AKM

AK5806 8ch Analog Front End IC

1. General description

The AK5806 is an 8 channels analog baseband IC with third order HPF, whose cutoff frequency is variable, and programmable gain amplifiers.

It is capable of adjusting the baseband signal gain and the frequency band widely.

2. Features

- Signal Processing: 8-channel Differential I/O
- Signal band width: up to 5MHz
- Programmable Gain Amplifier: (Coarse) 0dB to 42dB, 6dB/step
- (Coarse) 0dB to 42dB, 6dB/step (Fine) -6dB to +5.625dB, 0.375dB/step
- 3rd-order HPF with Adjustable Cutoff Frequency: 25 kHz to 1MHz
- Offset Cancelling Function
- Operational Temperature: -40 to 125°C
- Package: 64-pins HTQFP

3. Application

- Millimeter wave radar
- Laser rangefinder
- Ultrasonic sensor
- Signal conditioning before AD conversion etc.

5. Table of Contents

1. General description	•• 1
2. Features ·····	·· 1
3. Application ·····	•• 1
4. Block diagram ·····	•• 1
5. Table of Contents	·· 2
6. Pin layout and functions ·····	3
6.1. Pin layout ·····	3
6.2. Pin functions	•• 4
7. Absolute Maximum Ratings	5
8. Recommended Operating Conditions	5
9. Electrical characteristics	6
9.1. DC Characteristics	6
9.2. AC Timing	6
9.2.1. Reset input	6
9.2.2. Power Up Sequence	6
9.2.3. Serial Communication Interface Timing	7
9.3. Analog Characteristics	7
9.3.1. Analog Input Signal	7
9.3.2. Analog Output Signal ·····	7
9.3.3. Input Referred Noise Density	8
9.3.4. Internal High Pass Filter	8
9.3.5. Coarse Gain Control	8
9.3.6. Fine Gain Control	8
9.3.7. Reference Voltage ······	8
9.3.8. Detection Function	8
9.3.9. Current Consumption	9
9.3.10. Channel to channel mismatch	9
9.3.11. Others	9
10. Functional Descriptions ·····	9
10.1. Analog input	9
10.2. Internal High Pass Filter	·10
10.3. Coarse Gain Control	·10
10.4. Fine Gain Control	·10
10.5. Reference Voltage	·10
10.6. Power Management	·10
10.7. Offset Cancellation	· 11
10.8. Serial Communication Interface (SPI) ·····	·12
10.8.1. Write format	·12
10.8.2. Read Format	·12
11. Register	13
11.1. Register Map	·13
11.2. Register Definitions	•13
Sub Address 0x00	•13
Sub Address UxU1	•13
Sub Address 0x02	·14
SUD Address UXU3	•14
SUD Address UXU4	·14
Sub Address 0x05	·14
SUD ADDIESS UXU6	·14

Sub Address 0x07 ······14	4
Sub Address 0x08 ······1	5
Sub Address 0x09 – Sub Address 0x10 ·····1	5
Sub Address 0x11 ······1	5
12. Example of External Connection Diagram ······ 10	6
13. Package	6
13.1. Outline Dimensions	ô
13.2. Foot Pattern	7
13.3. Marking	7
IMPORTANT NOTICE ····································	B

6. Pin layout and functions

6.1. Pin layout

6.2. Pin functions

Pin #	Pin name	I/O	Function					
1	NC	1	No connect pin. Connect to No.64 pin.					
2	NC	1	No connect pin. Connect to No.3 pin.					
3	AIN2P	1	Analog Signal Input Pin					
4	AIN2N	1	Analog Signal Input Pin					
5	NC	1	No connect pin. Connect to No.4 pin.					
6	NC	1	No connect pin. Connect to No.7 pin.					
7	AIN1P	1	Analog Signal Input Pin					
8	AIN1N	1	Analog Signal Input Pin					
9	NC	1	No connect pin. Connect to No.8 pin.					
10	CCLK	1	Clock Input Pin for SPI Communication					
11	CDTO	0	Data Output Pin for SPI Communication					
12	CDTI	1	Data Input Pin for SPI Communication					
13	AOUT1N	0	Analog Signal Output Pin					
14	AOUT1P	0	Analog Signal Output Pin					
15	AOUT2N	0	Analog Signal Output Pin					
16	AOUT2P	0	Analog Signal Output Pin					
17	VSS	-	Ground pin					
18	VDD	-	Power Supply pin					
19	AOUT3N	0	Analog Signal Output Pin					
20	AOUT3P	0	Analog Signal Output Pin					
21	AOUT4N	0	Analog Signal Output Pin					
22	AOUT4P	0	Analog Signal Output Pin					
23	VDD	-	Power Supply pin					
24	VSS	-	Ground pin					
25	VSS		Ground pin					
26	VDD		Power Supply pin					
27	AOUT5N	0	Analog Signal Output Pin					
28	AOUT5P	0	Analog Signal Output Pin					
29	AOUT6N	0	Analog Signal Output Pin					
30	AOUT6P	0	Analog Signal Output Pin					
31	VDD	-	Power Supply pin					
32	VSS	-	Ground pin					
33	AOUT7N	0	Analog Signal Output Pin					
34	AOUT7P	0	Analog Signal Output Pin					
35	AOUT8N	0	Analog Signal Output Pin					
36	AOUT8P	0	Analog Signal Output Pin					
37	RSTN	1	Reset Input Pin (Internal Pull-down)					
38	CSN	1	Chip Select Input Pin for SPI Communication					
39	TEST	1	AKM Test Mode Pin. It must be connected to VSS.					
40	NC	1	No connect pin. Connect to No.41 pin.					
41	AIN8P	1	Analog Signal Input Pin					
42	AIN8N	1	Analog Signal Input Pin					
43	NC	1	No connect pin. Connect to No.42 pin.					

Pin #	Pin name	I/O	Function
44	NC	Ι	No connect pin. Connect to No.45 pin.
45	AIN7P	Ι	Analog Signal Input Pin
46	AIN7N	Ι	Analog Signal Input Pin
47	NC	Ι	No connect pin. Connect to No.46 pin.
48	NC	Ι	No connect pin. Connect to No.49 pin.
49	AIN6P	Ι	Analog Signal Input Pin
50	AIN6N	Ι	Analog Signal Input Pin
51	NC	Ι	No connect pin. Connect to No.50 pin.
52	NC	Ι	No connect pin. Connect to No.53 pin.
53	AIN5P	Ι	Analog Signal Input Pin
54	AIN5N	Ι	Analog Signal Input Pin
55	NC	Ι	No connect pin. Connect to No.54 pin.
56	VCOM	0	Internal Common Voltage Output Pin
50	VCOIVI	0	This pin should be connected to VSS via a $1.0\mu F$ (±10%) ceramic capacitor.
57		0	Analog Reference Current Output Pin
57	IKEF	0	This pin should be connected to VSS via a 6.8k Ω (±1%) resistor.
58	NC	Ι	No connect pin. Connect to No.59 pin.
59	AIN4P	Ι	Analog Signal Input Pin
60	AIN4N	Ι	Analog Signal Input Pin
61	NC	Ι	No connect pin. Connect to No.60 pin.
62	NC	Ι	No connect pin. Connect to No.63 pin.
63	AIN3P	Ι	Analog Signal Input Pin
64	AIN3N	Ι	Analog Signal Input Pin

7. Absolute Maximum Ratings

Item	Min.	Max.	Unit	Notes
Supply Voltage	-0.3	4.4	V	
Digital Input Pin Voltage	-0.3	4.4	V	CSN, CDTI, CCLK, RSTN pins
Input/Output Pin Voltage	-0.3	VDD+0.3 (≤4.4)	V	
Input Current (lin)	-10	10	mA	Except Power Supply Pin
Storage Temperature	-65	150	°C	

- All voltages are with respect to ground at 0V (Reference Voltage).

- If digital output pins are connected to the data bus, the data bus operating voltage should be in the same range as shown above Input/Output Pin Voltage.

- Operation at or beyond these limits may result in permanent damage to the device.

8. Recommended Operating Conditions

Item	Min.	Тур.	Max.	Unit	Notes
Supply Voltage (VDD)	3.135	3.300	3.465	V	
Operating Temperature Range (Ta)	-40		125	°C	

- All voltages are with respect to ground at 0V (Reference Voltage).

9. Electrical characteristics

9.1. DC Characteristics

(Ta: −40°C to 125°C / VDD: 3.135 to 3.4						
Item	Pin	Min.	Тур.	Max.	Unit	Condition
High Level Input Voltage (VIH)		0.7xVDD		3.465	V	
Low Level Input Voltage (VIL)	CSN	0		0.3xVDD	V	
Input Pull-up Current		-66	-33	-10	μA	0V Input
Input Leak Current		-10		+10	μA	VDD Input
High Level Output Voltage (VOH)		VDD-0.5		VDD	V	IOH = −2mA
Low Level Output Voltage (VOL)	CDTO	0		0.5	V	IOL = 2mA
Output Leak Current		-10		+10	μA	
High Level Reset Input Voltage		0.7xVDD		3.465V	V	
Low Level Reset Input Voltage	RSTN	0		0.3xVDD	V	
Reset Input Current		10	33	66	μA	VDD Input
Reset Input Leak Current		-10		+10	μA	0V Input
TEST Pin Pull-down Current	TEST	10	33	66	μA	

9.2. AC Timing

Ta: -40°C to 125°C / VDD: 3.135 to 3.465V

9.2.1. Reset input

Figure 3

rigure 5							
Item	Symbol	Min.	Тур.	Max.	Unit		
Reset Filter	nRSTN	10		100	μs		

Low input under 10µs will be rejected. A reset input does not synchronized with the CCLK.

9.2.2. Power up Sequence

Figure 4

Item	Symbol	Min.	Тур.	Max.	Unit
RESET Release	RSTRL	100			μs
Register access start	REGSTRT	1			ms

Item	Symbol	Min.	Тур.	Max.	Unit	Condition			
CCLK period	T _{SCLK}	100			ns				
from CSN \downarrow to CCLK \downarrow	T _{CSC}	16			ns				
from CCLK↓ to CSN↑	T _{ASC}	16			ns				
Clock high time	T _{SDC}	30			ns				
Clock low time	T _{SDC}	30			ns				
CDTI data input setup time	T _{SUI}	5			ns				
CDTI data input hold time	T _{HI}	11			ns				
CDTO data output delay time	T _{SUO}			24	ns				
CDTO data output hold time	T _{HO}	6			ns				
CSN negate time	T _{NEG}	2xT _{SCLK}			ns				
from CSN [↑] to CDTO Hi-Z	T _{CCZ}			21	ns				
		//				VIH			

9.2.3. Serial Communication Interface Timing

9.3. Analog Characteristics

Conditions:

Fin= 500Hz to 5MHz, HPF-Fc (3dB degraded frequency) = 25 kHz or Bypass, PGA1= 24dB, PGA2= 18dB, Fine gain= +5.625dB, VDD= 3.135 to 3.465V, Ta = -40 to 125°C, the external load capacitance is less than 33pF, the external load resistance is more than $2k\Omega$ via the external capacitor of AOUT pin, unless otherwise specified. Analog characteristics may degrade during SPI communication.

9.3.1. Analog Input Signal

Item	Min.	Тур.	Max.	Unit	Notes
Differential Input Voltage Amplitude			4.0	Vpp	0dB gain
Input Leak Current	-1		+1	μA	$1M\Omega$ or more, Differential Input Voltage: under 1.0Vpp

9.3.2. Analog Output Signal

Item	Min.	Тур.	Max.	Unit	Condition
Maximum Output Voltage	2.0			Vpp	The amplitude should satisfy the THD value.
Output Offset Voltage	-100		+100	mV	After offset calibration
THD (Distortion)		0.15	0.8	%	Differential Input Voltage: 1.0Vpp Differential Output Voltage: 2.0Vpp

9.3.3. Input Referred Noise Density

(PGA1=24dB, PGA2=0dB, Fine gain=0dB)

Item	Min.	Тур.	Max.	Unit	Condition		
Input Referred Noise density		-150	-146	dDm/Uz	Pupass mode	100kHz	
		-150	-146	UBIII/HZ	Bypass mode	1MHz	
		-150	-142	dDm/Uz	HDE mode (25kHz)	100kHz	
		-150	-145			1MHz	

9.3.4. Internal High Pass Filter

Item	Min.	Тур.	Max.	Unit	Condition
Minimum Cutoff Frequency		25		kHz	
Maximum Cutoff Frequency		1000		kHz	
Cutoff Frequency Accuracy	-47		+47	%	

9.3.5. Coarse Gain Control

Item	Min.	Тур.	Max.	Unit	Condition			
0dB setting	-2	0	+2					
6dB setting	4	6	8					
12dB setting	10	12	14					
18dB setting	16	18	20	dD	Fine gain: 0dB			
24dB setting	22	24	26	uВ				
30dB setting	28	30	32					
36dB setting	34	36	38					
42dB setting	40	42	44					

9.3.6. Fine Gain Control

Item	Min.	Тур.	Max.	Unit	Condition
Maximum gain	+5.225	+5.625	+6.025	dB	
Minimum gain	-6.4	-6	-5.6	dB	
Gain step	0.1	0.375	0.6	dB	

9.3.7. Reference Voltage

Item	Min.	Тур.	Max.	Unit	Condition
Output Voltage (VCOM)	1.19	1.25	1.31	V	

9.3.8. Detection Function

Item	Min.	Тур.	Max.	Unit	Condition
VCOM Pin Over Voltage Detection	1.35		1.55	V	
VCOM Pin Low Voltage Detection	0.95		1.15	V	
IREF Pin Over Current Detection	170		430	μA	
IREF Pin Low Current Detection	50		130	μA	

9.3.9. Current Consumption

		(F	PGA1=6dB, PGA2=0dB, Fine gain=0dB)			
Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Normal Operation	IDD			300	mA	HPF Mode
				270	mA	Bypass Mode
Sleep Mode	SLIDD			30	mA	
Channel Off Setting	COIDD			10	mA	
During Reset	SIDD			100	μA	

9.3.10. Channel to channel mismatch

Condition: HPF-Fc(-3dB)=25kHz

Item	Mode	Min.	Тур.	Max.	Unit	Condition
Cain	Bypass Mode			1	dB	5MHz
Gain	HPF Mode			1		5MHz
	Pupasa Mada			2		1MHz
Phase	Bypass Mode		4	8		5MHz
Flidse	Dunana Mada			2	uey.	1MHz
	Dypass would		5	9		5MHz

9.3.11. Others

Item	Min.	Тур.	Max.	Unit	Condition
In-band Ripple Mode		0.1	0.5	dD	500Hz to 500kHz
(Bypass Mode)		2.0	3.0	uБ	5MHz
Channel Separation (Isolation)	52	60		dD	500Hz
	52	60		uБ	5MHz
DCDD	10			dB	PGA1=24dB,PGA2=18dB, Fine gain=+5.625dB,100kHz
Pork	10			dB	PGA1=24dB,PGA2=18dB, Fine gain=+5.625dB, 500kHz

10. Functional Descriptions

10.1. Analog input

There are 8 channels for analog input signal and they support differential inputs. The path using internal HPF filter and the path not using the internal HPF can be chosen externally.

Figure 6

AFEPD [8:1] bits control the ON/OFF of the signal processing for each channel. Input pins of unused channel should be connected to VSS.

016011439-E-00

10.2. Internal High Pass Filter

The AK5806 integrates 3rd-order high pass filter and the filter characteristics can be changed by changing internal resistance. The HPF setting range is from 25 kHz to 1 MHz as attenuating the output amplitude frequency for 3dB when the input frequency is 5 MHz. (HPFC [2:0] bits)

Figure 7

10.3. Coarse Gain Control

The AK5806 integrates two amplifiers that are capable of adjusting the gain in about 6dB steps for each channel. (PGA1, PGA2)

Figure 8

- PGA1: 0dB to 24dB (PGA1G[2:0] register)

- PGA2: 0dB to 18dB (PGA2G[1:0] register)

10.4. Fine Gain Control

The AK5806 integrates a gain amplifier that is capable of monotonic increase by about 0.375dB steps.

10.5. Reference Voltage

The AK5806 generates reference voltage for analog circuits from the internal band gap voltage.

10.6. Power Management

AK5806 has the two kind of power save mode as follows.

- Sleep Mode : PGA1, PGA2 and HPF are power downed.
- Signal Processing off Mode: PGA1, PGA2, HPF and Output buffer are power downed.

10.7. Offset Cancellation

The AK5806 has an offset cancellation circuit to correct the output offset voltage. Input path for external signals will be OFF when the offset cancelling is started by register setting. Offset cancellation value changes as the output offset will be in the range of ± 100 mV while internal offset compensation value is kept by registers. Registers for offset cancellation are shown below.

- ENDOFCAL-bit: Offset Cancellation Operation Status Register
- EROF [8:1]-bit: Offset Cancellation Result Status Register; It shows whether the offset cancelling result is in the correction range or not.
- OFCAL-bit: Offset Cancellation Start Setting Register
- OFCAL_E-bit: Offset Cancellation Function Enable Register; It shows whether the offset cancelling result is included in the output signal or not.

Offset cancellation sequence is shown below.

Figure 10

10.8. Serial Communication Interface (SPI)

	Figure 11															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bit		Address[5:0]					D [7:0]						Р			
		MSB				LS	В	MSB	5					LS	В	Г

- R/W bit: "[0]:Write", "[1]:Read" - Address bit: Register address bit

- D bit: Register data bit

The D0 bit is assigned for parity check (EVEN Parity).

Example:

10.8.1. Write format

: High or Low

10.8.2. Read Format

Figure 13

11. Register

11.1. Register Map

Address [5:0]	D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	R/W	Default Value
0x00		CP	ID[3:0)]			VER[3:0]		R	0x61
0x01	Res	erved		ERVCOM	ERSPI	F	Reserved	ERIREF	R	0x80
0x02				Reserv	ved			ENDOFCAL	R	0x01
0x03					EROF[8:1]			R	0x00
0x04		Reserved								
0x05		Reserved OFCAL_E OFCAL								0x00
0x06		Reserved SLP								0x00
0x07					R/W	0x00				
0x08	Res	erved		PGA2G[1:0] PGA1G[2:0]						0x00
0x09	Res	erved			R/W	0x10				
0x0A	Res	erved			R/W	0x10				
0x0B	Res	erved				FG30	C[4:0]		R/W	0x10
0x0C	Res	erved				FG40	C[4:0]		R/W	0x10
0x0D	Res	erved				FG50	C[4:0]		R/W	0x10
0x0E	Res	erved				R/W	0x10			
0x0F	Res	erved		FG7C[4:0]						0x10
0x10	Res	erved		FG8C[4:0]						0x10
0x11	Res	erveo		PE HPF_E HPFC[2:0]						0x00
0x12										
-	Reserved								R/W	0x00
0x1F										

Register write is not available on "Reserved" bits.

11.2. Register Definitions

Sub Address 0x00

D[7:0]	Name	Definition	Notes
[3:0]	VER[3:0]	Chip Version ID	4'b0001 (Read only)
[7:4]	CHIPID[3:0]	Chip Information ID	4'b0110 (Read only)

Sub Address 0x01

D[7:0]	Name	Definition	Notes
101	ERIREF	IREF pin Abnormal Current Monitoring Register	(Read only)
[U]		0: Normal Status, 1: IREF pin Over Current Status*	(Read only)
[2:1]	Reserved Reserved		
		SPI communication Error Monitoring Register	
[3]	ERSPI	(Clock Count result or parity check result when CSN input mode)	(Read only)
		0: No SPI Communication Error, 1: SPI Communication Error	
[4]	ERVCOM	VCOM pin Abnormal Voltage Monitoring Register	(Read only)
		0: Normal Status, 1: Abnormal Voltage Status*	(Read only)
[7:5]	Reserved	Reserved	

*All blocks except SPI communication block are powered down. Their states are cleared by the RSTN pin.

Sub Address 0x02

D[7:0]	Name	Definition	Notes
[0]	ENDOFCAL	Offset Cancellation Operation Status Register 0: During Calibration , 1: Calibration Finished	(Read only)
[7:1]	Reserved	Reserved	

Sub Address 0x03

D[7:0]	Name	Definition	Notes
[7:0]	EROF[8:1]		EROF1: Channel: 1
		Offset Cancellation Result Status Register	~
		0: No error (Default) , 1: Error	EROF8:Channel 8
			(Read only)

Sub Address 0x04

D[7:0]	Name	Definition	Notes
[7:0]	Reserved	Reserved	

Sub Address 0x05

D[7:0]	Name	Definition	Notes
[0]	OFCAL	Offset Cancellation Start	
		Setting Register	Offset cancellation function is disabled
lol		0: Cancellation Stop	when OFCAL_E-bit= "0".
		1: Cancellation Start	
	OFCAL_E	Offset Cancellation Function	
[4]		Enable Register	
ניז		0: Cancellation Disable	
		1: Cancellation Enable	
[7:2]	Reserved	Reserved	

Sub Address 0x06

D[7:0]	Name	Definition	Notes
		Sleep Mode Setting Register (All Channels)	
[0]	SLP	0: Normal Operation	
		1: Sleep Mode	
[7:1]	Reserved	Reserved	

Sub Address 0x07

D[7:0]	Name	Definition	Notes
[0]	AFEPD 1		Channel 1
[1]	AFEPD 2		Channel 2
[2]	AFEPD 3	Signal Drassas Circuit Stan Degister	Channel 3
[3]	AFEPD 4	Signal Process Circuit Stop Register	Channel 4
[4]	AFEPD 5		Channel 5
[5]	AFEPD 6		Channel 6
[6]	AFEPD 7		Channel 7
[7]	AFEPD 8		Channel 8

Sub Address 0x08

D[7:0]	Name	Definition	Notes
		PGA1 gain (All channels)	
[2:0]	PGA1G[2:0]	000: 0dB (Default), 001: 6dB	
		010: 12dB, 011: 18dB, 1XX: 24dB	
		PGA2 gain (All channels)	
[4:3]	PGA2G[1:0]	00: 0dB (Default), 01: 6dB	
		10: 12dB, 11: 18dB	
[7:5]	Reserved	Reserved	

Sub Address 0x09 - Sub Address 0x10

D[7:0]	Name	Definition	Notes
	FG1C [4:0] (Sub address 0x09, channel 1)	Fine Gain Control	
	FG2C [4:0] (Sub address 0x0A, channel 2)	00000: -6dB	
	FG3C [4:0] (Sub address 0x0B, channel 3)		
[4.0]	FG4C [4:0] (Sub address 0x0C, channel 4)	10000: 0dB (Default)	
[4:0]	FG5C [4:0] (Sub address 0x0D, channel 5)		
	FG6C [4:0] (Sub address 0x0E, channel 6)	11111: +5.625dB	
	FG7C [4:0] (Sub address 0x0F, channel 7)		
	FG8C [4:0] (Sub address 0x10, channel 8)	(Typical: 0.375dB/LSB)	
[7:5]	Reserved	Reserved	

Sub Address 0x11

D[7:0]	Name	Definition	Notes
[2:0]	HPFC [2:0]	HPF Characteristics Control (All Channels) 000:25kHz, 001:42kHz 010:72kHz, 011:121kHz 100:250kHz, 101:349kHz 110:590kHz, 111:1000kHz	
[3]	HPF_E	Internal HPF Enable HPF (All Channels) 0: Bypass Mode (Default) 1: HPF Mode	
[4]	PE	Parity Bit Detection Setting 0: Detection Disable (Default) 1: Detection Enable	 (Detection Disable) Register Write: Ignore Parity Bit Register Read: Add Parity Bit (Detection Enable): Register Write: Execute Parity Bit Error Detection* Register Read: Add Parity Bit *When a parity error is detected, register writing is ignored and the error status is shown in ERSPI bit.
[7:5]	Reserved	Reserved	

12. Example of External Connection Diagram

13. Package

13.1. Outline Dimensions

64pin-HTQFP package, Pin pitch: 0.5mm

13.3. Marking

13.2. Foot Pattern

This figure is an example. It should be designed to be appropriate design for each PCB board.

14. Ordering Guide

AK5806

-40°C to 125 °C

64pin HTQFP

IMPORTANT NOTICE

- 0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.