
Plerow[™] ALN0925 Low Noise Amplifier

Features

- · 37.5 dB Gain at 925 MHz
- · 19 dBm P1dB
- · 35 dBm Output IP3
- · 1.1 dB Noise Figure
- Operating at Single 5 V Supply
- 80 mA Current Consumption

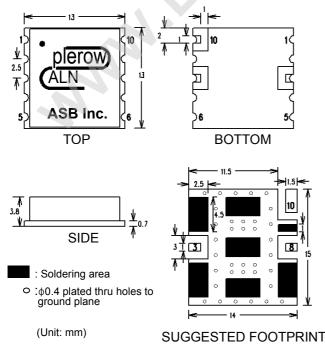
Description

The plerow[™] ALN-series is the compactly designed surface-mount module for the use of the LNA with or without the following gain blocks in the infrastructure equipment of the mobile wirelss (CDMA, GSM, PCS, PHS, WCDMA, DMB, WLAN, WiBro, WiMAX), GPS, satellite communication terminals and so on. It has an exceptional performance of low noise figure, high gain, high OIP3, and low bias current. The stability factor is always kept less than unity over the application band in order to confirm its unconditionally stable implementation to the application system environment. The surface-mount module package including the completed matching circuit and other components necessary just in case allows very simple and convenient implementation onto the system board in mass production level.

Website: www.asb.co.kr E-mail: sales@asb.co.kr

Tel: (82) 42-528-7223 Fax: (82) 42-528-7222

ASB Inc., 4th FI. Venture Town Bldg., 367-17 Goijeong-Dong, Seo-Gu, Daejon 302-716, Korea

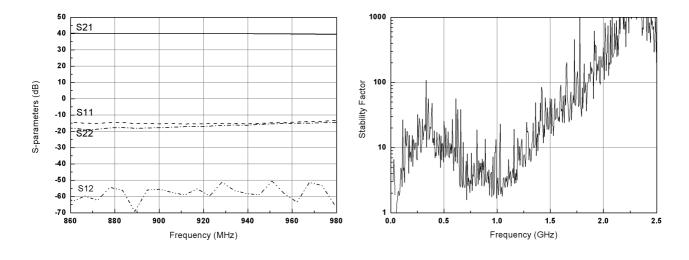

Specifications

Parameter	Unit	Specification
Frequency Range	MHz	890 ~ 960
Gain	dB	37.5
Gain Flatness	dB	± 0.5
Noise Figure	dB	1.1
Output IP3	dBm	35
S11 / S22	dB	-14 / -14
Output P1dB	dBm	19
Supply Current	mA	80
Supply Voltage	V	5
Impedance	Ω	50
Max. RF Input Power @ CDMA 20FA	dBm	5
Package Type & Size	mm	SMT, 13Wx13Lx3.8H

1) Measurement conditions are as follows: $T = 25^{\circ}C$, $V_{CC} = 5$ V, Freq. = 925 MHz, 50 ohm system 2) OIP3 is measured with two tones at an output power of 10 dBm / tone separated by 1 MHz.

3) Note: We recommend that the VSWR toward a source and load be less than 1:4 to avoid an unwanted oscillation.

Outline Drawing


Pin Number	Function						
3	RF In						
8	RF Out						
10	+Vcc						
Others	Ground						
Note: 1. The number and size of ground via holes in a circuit board is oritical for thermal RF							
	at the ground via holes be tom of all ground pins for						

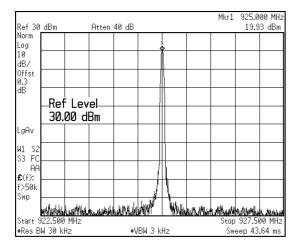
www.asb.co.kr

S-parameters

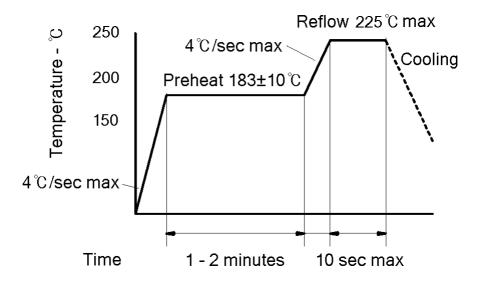
Stability Factor (K)

Noise Figure & Gain Flatness

v	Mkr1 Mkr2 Mkr3	908.9 MHz 925 MHz 960 MHz		1.007 1.019 1.006	зB	40.367 dB 40.249 dB 39.862 dB	
9.000	1		ž				3
40.00							
NFIG Scale/							
1.000 dB							
GAIN							
Scale/ 5.000					0		
dB	1		* ~	$ \rightarrow $	7	_	з
			¥.~~		· -		-1
-1.000	+						
-10.00							
Start 890.00 MHz	BW 4 N		Points 1			p 960.0	
Tcold 305.55 K	Avgs 5	5	Att 0/-	– dB	Loss	Utt	Corr


OIP3

		Freq	925.	5 MHz		_			Trig	; Free
	iod (TO									
Cen	ter 9	925.5	0000	00 M	Hz					
	.3 dBm		Atten	50 dB				Mkr1		00 MHz 16 dBm
#Samp Log					[
10										
dB/ Offst					ļ					
0.3			ł	Í						
dB	enter anna	official and	hybrid have been a started by the st	suth the main of	1444 parts	neinen harde	Yefyathatha	ganney	l.w.www.	eder ^a nces
Center	925.5	A0 MHz							Snan	5 MHz
	30 k			#V	BW 3 k	Hz		5	Sweep 1	
то	(Wor	st Cas	e) 9	024.0 M	1Hz	37.51	dBm			
	lower uppei			24.0 MI 27.0 MI						


Low Noise Amplifier

P1dB

Recommended Soldering Reflow Process

