AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

The AH8115 is an integrated hall-effect sensor designed specifically to meet the requirements of low-power devices. e.g. as an On/Off switch in cellular flip-phones, with battery operating voltages of 2.0V-5.5V.

Precise magnetic switching points and high temperature stability are achieved through the unique design of the internal circuit. An onboard clock scheme is used to reduce the average operating current of the IC. During the operate phase the IC compares the actual magnetic field detected with the internally compensated switching points. The output Q is switched at the end of each operating phase. During the Stand-by phase the output stage is latched and the current consumption of the device reduced to some μ A.

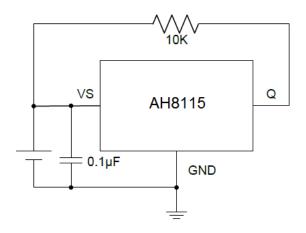
The IC switching behaviour is omnipolar, it can be switched on with either the north or south pole of a magnet.

AH8115 is higher sensitivity of magnetic induction than AH8113, it can be used in security systems, sensing magnet smaller occasions.

The AH8115 is available in TSOT-23, package.

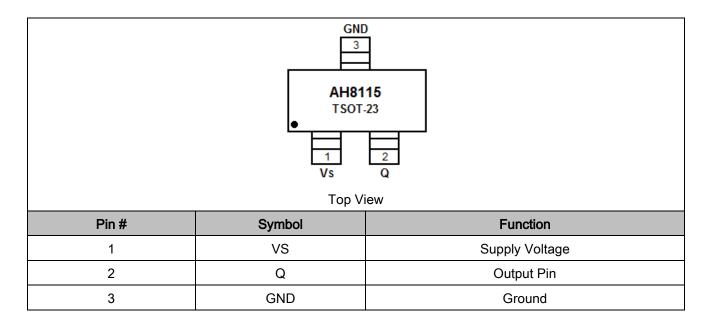
ORDERING INFORMATION

Package Type	Part Number		
TSOT-23	TE3	AH8115TE3R	
		AH8115TE3VR	
Noto	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			
Suffix " V " means Halogen free Package			


FEATURES

- Micro power design
- 2.0V to 5.5V battery operation
- High sensitivity and high stability of the magnetic switching points
- High resistance to mechanical stress
- Digital output signal
- Switching for both poles of a magnet (omnipolar)
- Not suitable for automotive application
- Operating temperature range
- $T_{MIN} \le T_A \le T_{MAX}$ $-40^{\circ}C \le T_A \le 85^{\circ}C$
- Operating voltage range $2.0V \le V_{DD} \le 6.0V$
- Available in TSOT-23 Package

APPLICATION


- Mobile phones
- Notebook
- Portable electronic devices

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

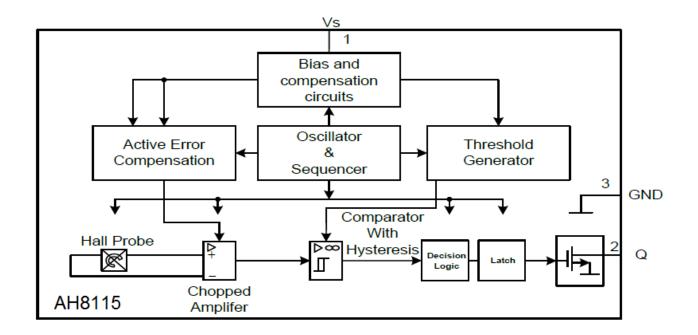
V _{DD} , Supply Voltage	2.0V~6.0V
I _s , Operating Current	-1mA~4.5mA
V _Q , Output Voltage	-0.3V~6.0V
I _Q , Output Current	-1mA~2.0mA
Ts, Storage Temperature Range	-40°C ~ +150°C
T _J , Maximum Junction Temperature	150°C
ESD Protection	4kV

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{DD}		2.0		5.5	V
Averaged Supply Current	Isavg		1	3	10	uA
Averaged Current During Operating Time	Isopavg		0.5	2.0	3.5	mA
Peak Current During Operating Time	ISOPT				4.5	mA
Supply Current During Standby Time	ISSTB		1	1.9	8	uA
Output Saturation Voltage	V _{QSAT}	I _Q =1mA		0.13	0.4	V
Output on Leakage Current	Iqleak			0.01	1	uA
Output Rise Time	tr	R∟=2.7KΩ, C∟=10pF		0.5	1	us
Output Fall Time	ŕ _f	$R_L=2.7K\Omega$, $C_L=10pF$		0.1	1	us
Operating Time	t _{op}		25	100	160	us
Standby Time	t _{stb}		60	140	240	ms
Duty Cycle	t _{op} /t _{stb}			0.071		%
Start-up Time of IC	t _{stu}			12	20	us

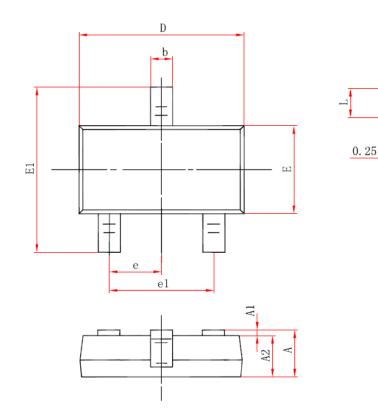
MANGENTIC CHARACTERISTICS


Symbol	Min.	Тур.	Max.	Unit
BOPS	1	1.5	2	mT
BOPN	-2	-1.5	-1	mT
BRPS	0.8	1.1	1.5	mT
BRPN	-1.8	-1.1	-0.8	mT
BHYS	0.1	0.4	0.7	mT

Operating ls Time Isopavg Standby Time Isavg Isstb top tstb 100µs 130ms Latch t Output VQ Output OFF Vqн Output ON Vql B 0 BRPS BOPS BOPN BRPN VQ as function of the applied B-Field

 -125° (1) -27 (1) because otherwise energiated

BLOCK DIAGRAM



θ

PACKAGE INFORMATION

Dimension in TSOT-23 (Unit: mm)

Symbol	Min	Max	
A	0.700	0.900	
A1	0.000	0.100	
A2	0.700	0.800	
b	0.350	0.500	
с	0.080	0.200	
D	2.820	3.020	
E	1.600	1.700	
E1	2.650	2.950	
е	0.95 (BSC)		
e1	1.90 (BSC)		
L	0.300	0.600	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.