

SPECIFICATIONS

CUSTOMER	
CUSTOMER PART NO.	
AMP PART NO.	AM-1024768FTMQW-00H-F
APPROVED BY	
DATE	

 $\ oxdot$ Approved For Specifications

☐ Approved For Specifications & Sample

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

APPROVED BY	CHECKED BY	ORGANIZED BY					

Date: 2012/05/02

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2010/9/13	-	New Release	Kevin

1. GENERAL DESCRIPTION

1.1 Overview

Ampire 10.4" Display Module is an TFT Liquid Crystal Display module with LED backlight unit and 30-pin-and-1ch LVDS interface. This product supports 1024 x 768 XGA format and can display true 16.2M colors (6-bits colors with FRC). The converter module for LED backlight is built-in.

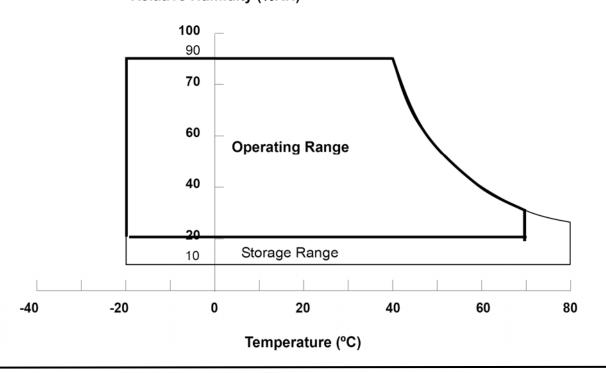
- 1.2 Features
- -Excellent brightness
- -Ultra high contrast ratio
- -Fast response time
- -High color saturation NTSC 57%
- -XGA (1024 x 768) resolution
- -DE only mode
- -LVDS interface
- -Ultra wide viewing angle:176(H)/ 176(V) (CR>10) Super MVA technology
- -180 degree rotation display option
- -Color reproduction
- -Wide operation and storage temperature range
- -Reflective ratio 0.5% ~ 2%
- 1.3 Application
- -TFT LCD monitor for industrial applications
- -Slim design display for portable applications
- -Digitizer applicable design

1.4 General specification

Item	Specification	Unit	Note
Active Area	210.4 (H) x 157.8 (V) (10.4" diagonal)	mm	(1)
Bezel Opening Area	215.4 (H) x 161.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	pixel	-
Pixel Pitch (Sub Pixel)	0.0685 (H) x 0.2055 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.2 M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti Glare	-	-
Total power consumption(typ)	5.1	W	typ

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Operating Ambient Temperature	T _{OP}	-20	+70	°C	
Storage Temperature	T _{ST}	-20	+80	°C	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note		
	Syllibol	Min.	Max.	Offic	Note		
Power Supply Voltage	VCC	-0.3	7	V	(1)		

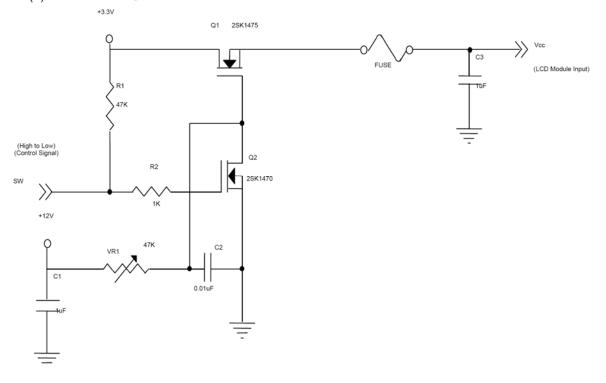
2.2.2 LED CONVERTER

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Converter Voltage	V_{i}	-0.3	22	V	(1), (2)
Enable Voltage	EN		5.5	V	
Backlight Adjust	ADJ		5.5	V	

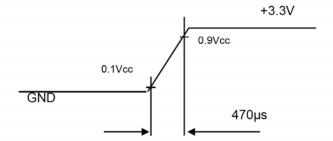
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

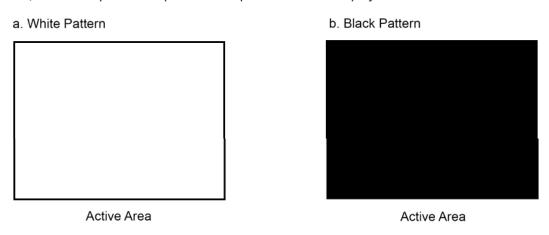
3. ELECTRICAL CHARACTERISTICS

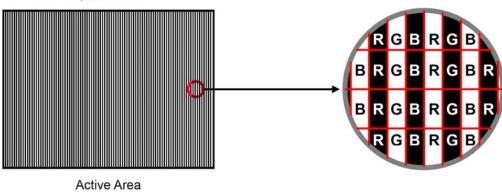

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C


Paramete	or	Symbol		Value		Unit	Note
Faramete	i didilletel			Тур.	Max.	Offic	Note
Power Supply Voltage		V _{cc}	3.0	3.3	3.6	V	(1)
Rush Current		I _{RUSH}	-	-	4.0	Α	(2)
Power Supply Current	White			600		mA	(3)
Fower Supply Current	Black	_		430		mA	(3)
Power Consumption		PL		2.0		W	
LVDS differential input vo	[VID]	100	-	600	mV	-	
LVDS common input volt	age	VICM	0.7	-	1.6	V	-

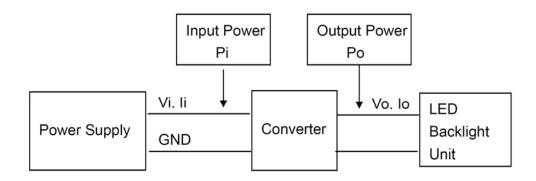
Note (1) The assembly should be always operated within above ranges.


Note (2) Measurement Conditions:


VCC rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

c. Vertical Stripe Pattern


3.2 LED CONVERTER

Ta = 25 ± 2 °C

Parameter		Cumbal		Value		Unit	Note
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Converter Power Supply \	/oltage	Vi	7	12.0	17	V	(Duty 100%)
Converter Power Supply (I _i		0.28		Α	@ Vi = 12V (Duty 100%)	
LED Power Consumption	P _{LED}		3.1			@ Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0		3.3	V	
EN Control Level	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.0		3.3	V	
- VVIVI CONTIOI Level	PWM Low Level		0		0.15	V	
PWM Control Duty Ratio		20		100	%		
PWM Control Frequency	f _{PWM}	190	200	210	Hz		
LED Life Time		LL	30,000			Hrs	(2)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_{LED} = 20mA_{DC}(LED forward current) until the brightness becomes \leq 50% of its original value.

4. BLOCK DIAGRAM

5. PIN ASSIGNMENT

5.1 TFT LCD MODULE

CN1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +3.3V	-
2	VCC	Power supply: +3.3V	-
3	VCC	Power supply: +3.3V	-
4	GND	Ground	-
5	GND	Ground	-
6	GND	Ground	-
7	RPFI	Reverse Panel Function (Display Rotation)	(2)
8	NC	No Connection	
9	NC	No Connection	-
10	NC	No Connection	-
		LVDS 6/8 bit select function control,	
11	SEL6/8	Low or NC → 8 bit Input Mode	(2)
		High → 6bit Input Mode	(2)
12	GND	Ground	-
13	NC	No Connection	-
14	GND	Ground	-
15	RX0-	Negative transmission data of pixel 0	-
16	RX0+	Positive transmission data of pixel 0	-
17	GND	Ground	-
18	RX1-	Negative transmission data of pixel 1	-
19	RX1+	Positive transmission data of pixel 1	-
20	GND	Ground	-
21	RX2-	Negative transmission data of pixel 2	-
22	RX2+	Positive transmission data of pixel 2	-
23	GND	Ground	-
24	RXCLK-	Negative of clock	-
25	RXCLK+	Positive of clock	-
26	GND	Ground	-
27	RX3-	Negative transmission data of pixel 3	-
28	RX3+	Positive transmission data of pixel 3	-
29	GND	Ground	-
30	NC	No Connection	(2)

Note (1) Connector Part No.: JAE, FI-XB30SRL-HF11 or STARCONN, 093F30-B0B01A

Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected"

5.2 BACKLIGHT UNIT (Converter connector pin)

Pin	Symbol	Description	Remark		
1	V_{i}	Converter input voltage	12V		
2	V_{i}	Converter input voltage	12V		
3	V_{i}	Converter input voltage	12V		
4	Vi	Converter input voltage	12V		
5	$V_{\sf GND}$	Converter ground	Ground		
6	$V_{\sf GND}$	Converter ground	Ground		
7	$V_{\sf GND}$	Converter ground	Ground		
8	$V_{\sf GND}$	Converter ground	Ground		
9	EN	Enable pin	3.3V		
10	ADJ	Backlight Adjust	PWM Dimming		

Note (1) Connector Part No.: 91208-01001(ACES) or equivalent

Note (2) User's connector Part No.: 91209-01011(ACES) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

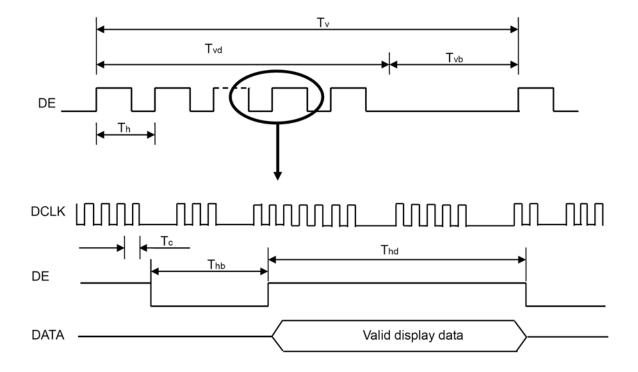
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	orsus data iriput.											Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	ı						Blu	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	вз	B2	В1	во
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IXeu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
010011	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale Of Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Bido	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

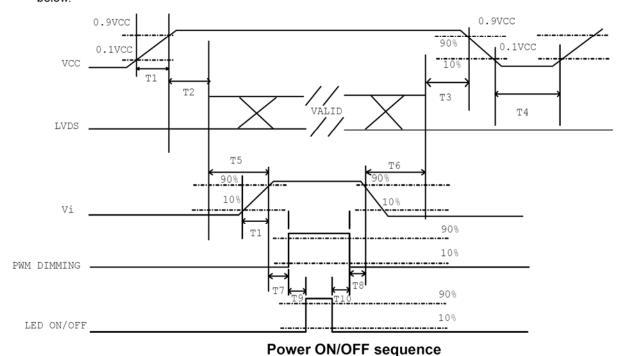
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	55	65	75	MHz	
	Total	Tv	770	806	950	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	2	38	182	Th	-
Horizontal Active Display Term	Total	Th	1104	1344	1800	Тс	Th=Thd+Thb
	Display	Thd	1024	1024	1024	Тс	-
	Blank	Thb	76	320	776	Тс	-

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

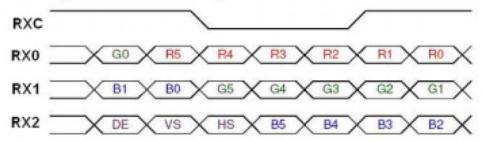

(2) Frame rate is 60Hz

INPUT SIGNAL TIMING DIAGRAM

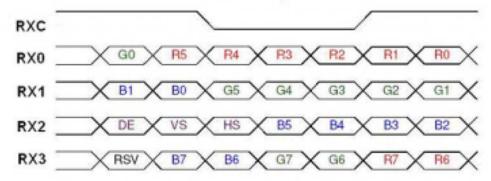
6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Note (1) Please avoid floating state of interface signal at invalid period.


Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

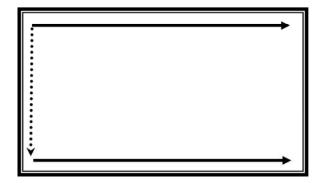
Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.


Parameter		Units		
Parameter	Min	Тур	Max	Units
T1	0.5		10	ms
T2	0		50	ms
Т3	0		50	ms
T4	500			ms
T5	200			ms
T6	200			ms
T7	10			ms
Т8	10			ms
Т9	10			ms
T10	0			ms

6.3 The Input Data Format

SEL 6/8 = "High" for 6 bits LVDS Input

SEL 6/8 = "Low" or "NC" for 8 bits LVDS Input


Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R/O	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

6.4 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

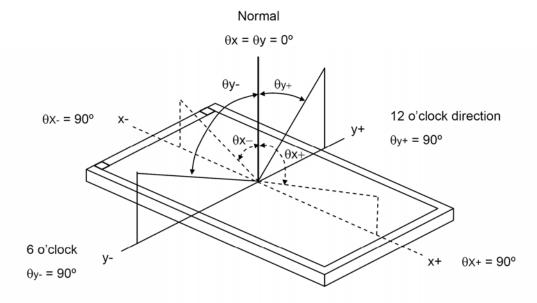
RPFI = Low/floating; normal display (default)

RPFI = high: display with 180degree rotation

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	V _{CC}	5	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Converter Current	IL	20±1mA	mA		


7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

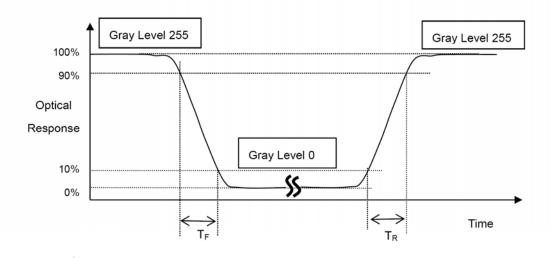
Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		900	1200		-	(2)
Response Time		T _R		-	14	19	19 ms	(2)
		T_F		-	11	16	ms	(3)
Center Lumina	nce of White	L _c		300	350	-	cd/m ²	(4)
White Variation	า	δW		-	-	- 1.4 -	-	(7)
Cross Talk		CT	7	-	-	4	%	(5)
	Red	Rx	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$		0.610		-	
	Red	Ry	Viewing angle at normal direction		0.365		-	(6)
	Green	Gx			0.341	Typ	-	
	Green	Gy		Тур.	0.564		-	
Chromaticity	Blue	Bx		0.087	0.147		-	
-		Ву			0.087		-	
		Wx			0.313		-	
	White	Wy			0.329		-	
Viewing Angle	Harizantal	θ_x +		80	88	-		
	Horizontal	θ _x -	CR≥10	80	88	-	Dog	(1)
	Vertical	θ _Y +		80	88	-	Deg.	(1)
	vertical	θ _Y -		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by BM5A

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

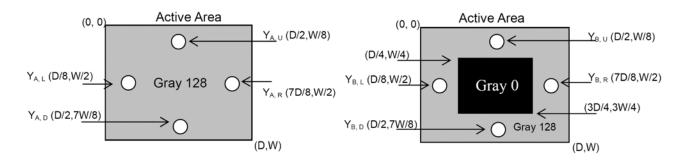
CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

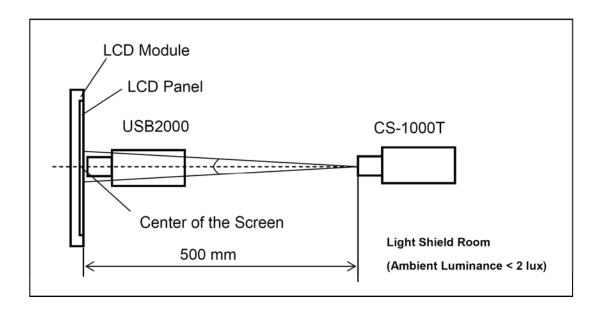
Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

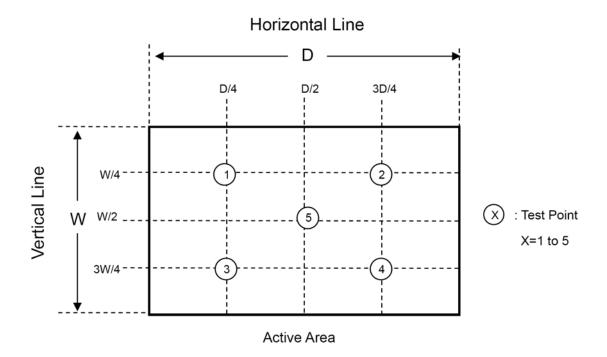
$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:


The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

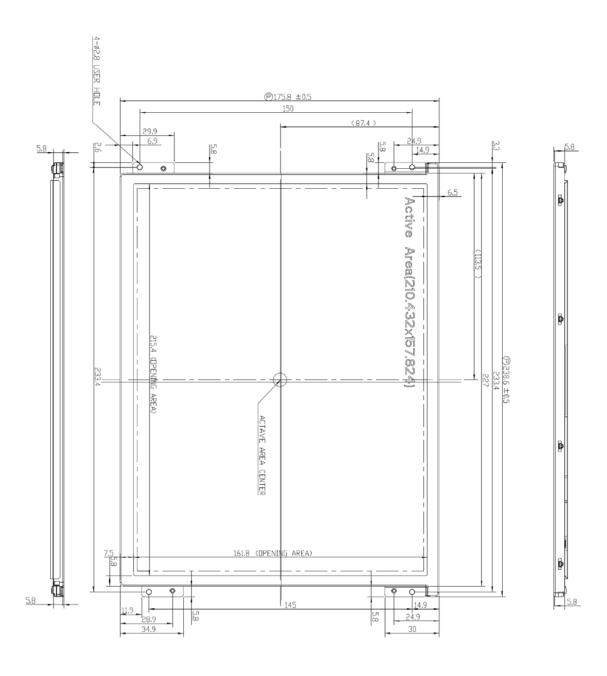
 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. RELIABILITY TEST CRITERIA

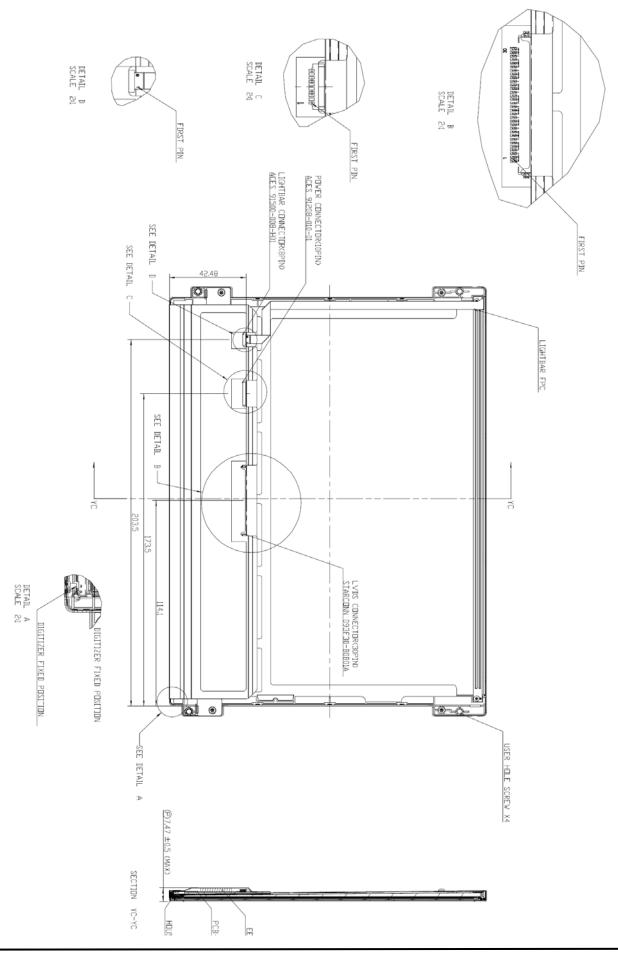
Test Item	Test Condition	Note
High Temperature Storage Test	80°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour ←→ 70°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	70°C, 240 hours	(1)(2)
Low Temperature Operation Test	-20°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for ± X, ± Y, ± Z.	(3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3)

Note (1) There should be no condensation on the surface of panel during test.

Note (2) Temperature of panel display surface area should be 80 °C Max.


Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

9. PRECAUTIONS


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.
- 9) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 10) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 11)AMIPRE will provide one year warranty for all products and three months warrantee for all repairing products.

10.OUTLINEDIMENSION

