

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-240320D4TOQW-T00H(R)
APPROVED BY	
DATE	

 \square Approved For Specifications

□Approved For Specifications & Sample

AMPIRE CO., LTD.

TOWER A, 4F, No.114, Sec. 1, HSIN-TAI 5th RD., HIS-CHIH, TAIPEI HSIEN, TAIWAN(R.O.C.)

台北縣汐止鎮新台五路一段114號4樓(東方科學園區A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 886-2-26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

1

Date: 2008/04/29 AMPIRE CO., LTD.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2007/10/31	-	New Release	Emil
2007/11/29	-	Issued the official Part No. to AM-240320D4TOQW-T00H(R).	Emil
2007/12/13	38	Modified the mechanical Drawing.	Emil
2007/12/18	6	Addition the Color chromaticity (CIE1931).	Emil
2008/01/07	3	Correction the viewing angle to 9 O'clock.	Emil
2008/04/29	38	Addition the information of connecter (pitch 0.3mm)	Emil

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

1 Features

This single-display module is suitable for hand-held application. The LCD adopts one backlight with High brightness 6-lamps white LED and Touch panel

- (1) LCD: 1.1 Amorphous-TFT 3.2 inch display, transmissive, Normally white type.
 - 1.2 240(RGB)×320 dots Matrix
 - 1.3 LCD Driver IC: ILI9320
 - 1.4 Full 262,144 colors display.

Back ground: black (Back-Light, Red, Green, Blue dots are off state)

- 1.5 Viewing Direction 9 o'clock
- (2) Low cross talk by frame rate modulation
- (3) Direct data display with display RAM
- (4) Partial display function: You can save power by limiting the display space.
- (5) MPU 8,9,16, and18-bit interface selectable.
- (6) ROHS compliant.
- (7) Abundant command functions:

Area scroll function

Display direction switching function

Power saving function

(8) Mechanical specifications

Dimensions and weight

Item		Specifications	Unit
Active Display Size		3.2 inch diagonal(81.28mm)	mm
	Outline Dimension	55.64 (H) x 77.3(V)	mm
Main Pixel pitch		0.2025 (H) x 0.2025(V)	mm
LCD	Active area	48.6 (H) x 64.8 (V)	mm
	Number of Pixels	240(H)x320(V) pixels	mm

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

2 Absolute max. ratings and environment

2-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+4.0	V	
Power voltage	VBAT	-0.5	+6	V	
Input voltage	VIN	-0.5	VDD+0.5	V	

2-2 Environment

Item	Specifications	Remarks
Storage temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing
Operating temperature	Max. +60 °C Min10 °C	Note 1: Non-condensing

Note 1 : Ta ≤ +40 °C · · · Max.85%RH

Ta>+40 °C · · · The max. humidity should not exceed the humidity with 40 °C 85%RH.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

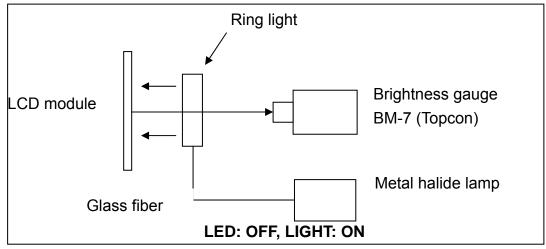
3 Electrical specifications

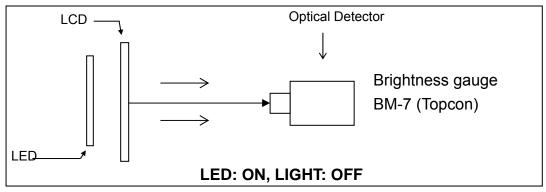
3-1 Electrical characteristics of LCM

 $(V_{DD}=3.0V, Ta=25 \,{}^{\circ}C)$

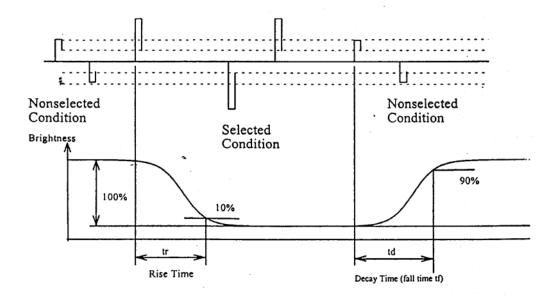
Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage	V_{DD}		2.5	3.0	3.3	V
High-level input voltage	V _{IHC}		0.8V _{DD}		V_{DD}	V
Low-level input voltage	V _{ILC}		0		0.2V _{DD}	V
Consumption current of VDD	I _{DD}	LED OFF	-	(6)		mA

3-2 LED back light specification

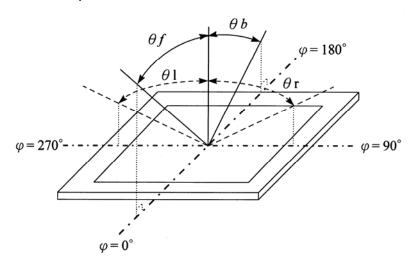

Item	Symbol Conditions		MIN.	TYP.	MAX.	Unit	
Forward voltage	V_{f}	I _f =15mA	-	(19)	-	٧	
Forward current	I _f	Vf=19V	ı	(15)	(20)	mA	
Uniformity (with L/G)	-	I _f =15mA	70%	-	-		
C.I.E.	Х		0.265	0.30	0.335		
U.I.E.	Υ		0.275	0.31	0.345		
Luminous color	White						
Chip connection		6 chip serial connection					

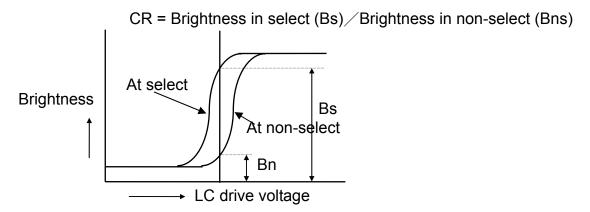

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

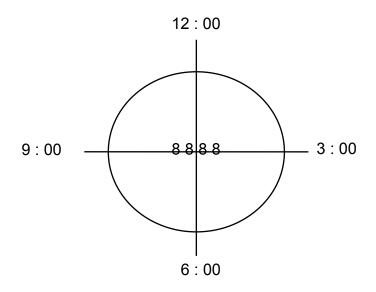
4 Optical characteristics


Item		Symbol	Min.	Std.	Max.	Unit	Conditions	
Contrast i	ratio	CR	-	250	ı	-		
Response	Rising	Tr	-	15	-	ms		
time	Faling	Tf	-	35	-	1115		
White lumi (center of se		YL		160		cd/m2	_	
	Red	Rx	-	0.6241	-		$\theta = 0^{\circ}$	
	Reu	Ry	-	0.3482	ı		Φ = 0°	
G 1	Green	Gx	-	0.328	ı		Normal	
Color chromaticity		GY	-	0.6064	-		viewing angle	
(CIE1931)	Blue	Bx	-	0.1411	1			
(CILI731)	Diue	By	-	0.1145	ı			
	White	Wx	-	0.3261	-			
	W IIILE	WY	-	0.3622	ı			
Visual angle range front	Hor.	heta L		38.7				
and rear	1101.	heta r		15		Degree	CR>10	
Viewing	Ver.	heta н		62.7		Degree	OK 10	
angle	vel.	heta L		62.2				

NOTE 1: Optical characteristic measurement system




NOTE 2: Response tome definition


NOTE 3: $\varphi \cdot \theta$ definition

NOTE 4: Contrast definition

NOTE 5: Visual angle direction priority

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

4.1Touch Panel Electrical Specification

Parameter	Condition	Standard Value	
Terminal Resistance	X Axis	$200\Omega\sim900\Omega$	
Terrimar Resistance	Y Axis	$200\Omega\sim900\Omega$	
Insulating Resistance	DC 25 V	More than $20M\Omega$	
Linearity		±1.5 %	
Notes life by Pen	Note a	100,000 times(min)	
Input life by finger	Note b	1,000,000 times (min)	

Note A.

Hitting pad: Tip R8 mm Silicone rudder, & Tip R0.8 mm stylus pen(POM).

Load: 250 g.

Hitting speed: 2 times / sec.

Electric load: None.

Note B.

Hitting pad: Tip R0.8 mm stylus pen (POM).

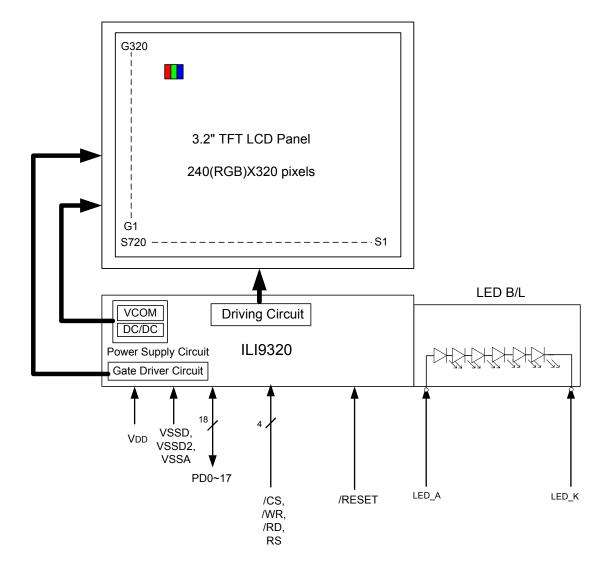
Load : 250 g.

Sliding speed: 150mm / sec.

Date: 2008/04/29

Sliding length: 25mm. Electric load: None.

	Symbol	Function		
1	XL	Touch Panel Left Signal in X Axis		
2	YD	Touch Panel Bottom Signal in Y Axis		
3	XR	Touch Panel Right Signal in X Axis		
4	YU	Touch Panel Top Signal in Y Axis		

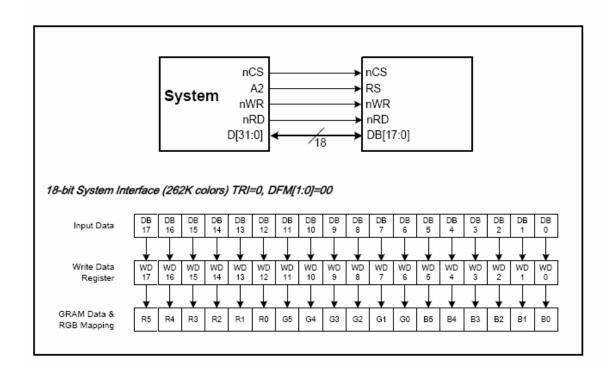

5 Block Diagram

Display format: A-Si TFT transmissive, Normally white type.

Display composition: 240(RGB) x 320 dots

LCD Driver: ILI9320

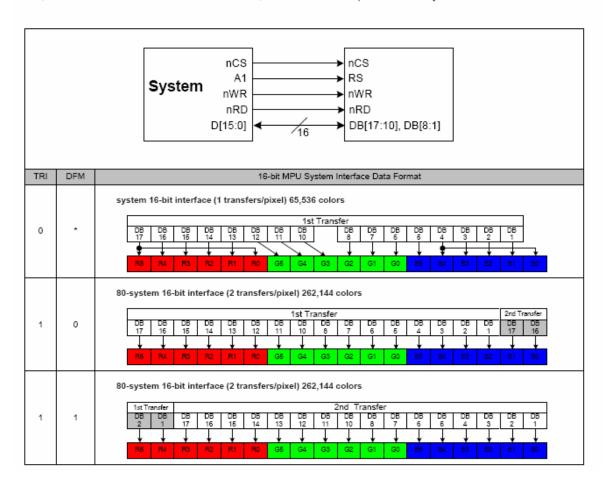
Back light: White LED x 6 (I_{LED} =15mA)


6 Interface specifications

Pin No.	Terminal	Functions					
1	VSS	Gro	Ground pins.				
2	XL	Tou	Touch Panel Left Side.				
3	XR	Tou	ch F	anel R	ight Side.		
4	YD	Tou	ch F	anel D	own Side.		
5	YU	Tou	ch F	anel U	p Side.		
6	VSS	Gro	und	pins.			
7	IM0/ID	IM3	IM1	IM0/ID	MPU-Interface Mode	DB Pin in use	
		0	1	0	i80-system 16-bit interface	DB[17:10], DB[8:1]; (JP1 2-3short)	
8	IM1	0	1	1	i80-system 8-bit interface	DB[17:10]; (JP1 2-3short)	
		1	1	0	i80-system 18-bit interface	DB[17:0]; (JP1 2-3short)	
9	IM3	1	1	1	i80-system 9-bit interface	DB[17:9]; (JP1 2-3short)	
		0	0	ID	Serial Peripheral Interface	SDI, SDO; (JP1 1-2short)	
10	SDO				face data output pin.		
11	NC	1		nection			
12	SDI				face data input pin.		
13-30	D17-D0	18-bit bidirectional bus Connect to VSS when the serial interface is selected.					
31	/CS	Chip selection pin. The "L" level enables inputting commands and reading /writing data.					
32	/RESET			•	" initializes internally. after the power is sup	plied.	
33	RS	Cor	nma	nd/disp	olay Data Selection.		
34	WR/SCL	Writ	te en	able si	gnal/Serial bus interfa	ace clock input pin.	
35	/RD	Rea	id er	able s	ignal.		
36	VSYNC	Frai	me s	ynchro	nizing signal in RGB	I/F mode. (JP1 1-2short)	
37	HSYNC	Fra	me s	ynchro	nizing signal in RGB	I/F mode. (JP1 1-2short)	
38	DOTCLK	Dot	cloc	k signa	al in RGB I/F mode. (J	JP1 1-2short)	
39	ENABLE	A da	ata E	NABL	E signal in RGB I/F m	node. (JP1 1-2short)	
40	VCC	Dow	ar cu	nnly fo	r Step-up circuit. (VC	I-2 5~3 3\/\	
41	VCC	1 OW	JI 3U	ppiy iu	otep-up circuit. (VC	1–2.0 °0.0 v j.	
42	VSS	Gro	und	pins.			
43	LED_K	Power supply for LED (Cathode).					
44	LED_A	Pov	Power supply for LED (Anode).				
45	VSS	Gro	und	pins.			

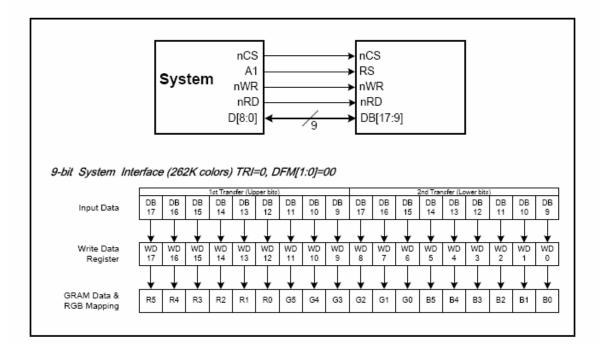
7 System Interface

7.1 80-system 18-bit interface

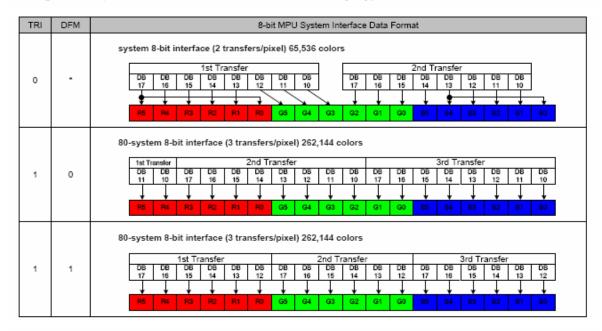

The i80/18-bit system interface is selected by setting the IM[3:0] as "1010" levels.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7.2 80-system 16-bit interface


The i80/16-bit system interface is selected by setting the IM[3:0] as "0010" levels. The 262K or 65K color can be display through the 16-bit MPU interface. When the 262K color is displayed, two transfers (1st transfer: 2 bits, 2nd transfer: 16 bits or 1st transfer: 16 bits, 2nd transfer: 2 bits) are necessary for the 16-bit CPU interface.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD


7.3 80-system 9-bit interface

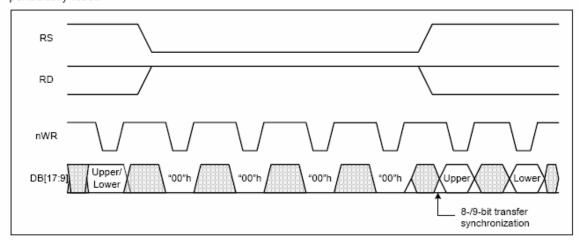
The i80/9-bit system interface is selected by setting the IM[3:0] as "1011" and the DB17~DB9 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (9 bits) and lower byte, and the upper byte is transferred first. The unused DB[8:0] pins must be tied to either Vcc or AGND.

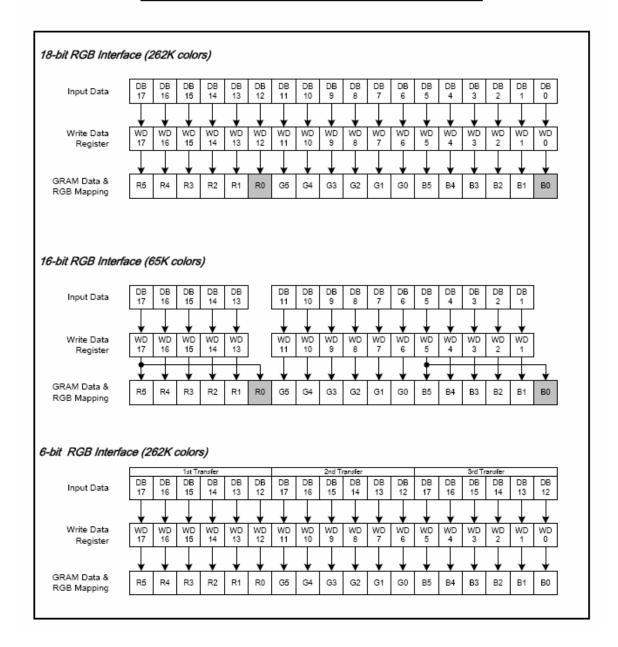
7.4 80-system 8-bit interface

The i80/8-bit system interface is selected by setting the IM[3:0] as "0011" and the DB17~DB10 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into GRAM. The unused DB[9:0] pins must be tied to either Vcc or AGND.

Data transfer synchronization in 8/9-bit bus interface mode

ILI9320 supports a data transfer synchronization function to reset upper and lower counters which count the transfers numbers of upper and lower byte in 8/9-bit interface mode. If a mismatch arises in the numbers of transfers between the upper and lower byte counters due to noise and so on, the "00"h register is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper byte. This synchronization function can effectively prevent display error if the upper/lower counters are periodically reset.



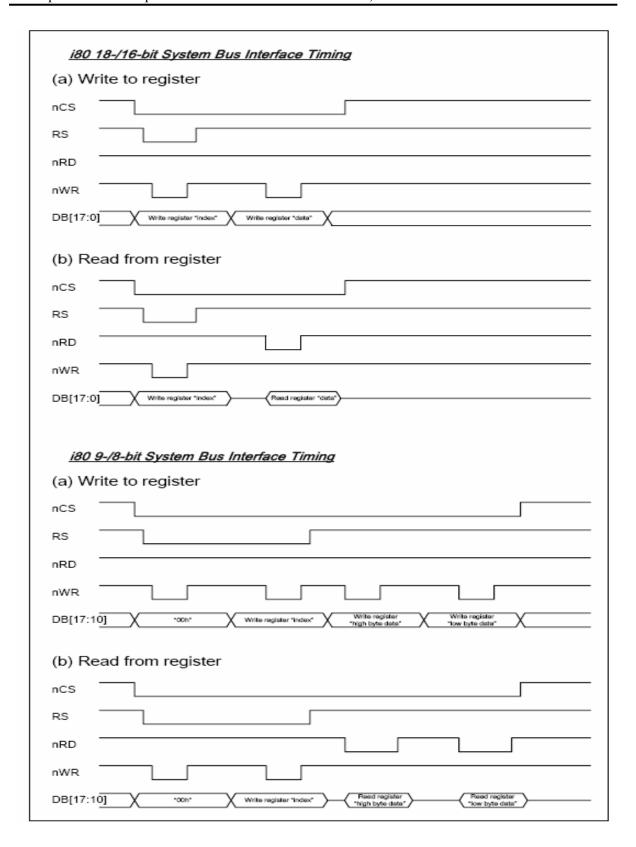

Figure 6 Data Transfer Synchronization in 8/9-bit System Interface

7.5 RGB interface

Date: 2008/04/29

The RGB Interface mode is available for ILI9320 and the interface is selected by setting the RIM[1:0] bits as following table.

RIM1	RIM0	RGB Interface	DB pins
0	0	18-bit RGB Interface	DB[17:0]
0	1	16-bit RGB Interface	DB[17:13], DB[11:1]
1	0	6-bit RGB Interface	DB[17:12]
1	1	Setting prohibited	

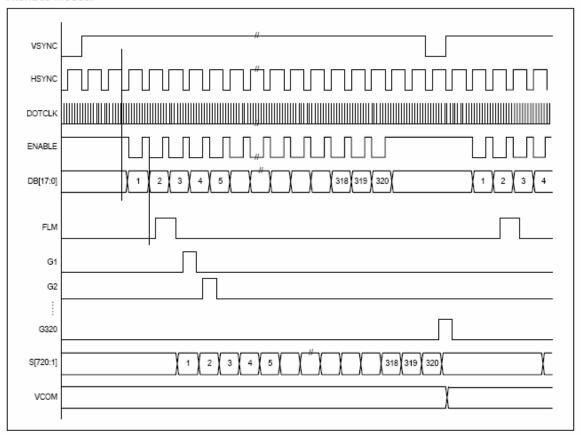


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7.6 Timing of System Interface and RGB Interface

a. System Interface

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD



b. RGB Interface

Date: 2008/04/29 AMPIRE CO., LTD.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes.

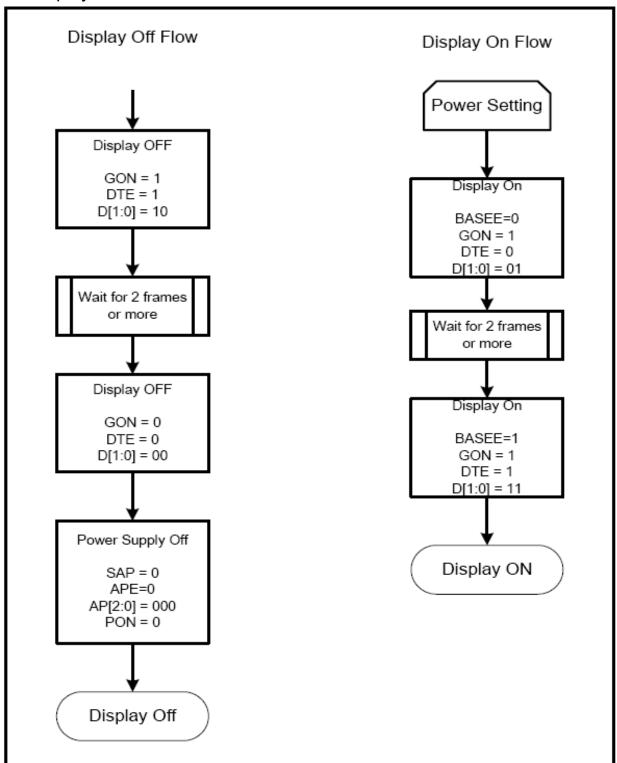
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

8 INSTRUCTION DESCRIPTIONS

8.1 Instruction List

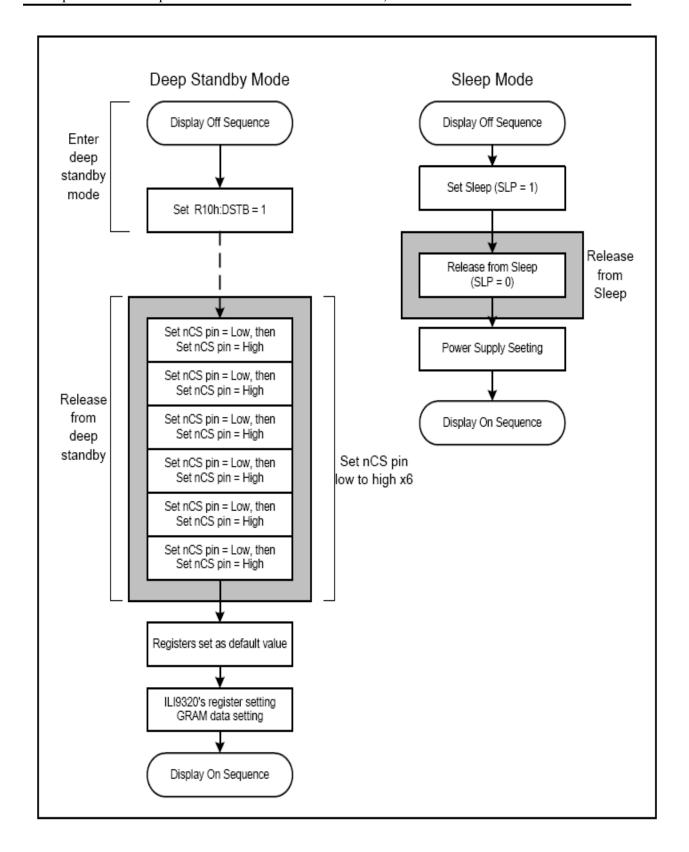
Main LCD Driver IC:ILI9320

					_														,
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
IR	Index Register	w	0	-	-	-	-	-	-	-	-	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
SR	Status Read	R	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0
00h	Driver Code Read	R	1	1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	0
00h	Start Oscillation	w	1		-		-	-		-	-			-	-	-	-	-	osc
01h	Driver Output Control 1	w	1	0	0	0	0	0	SM	0	ss	0	0	0	0	0	0	0	0
02h	LCD Driving Control	w	1	0	0	0	0	0	1	B/C	EOR	0	0	0	0	0	0	0	0
03h	Entry Mode	w	1	TRI	DFM	0	BGR	0	0	HWM	0	ORG	0	I/D1	I/D0	AM	0	0	0
04h	Resize Control	w	1	0	0	0	0	0	0	RCV 1	RCV 0	0	0	RCH 1	RCH 0	0	0	RSZ1	RSZ0
07h	Display Control 1	w	1	0	0	PTD E1	PTD E0	0	0	0	BAS EE	0	0	GON	DTE	CL	0	D1	D0
08h	Display Control 2	w	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0
09h	Display Control 3	w	1	0	0	0	0	0	PTS2	PTS1	PTS0	0	0	PTG1	PTG0	ISC3	ISC2	ISC1	ISC0
0Ah	Display Control 4	w	1	0	0	0	0	0	0	0	0	0	0	0	0	FMA RKO E	FMI2	FMI1	FMIO
0Ch	RGB Display Interface Control 1	w	1	ENC 2	ENC 1	ENC 0	0	0	0	0	RM	0	0	DM1	DM0	0	0	RIM1	RIM0
0Dh	Frame Maker Position	w	1	0	0	0	0	0	0	0	FMP 8	FMP 7	FMP 6	FMP 5	FMP 4	FMP 3	FMP 2	FMP 1	FMP 0
0Fh	RGB Display Interface Control 2	w	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSP L	0	DPL	EPL
10h	Power Control 1	w	1	0	0	0	SAP	втз	BT2	BT1	ВТ0	APE	AP2	AP1	AP0	0	DST B	SLP	0
11h	Power Control 2	w	1	0	0	0	0	0	DC12	DC11	DC10	0	DC02	DC01	DC00	0	VC2	VC1	VC0
12h	Power Control 3	w	1	0	0	0	0	0	0	0	VCM R	0	0	0	PON	VRH 3	VRH 2	VRH 1	VRH 0
13h	Power Control 4	w	1	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
20h	Horizontal GRAM Address Set	w	1	0	0	0	0	0	0	0	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
21h	Vertical GRAM Address Set	w	1	0	0	0	0	0	0	0	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
22h	Write Data to GRAM	w	1		RAN	I write dat	a (WD17-0) / read da	ta (RD17-0) bits are	transferre	d via differ	ent data bi	us lines ac	cording to	the selec	ted interfa	ces.	
29h	Power Control 7	w	1	0	0	0	0	0	0	0	0	0	0	0	VCM 4	VCM 3	VCM 2	VCM 1	VCM 0
2Bh	Frame Rate and Color Control	w	1	0	0	0	0	0	0	0	0	EXT_ R	0	FR_S EL1	FR_S EL0	0	0	0	0
30h	Gamma Control 1	w	1	0	0	0	0	0	KP1[2]	KP1[1]	KP1[0]	0	0	0	0	0	KP0[2]	KP0[1]	KP0[0]
31h	Gamma Control 2	w	1	0	0	0	0	0	KP3[2]	KP3[1]	KP3[0]	0	0	0	0	0	KP2[2]	KP2[1]	KP2[0]
32h	Gamma Control 3	w	1	0	0	0	0	0	KP5[2]	KP5[1]	KP5[0]	0	0	0	0	0	KP4[2]	KP4[1]	KP4[0]
35h	Gamma Control 4	w	1	0	0	0	0	0	RP1[2]	RP1[1]	RP1[0]	0	0	0	0	0	RP0[2]	RP0[1]	RP0[0]
36h	Gamma Control 5	w	1	0	0	0	VRP1 [4]	VRP1 [3]	VRP1 [2]	VRP1 [1]	VRP1 [0]	0	0	0	VRP0 [4]	VRP0 [3]	VRP0 [2]	VRP0 [1]	VRP0 [0]

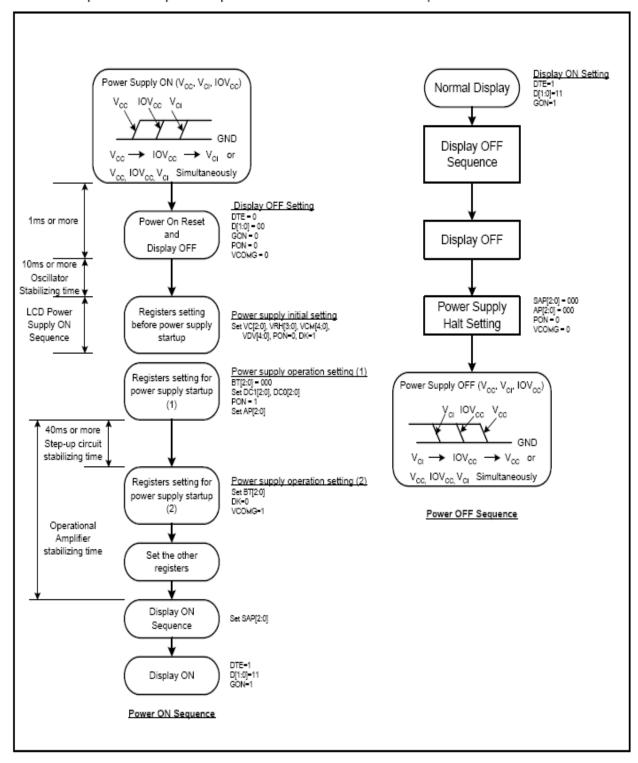

PreliminaryThe contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

37h	Gamma	\W	1	•	•		0	•	KN1[KN1[KN1[0	0	0	0	0	KN0[KN0[KN0[
0711	Control 6	. "	'	٠	۰	ľ	U	U	2]	1]	0]	U		ľ	ľ		2]	1]	0]

No.	Pogiotoro	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
38h	Registers Gamma								KN3[KN3[KN3[KN2[KN2[KN2[
3011	Control 7	w	1	0	0	0	0	0	2]	1]	0]	0	0	0	0	0	2]	1]	0]
39h	Gamma Control 8	w	1	0	0	0	0	0	KN5[2]	KN5[1]	KN5[0]	0	0	0	0	0	KN4[2]	KN4[1]	KN4[0]
3Ch	Gamma	w	1	0	0	0	0	0	RN1[RN1[RN1[0	0	0	0	0	RN0[RN0[RN0[
	Control 9 Gamma						VRN	VRN	2] VRN	1] VRN	0] VRN				VRN	VRN	2] VRN	1] VRN	0] VRN
3Dh	Control 10	W	1	0	0	0	1[4]	1[3]	1[2]	1[1]	1[0]	0	0	0	0[4]	0[3]	0[2]	0[1]	0[0]
50h	Horizontal Address Start	w	1	0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
	Position		·	Ů		Ů		Ĭ	Ĭ	Ĭ	Ů		110/10	110/10		110/10		110/11	110/10
51h	Horizontal Address End	w	1	0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
3111	Position	**	'	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	TILA	TILAU	TILAS	IILA4	TILAS	TILAZ	TILAT	TILAU
52h	Vertical Address Start	w	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
5211	Position	VV	ļ	U	U	U	U	U	U	U	VSA6	VSAI	VSA6	VSAS	VSA4	VSA3	VSAZ	VSAT	VSAU
Eah	Vertical										\/F40	\/F 4.7	\/FA0	\/F.A.5	\/FA4	\/F40	\/F40	\/E 4.4	\/E 4.0
53h	Address End Position	W	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
60h	Driver Output	W	1	GS	0	NL5	NL4	NL3	NL2	NL1	NL0	0	0	SCN	SCN	SCN	SCN	SCN	SCN
	Control 2 Base Image													5	4	3	2	1	0
61h	Display	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV
	Control Vertical Scroll			_		_													
6Ah	Control	W	1	0	0	0	0	0	0	0	VL8	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0
80h	Partial Image 1 Display	W	1	0	0	0	0	0	0	0	PTD	PTD	PTD	PTD	PTD	PTD	PTD	PTD	PTD
	Position										P08	P07	P06	P05	P04	P03	P02	P01	P00
81h	Partial Image 1 Area (Start	W	1	0	0	0	0	0	0	0	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA
	Line)										08	07	06	05	04	03	02	01	00
82h	Partial Image 1 Area (End	w	1	0	0	0	0	0	0	0	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA
	Line)										08	07	06	05	04	03	02	01	00
83h	Partial Image 2 Display	w	1	0	0	0	0	0	0	0	PTD	PTD	PTD	PTD	PTD	PTD	PTD	PTD	PTD
	Position										P18	P17	P16	P15	P14	P13	P12	P11	P10
84h	Partial Image 2 Area (Start	w	1	0	0	0	0	0	0	0	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA	PTSA
	Line)										18	17	16	15	14	13	12	11	10
85h	Partial Image 2 Area (End	w	1	0	0	0	0	0	0	0	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA	PTEA
	Line)										18	17	16	15	14	13	12	11	10
90h	Panel Interface	w	1	0	0	0	0	0	0	DIVI1	DIVI0	0	0	0	0	RTNI	RTNI	RTNI	RTNI
	Control 1										0					3	2	1	0
92h	Panel Interface	w	1	0	0	0	0	0	NOW	NOW	NOW	0	0	0	0	0	0	0	0
	Control 2		·	Ů		Ů		Ĭ	12	11	10			Ů				Ů	
93h	Panel Interface	w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MCPI	MCPI	MCPI
0011	Control 3		,	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ů	2	1	0
95h	Panel Interface	w	1	0	0	0	0	0	0	DIVE	DIVE	0	0	RTN	RTN	RTN	RTN	RTN	RTN
5511	Control 4	**		,	J	,	J	Ű	Ű	1	0	Ĭ	,	E5	E4	E3	E2	E1	E0
97h	Panel Interface	w	1	0	0	0	0	NOW	NOW	NOW	NOW	0	0	0	0	0	0	0	0
9/11	Control 5	٧٧	'	U	U	U	U	E3	E2	E1	E0	U	U	U	U	U	U	U	U
98h	Panel Interface	w	4	0		0		_	0	_	0		0				MCP	MCP	
9011	Control 6	VV	1	U	0	U	0	0	U	0	U	0	U	0	0	0	E2	E1	


9 Application

9.1 Display ON / OFF


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

9.2 Deep Standby and Sleep Mode

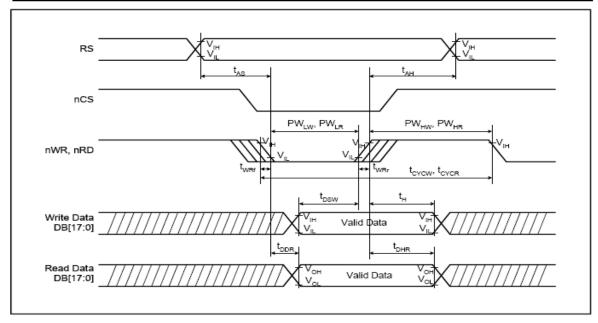
9.3 Power Supply Configuration

When supplying and cutting off power, follow the sequence below. The setting time for oscillators, step-up circuits and operational amplifiers depends on external resistance and capacitance.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

10 Timing Characteristics

10.1 Clock Characteristics

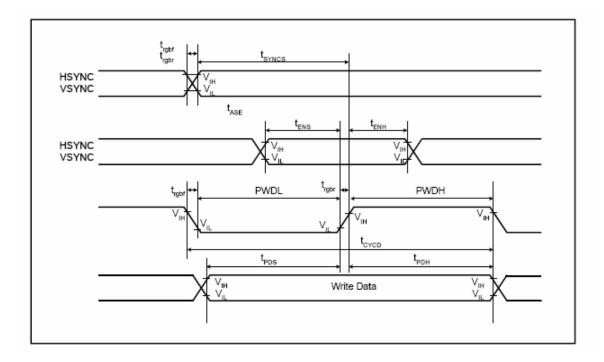

VCC = 2.40 ~ 3.30V, IOVCC = 1.65 ~ 3.30V

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
External Clock Frequency	fcp	VCC = 2.4 ~ 3.3V	450	550	650	KHz
External Clock Duty	f _{Duty}	VCC = 2.4 ~ 3.3V	45	50	55	
External Clock Rising Time	Trcp	VCC = 2.4 ~ 3.3V	-	-	0.2	μs
External Clock Falling Time	Tfcp	VCC = 2.4 ~ 3.3V	-	-	0.2	μs
RC oscillation clock	fosc	Rf = 100KΩ, VCC = 2.8V	450	550	650	KHz

${\bf 10.2\,AC\,\,Characteristics}\,\,(\,\,i80-system\,\,Interface\,\,Timing\,\,Characteristics\,\,)$

Normal Write Mode (IOVCC = 1.65~3.3V, VCC=2.4~3.3V)

	ltem	Symbol	Unit	Min.	Тур.	Max.	Test Condition
Due avale time	Write	tcycw	ns	100	-	-	-
Bus cycle time	Read	tcycr	ns	300	-	-	-
Write low-level pu	Write low-level pulse width			50	-	500	-
Write high-level po	ulse width	PW _{HW}	ns	50	-	-	-
Read low-level pu	Read low-level pulse width			150	-	-	-
Read high-level pu	PW _{HR}	ns	150	-	-		
Write / Read rise /	twn/twnf	ns	-	-	25		
Write (RS to nCS, E/nWR)		4	p.o.	10	-	-	
Read (RS to nCS, RW/nRD)		tas	ns	5	-	-	
Address hold time	•	tah	ns	5	-	-	
Write data set up t	time	t _{DSW}	ns	10	-	-	
Write data hold time		t _H	ns	15	-	-	
Read data delay ti	Read data delay time			-	-	100	
Read data hold tin	ne	t _{DHR}	ns	5	-	-	


10.3 AC Characteristics (RGB Interface Timing Characteristics)

18/16-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCC=2.4~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	tsyncs	ns	0	-	-	-
ENABLE setup time	t _{ENS}	ns	10	-	-	•
ENABLE hold time	t _{ENH}	ns	10	-	-	-
PD Data setup time	tens	ns	10	-	-	-
PD Data hold time	t _{PDH}	ns	40	-	-	-
DOTCLK high-level pulse width	PWDH	ns	40	-	-	-
DOTCLK low-level pulse width	PWDL	ns	40	-	-	ı
DOTCLK cycle time	tcyco	ns	100	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	trghr, trghr	ns	-	-	25	•

6-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCC=2.4~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	t _{syncs}	ns	0	-	-	•
ENABLE setup time	tens	ns	10	-	-	-
ENABLE hold time	tenn	ns	10	-	-	-
PD Data setup time	t _{PDS}	ns	10	-	-	-
PD Data hold time	t _{РDH}	ns	30	-	-	-
DOTCLK high-level pulse width	PWDH	ns	30	-	-	-
DOTCLK low-level pulse width	PWDL	ns	30	-	-	-
DOTCLK cycle time	tcyco	ns	80	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t _{rghr} , t _{rghr}	ns	-	-	25	-

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

11 QUALITY AND RELIABILITY

11.1 TEST CONDITIONS

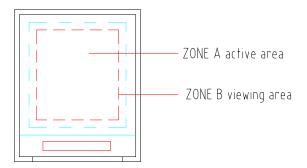
Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C

Humidity : $60 \pm 25\%$ RH.

11.2 SAMPLING PLAN

Sampling method shall be in accordance with MIL-STD-105E, level II, normal single sampling plan.


11.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

11.4 APPEARANCE

Date: 2008/04/29

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under fluorescent light. The inspection area of LCD panel shall be within the range of following limits.

11.5 INSPECTION QUALITY CRITERIA

11.5.1 LCD

No.	Item	C	criterion for de	fects	Defect type		
1	Non display	No non display is	No non display is allowed				
2	Irregular operation	No irregular oper	ation is allowed		Major		
		Bright dot	Not allowed		Major		
3	Electrical	Dark dot	2		Minor		
	defect	Distance between Dark - dark	≧5mm		Minor		
		ht,Dark dot defect desc area is more than 50%					
	- dark a	area is more than 50% o	of one dot				
4	Mura	ND 8%			Minor		
5	Black/White spot (I)	Size D (mn D ≤ 0.15 0.15 < D ≤ 0.20 0.20 < D ≤ 0.30 0.30 < D	n) Ac	Ignore 3 2 0	Minor		
6	Black/White line (I)	5.0 < L <10 0.0 1.0 < L < 5.0 0.0	03 < W < 0.04 04 < D < 0.06 06 < D < 0.07 07 < D < 0.09	Acceptable number 5 3 2 1	Minor		

Preliminary
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7	Black/White sport (II)	Size D (m D ≤ 0.30 0.30 < D ≤ 0.50 0.50 < D ≤ 1.20 1.20 < D	nm)	Ac	ceptable number Ignore 5 3	Minor
8	Black/White line (II)	10 < L < 20 0 5.0 < L < 10 0	Width (.05 < W ≤ .07 < D ≤ .09 < D ≤ .10 < D ≤	0.07 0.09 0.10	Acceptable number 5 3 2 1	Minor
9	Back Light		phting is rejectable ring and abnormal lighting are reject		g are rejectable	Major
10	Display pattern	Note: 1. Acceptable up to 3 damages 2. NG if there're to two or more pin			$0.25 \left \frac{F+G}{2} \le 0.25 \right $	Minor
11	Blemish & Foreign matters Size: $D = \frac{A+B}{2}$	Size D (mm) D ≤ 0.15 0.15 < D ≤ 0.20 0.20 < D ≤ 0.30 0.30 < D		Acceptable number Ignore 3 2 0		Minor
12	Scratch on Polarizer	Width (mm) W<0.03 0.03 <w<0.05 0.05<w<0.08="" 0.08<w="" a<="" note(1)="" regard="" td=""><td colspan="2">Length (mm) Ignore L ≤ 2.0 L > 2.0 L > 1.0 L ≤ 1.0 Note (1) as a blemish</td><td>Acceptable number Ignore Ignore 1 1 Ignore Note(1)</td><td>Minor</td></w<0.05>	Length (mm) Ignore L ≤ 2.0 L > 2.0 L > 1.0 L ≤ 1.0 Note (1) as a blemish		Acceptable number Ignore Ignore 1 1 Ignore Note(1)	Minor
13	Bubble in polarizer	Size D (m D < 0.20 0.20 < D < 0.50 0.50 < D < 0.80 0.80 < D	nm) Ac		ceptable number Ignore 3 2 0	Minor

Preliminary
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

14	Stains on LCD panel surface	Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable.	Minor
15	Rust in Bezel	Rust which is visible in the bezel is rejectable.	Minor
16	Defect of land surface contact (poor soldering)	Evident crevices which is visible are rejectable.	Minor
17	Parts mounting	Failure to mount parts Parts not in the specifications are mounted Polarity, for example, is reversed	Major Major Major
18	Parts alignment	 LSI, IC lead width is more than 50% beyond pad outline. Chip component is off center and more than 50% of the leads is off the pad outline. 	Minor Minor
19	Conductive foreign matter (Solder ball, Solder chips)	1. $0.45 < \varphi$,N ≥ 1 2. $0.30 < \varphi \le 0.45$,N ≥ 1 φ :Average diameter of solder ball (unit: mm) 3. $0.50 < L$,N ≥ 1 L: Average length of solder chip (unit: mm)	Major Minor Minor
20	Faulty PCB correction	 Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. Short circuited part is cut, and no resist coating has been performed. 	Minor Minor

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

11.5.2 Touch Panel

Cosmetic Limit Standard (suitable in view area, except dot spacer)

Quality inspection standard:

Inspect sampling standard: according to AQL MIL-STD-105E Level II

Serious defect (serious crack: possible expanding) 0.01

Major defect 0.65

Minor defect 1.5

Scope

The standard shall be applied to view area only

For the area outside the view area, shall be acceptable unless any scratch or irregularity which affects electrical performance.

Criterion of visual inspection shall according to limit sample.

However, the chip and crack should be applied to the whole part of touch panel.

Inspection condition:

- (A). The lightness of environment is 500 Lux
- (B). The distance between product and eye is about 30cm
- (C). The angle of 60° between eye
- (D). Inspection method is under a ceiling fluorescent light (white color).
- (E). Reference document of cosmetic inspection specification : Item $8-3 \sim 8-9$.
- (F). W= width, L= length, D= diameter \Rightarrow (longest + shortest)/2
- (G). Please find data below for your reference.

Newton Ring

Inspect criteria by limit sample.

- (A). The lightness of environment is 500 Lux
- (B). The distance between product and eye is about 30cm
- (C). The angle of 60° between eye
- (D). Please find data below for your reference.
- (E). Newton Ring area be under 10% of to total display area.

PreliminaryThe contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

Item	Specification	Judgment
8-3 Dot-like foreign objects		1. Acceptable
0-5 Dot-like foreign objects	2. 0.1mm < D ≤ 0.3mm	2. Three or less
	3. 0.3mm < D	3. Unacceptable
8-4 Linear foreign objects	1. W≤0.03mm · L ≤3mm	1. Acceptable
8-4 Elliear foreign objects	2. 0.03mm < W ≤ 0.1mm · L ≤ 5mm	2. Three or less
1.7	3. 0.1mm <w 5mm<="" \(="" \)="" th=""><th>3. Unacceptable</th></w>	3. Unacceptable
8-5 Chip and crack	(1) Corner chip	X≤3mm · Y≤3mm · Z<
8-3 Chip and crack	(1) Corner chip	t(bottom glass thickness)
		tt bottom glass unexilessy
	(2) Side chip	X≤3mm · Y≤3mm · Z<
	X X Y	t(bottom glass thickness)
	(3) Bad crack(possibly expanding)	Crack damage is not allowed to be existed in the viewing area or ITO °
8-6 Scratch	1. W ≤ 0.03mm · L ≤ 3mm	1. Acceptable
	2. 0.03mm < W ≤ 0.1mm · L ≤ 5mm	2. Three or less
	3. 0.1mm <w \="" l=""> 5mm</w>	3. Unacceptable
8-7 Fish eyes	1.D≦0.2mm	1. Acceptable
	2.0.2mm <d≤0.4mm< th=""><th>2. Two or less</th></d≤0.4mm<>	2. Two or less
	3.0.4mm <d≤0.6mm< th=""><th>(distance 5mm over)</th></d≤0.6mm<>	(distance 5mm over)
	4.0.6mm <d< th=""><th>3. One</th></d<>	3. One
	La Dal	(distance 5mm over)
		4. Unacceptable
8-8 Dirt	Acceptable if not noticeable	
8-9 Blistering		0.35mm gauge
		0.35mm
		ablet
	Check through any 0.35mm gauge whether	

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

11.6 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	60±3°C , t=96 hrs	
Low Temperature Operation	-10±3°C , t=96 hrs	
High Temperature Storage	70±3°C , t=96 hrs	1,2
Low Temperature Storage	-20±3°C , t=96 hrs	1,2
Humidity Test	40°C , Humidity 90%, 96 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 min. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

12 Use precautions

12-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

12-2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

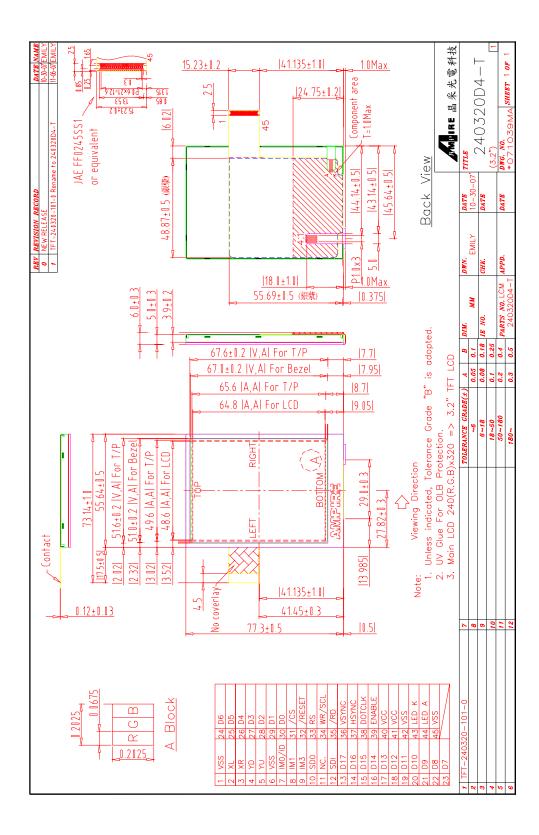
the polarizing plate to peel off.

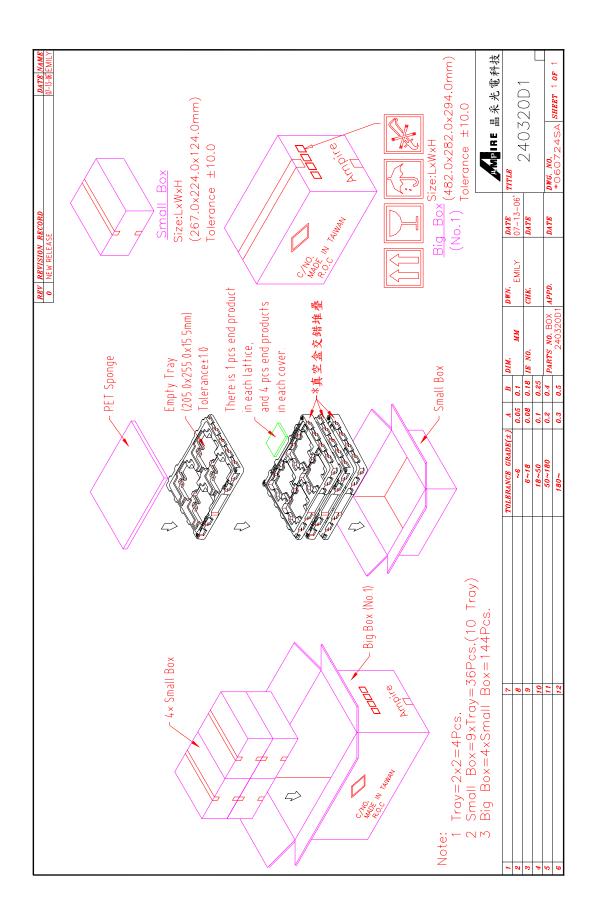
12-3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

12-4 Operating precautions

- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD


- to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

12-5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.

13 Mechanic Drawing

