL 94-V0

Electrical Characteristics

Full operating ambient temperature range is -40°C to +85°C. Specifications are subject to change without notice.

Ра	rameter	Min.	Тур.	Max.	Unit	Notes & conditions
		Ab	solute ma	x. ratings		
	Non-operating			100	V	100ms
Input voltage	Operating			80	V	Continuous
Operating temp	perature	-40		85	°C	
Storage temper	rature	-55		125	°C	
Voltage at remo	ote ON/OFF pin	-0.7		12	V	
		In	put chara	cteristics		I
Operating input	t voltage range	36	48	75	V	
	Turn-on voltage threshold	31	34.6	36	v	
Input under-voltage lockout	Turn-off voltage threshold	30	32.7	35	V	
	Lockout voltage hysteresis	1	2	3	V	
Max. input curre	ent		2.95	3.5	A	36V _{in} , full load
No-load input current			79	100	mA	48V _{in} , no load
Standby Input of	current		9	20	mA	Remote OFF
Inrush current t	ransient rating			1	A ² s	See Figure 16
Input reflected	ripple current		30	40	mA	Through 12µH inductor; see Figure 16
Recommended	input fuse			5	А	External fast blow fuse recommended; see Figure 11
Input filter com	ponent values (C\L)		2.0\3.3		µF\µH	Internal values
Recommended external input capacitance		100			μF	Low ESR capacitor recommended; see Figure 11
		Ou	tput chara	cteristics		
Output voltage option)	set point (standard	11.88	12.00	12.12	V	48V _{in} , full load
	line regulation		0.08	0.2	%	
Output voltage					mV	
Output			0.08	0.5	%	
Output voltage	ioad regulation				mV	

AGQ100-48S12 DC-DC Converter TRN

F	Parameter	Min.	Тур.	Max.	Unit	Notes & conditions
Output voltag	ge temperature		0.001	0.02	%/°C	
Total output	voltage range	9.6	12	13.2	V	Over sample, line, load, temperature & life
Output volta	ge ripple and noise		100	180	mVpp	See Figure 2. 20MHz bandwidth; see Figure 16
Operating ou	tput current range	0		8.3	Α	
Output DC c	urrent-limit inception	9	11.5	13.5	А	Hiccup: auto-restart when over-current condition is removed
Output capad	citance	220		2200	μF	High frequency and low ESR is recommended
		Dyn	amic chai	acteristic	S	
	50% ~ 75% ~ 50% Ι _{o,max} , 0.1Α/μs		122	480	mV	See Figure 4. Test condition: 25°C, nominal input voltage, see Figure 11
Dynamic	Settling time		330	700	μs	Recovery to within 1% V _{o,nom}
response	10% ~ 50% ~ 10% I _{o,max} , 0.1A/µs		350	600	mV	See Figure 5. Test condition: 25°C, nominal input voltage, see Figure 11
	Settling time				μs	
	Rise time		21	50	ms	Full load, see Figure 6
Turn-on	Turn-on delay time		4.6	50	ms	
transient	Output voltage overshoot		0	5	%V₀	
			Efficie	ncy		
100% load			92.9		%	See Figure 1
50% load			92.08		%	See Figure 1
		Isol	ation char	acteristic	s	
	age (conditions: 1mA rate of 1500V/10s)	1500			Vdc	Basic insulation, input to output

Electrical Characteristics (Continued)

Parameter		Min.	Тур.	Max.	Unit	Notes & conditions
		Fea	ture char	acteristics	5	
Switching frequ	ency	280	310	340	kHz	
Remote	Off-state voltage	-0.7		1.2	V	
ON/OFF control (positive logic)	On-state voltage	3.5		12	V	
Remote	Off-state voltage	3.5		12	V	See Figure 12
ON/OFF control (negative logic)	On-state voltage	-0.7		1.2	v	
Output voltage	trim range	-20		10	%	See Trim Characteristics of Application Note
Output voltage	remote sense range			5	%	
Output over-vol	tage protection	14.4	15.8	18	V	Ніссир
Over-temperature shutdown			122	130	°C	Auto recovery; OTP test point, see Figure 10
Over-temperature hysteresis			20		°C	
		Relia	ability cha	racteristic	s	
Calculated MTBF (telcordia)			1.5		10 ⁶ h	Telcordia SR-332-2006; 80% load, 300LFM, 40°C T _a

Electromagnetic Compatibility Requirements

Test item	Regulations	Criteria	Notes & conditions
Conducted emission	EN 55022		
	DC input port, Class A		
Immunity to electrostatic discharge	IEC/EN61000-4-2	В	
	Enclosure port, Level 3	D	
Immunity to electrical fast transient	IEC/EN61000-4-4	В	
	DC input port, Level 3	D	
	IEC/EN61000-4-5		See EMC Test Conditions
Immunity to surges	DC input port	В	
	Line to Ground (earth): 600V	D	
	Line to Lineline: 600V		
Immunity to continuous conducted	IEC/EN61000-4-6	А	
interference	DC input port, Level 2	~	
Immunity to voltage dips and short	EN 61000-4-29	В	
interruptions and voltage variations	DC input port	Б	

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically.

For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

Criterion C: Temporary loss of output, the correction of which requires operator intervention.

Criterion D: Loss of output which is not recoverable, owing to damage to hardware.

Parameter	Unit (pcs)	Test condition
Halt test	4 ~ 5	$T_{a,min}$ - 10°C to $T_{a,max}$ + 10°C, 5°C step, V_{in} = min to max, 0 ~ 105% load
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m ² /s ³ , -3db/oct, axes of vibration: X/Y/Z Time: 30min/axis
Mechanical shock	3	30g, 6ms, 3axes, 6directions, 3time/direction
Thermal shock	3	-40°C to 100°C, unit temperature 20cycles
Thermal cycling	3	-40°C to 55°C, temperature change rate: 1°C/min, cycles: 2cycles
Humidity	3	40°C, 95%RH, 48h
Solder ability	15	IPC J-STD-002C-2007

Characteristic Curves

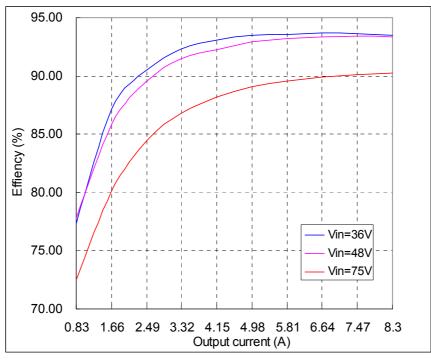


Figure 1 Efficiency vs. output current, $T_a=25^{\circ}C$

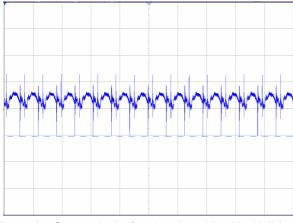


Figure 2 Output ripple & noise (5ms/div, 20mV/div), see Figure 16 for test configuration



Figure 4 Dynamic response for 25% load step (50% ~ 75% ~ 50%) and 0.1A/ μ s slew rate, (2ms/div), see Figure 11 for test configuration; CH1-output voltage (200mV/div); CH2-output current (2.5A/div)

Figure 6 Output voltage startup by power on, (50ms/div), see Figure 11 for test configuration; CH1-output voltage (5V/div); CH2-intput voltage (20V/div)

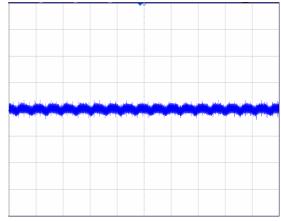


Figure 3 Input reflected ripple current (2µs/div, 50mA/div), see Figure 16 for test configuration

Figure 5 Dynamic response for 40% load step (50% ~ 10% ~ 50%) and 0.1A/ μ s slew rate, (2ms/div), see Figure 11 for test configuration; CH1-output voltage (200mV/div); CH2-output current (10A/div)

Figure 7 Output voltage startup by shutdown, (100ms/div), see Figure 11 for test configuration; CH1-output voltage (5V/div); CH2-intput voltage (20V/div)

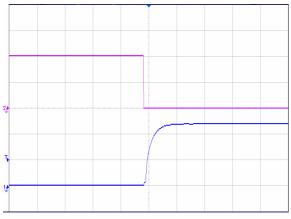


Figure 8 Output voltage startup by remote ON of negative module, (50ms/div), see Figure 11 for test configuration; CH1-output voltage (5V/div); CH2-remote ON voltage (2V/div)

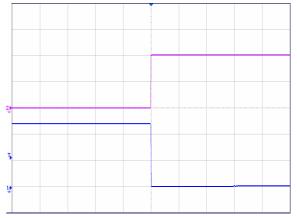


Figure 9 Output voltage shutdown by remote OFF of negative module, (50ms/div), see Figure 11 for test configuration; CH1-output voltage (5V/div); CH2-remote OFF voltage (2V/div)

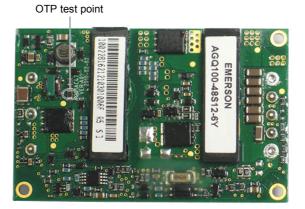


Figure 10 OTP test point

Application Note

Typical Application

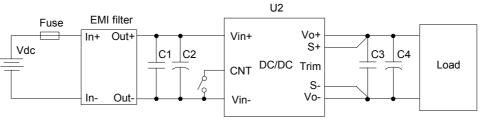


Figure 11 Typical application

C1: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps

C2: 100µF/100V electrolytic capacitor, P/N: UVZ2A101MHD (Nichicon) or equivalent caps

C3: 1µF/25V X7R ceramic capacitor, P/N: C2012X7R1E105KT000N (TDK) or equivalent caps

C4: 220µF electrolytic capacitor, P/N: UPM1E221MHD (Nichicon) or equivalent caps U2: Module to test, AGQ100-48S12

Fuse: External fast blow fuse with a rating of 5A. The recommended fuse model is 314005 MXP from LITTLEFUSE.

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AGQ100-48S12. The logic is CMOS and TTL compatible.

Figure 12 is the detailed internal circuit and reference in AGQ100-48S12.

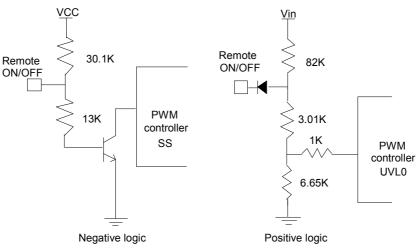


Figure 12 Remote ON/OFF internal diagram

The voltage between pin Remote ON/OFF and pin Vin- must not exceed the range listed in table "Feature characteristics" to ensure proper operation. The external remote ON/OFF circuit is highly recommended as shown in Figure 13.

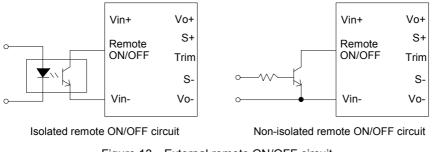


Figure 13 External remote ON/OFF circuit

Trim Characteristics

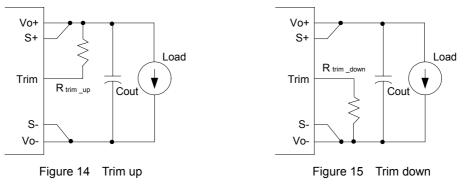
Connecting an external resistor between Trim pin and V_{o} - pin will decrease the output voltage. Connecting it between Trim pin and V_{o} + pin will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj-down} = \frac{511}{\Delta} - 10.22(K\Omega)$$

$$R_{adj-up} = \frac{5.11 \times V_{nom} \times (100 + \Delta)}{1.225 \times \Delta} - \frac{511}{\Delta} - 10.22(K\Omega)$$

$$\Delta = \frac{|V_{nom} - V_{desired}|}{V_{nom}} \times 100$$

V_{norm} : Nominal output voltage.


For example, to get 13.12V output, the trimming resistor is

$$R_{adj-up} = \frac{5.11 \times 12 \times (100 + 10)}{1.225 \times 10} - \frac{511}{10} - 10.22(K\Omega) = 489.3(K\Omega)$$

The output voltage can also be trimmed by potential applied at the Trim pin.

$$V_o = (V_{trim} + 1.225) \times 6.122$$

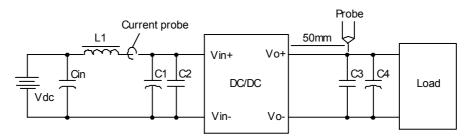
Where V_{trim} is the potential applied at the Trim pin, and V_o is the desired output voltage.

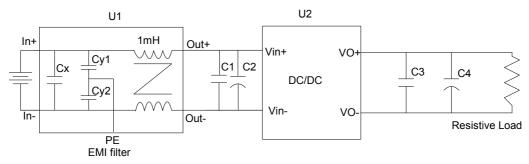
Sense Characteristics

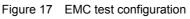
If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line. If the sense compensate function is not necessary, connect S+ to V_0 + and S- to V_0 - directly.

Input Ripple & Inrush Current And Output Ripple & Noise Test

Configuration




Figure 16 Input ripple & inrush current, output ripple & noise test configuration


Vdc: DC power supply L1: 12µH Cin: 220µF/100V typical C1 ~ C4: See Figure 11

Note: It is recommended to use a coaxial cable with series 50Ω resistor and 0.68μ F ceramic capacitor or a ground ring of probe to test output ripple & noise.

EMC Test Conditions

The customer actual EMI circuit is shown in the following figure.

CX: 1µF/100V ceramic capacitor, C3225X7R2A225KT0LOU/TDK

Cy1, Cy2: 2200pF/1000V ceramic capacitor, GHM1535X7R223K1KD550/MURATA

C1: 0.1µF/100V ceramic capacitor, C1206X7R2A105KT0L0U/TDK

C2: 100µF/100V low ESR aluminum electrolytic capacitor, UVZ2A101MPD

C3: 1µF/25V ceramic capacitor, C2012X7R1E105KT000N/TDK

C4: 220 μ F/100V low ESR aluminum electrolytic capacitor, UPM1E221MHD

Thermal Considerations

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the temperature test point. The temperature at this point should not exceed the maximum value in Table 1.

For a typical application, Figure 20 shows the derating of output current vs. ambient air temperature at different air velocity.

Temperature test point

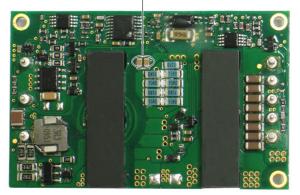


Figure 18 Temperature test point

Table 1 Temperature limit of test point

Test point	Temperature limit
Temperature test point	116°C

Figure 19 Typical test condition, forced airflow direction is from V_o+ to V_o-

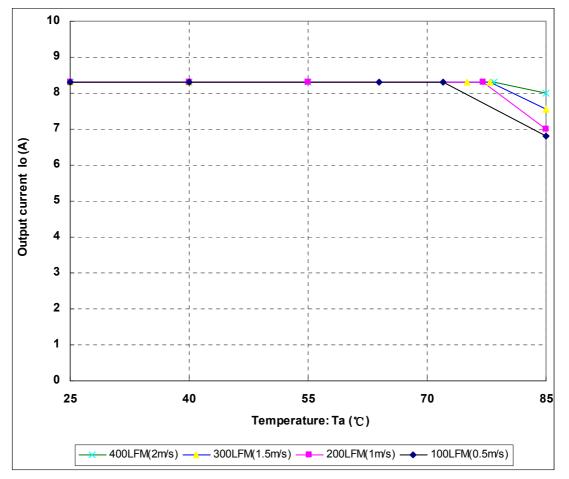
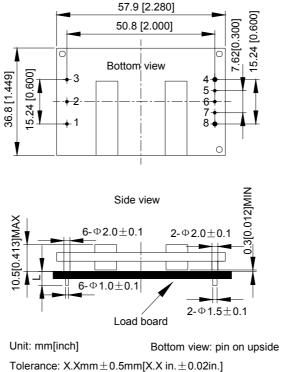
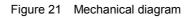




Figure 20 Output power derating, $48V_{in}$, air flowing across the converter from V_o+ to V_o-

Mechanical Diagram

X.XXmm±0.25mm[X.XX in.±0.01in.]

Pin length option

Device code suffix	L
-4	4.8mm ± 0.25mm
-6	3.8mm ± 0.25mm
-8	2.8mm ± 0.25mm
None	5.8mm ± 0.25mm

Pin Designations

Pin No.	Name	Function
1	V _{in} +	Positive input voltage
2	Remote ON/OFF	Remote control
3	V _{in} -	Negative input voltage
4	V _o -	Negative output voltage
5	S-	Negative remote sense
6	Trim	Output voltage trim
7	S+	Positive remote sense
8	V _o +	Positive output voltage

Soldering

The product is intended for standard manual wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260°C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300° C ~ 380° C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or simulative.

Ordering Information

AGQ100	-	48	S	12	-	6	Y
1)		2	3	4		6	\overline{O}

1	Model series	AGQ: high efficiency quarter-brick series, 100: output power 100W
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output
4	Rated output voltage	12:12V output
6	Pin length	-6: 3.8mm
7	RoHS status	L: RoHS, R6; Y: RoHS, R5

AGQ100-48S12 DC-DC Converter TRN

Model number	Description
AGQ100-48S12-6Y	3.8mm pin length; negative on/off logic; without thread inside mounting hole; R5 compliant
AGQ100-48S12B-6Y	3.8mm pin length; negative on/off logic; without thread inside mounting hole; R5 compliant; baseplated; for detailed information,refer to AGQ100-48S12B Technical Reference Notes

Hazardous Substances Announcement (RoHS Of China)

Parts	Hazardous substances					
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE
AGQ100-48S12	\checkmark	x	х	х	х	x
x. Means the content of the hazardous substances in all the average quality materials of the part is within the limits						

x: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006

 $\sqrt{2}$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Emerson Network Power Co., Ltd. has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

1. Solders (including high-temperature solder in parts) contain plumbum.

2. Glass of electric parts contains plumbum.

3. Copper alloy of pins contains plumbum