

# AMP DISPLAY INC.

## **SPECIFICATIONS**

# 4.3-in COLOR TFT MODULE

| CUSTOMER:               |                                                                    |
|-------------------------|--------------------------------------------------------------------|
| CUSTOMER PART NO.       |                                                                    |
| AMP DISPLAY PART<br>NO. | AM-480272HATMQW-TA0H                                               |
| APPROVED BY:            |                                                                    |
| DATE:                   |                                                                    |
|                         | ROVED FOR SPECIFICATIONS<br>ROVED FOR SPECIFICATION AND PROTOTYPES |

# **AMP DISPLAY INC**

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

# RECORD OF REVISION

| <b>Revision Date</b> | Page | Contents           | Editor |
|----------------------|------|--------------------|--------|
| 2012/04/18           | -    | New Release        | Kain   |
| 2012/04/24           |      | Modify input power | Kain   |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |
|                      |      |                    |        |

2

#### 1. FEATURES

(1) Construction: a-Si TFT-LCD with driving system, White LED Backlight and Touch Panel.

(2) LCD type: Transmissive, Normally White

(3) Number of the Colors: 16.7M colors (R,G,B 8 bit digital each)

(4) RGB Interface 40 pin.

(5) LCD Power Supply Voltage: 3.3V single power input,

(6) Touch Panel Included

#### 2. PHYSICAL SPECIFICATIONS

| Item                            | Specifications              | unit |
|---------------------------------|-----------------------------|------|
| Display size (diagonal)         | 4.3                         | inch |
| Resolution                      | 480RGB (W) x 272(H)         | dots |
| Display area                    | 98.7 (W) x57.5 (H)          | mm   |
| Pixel pitch                     | 0.198 (W) x 0.198 (H)       | mm   |
| Overall dimension               | 105.5(W)x114.05(H)x6.24 (D) | mm   |
| Color configuration             | R.G.B Vertical stripe       |      |
| View Direction (Gray Inversion) | 6 o'clock                   |      |

#### 3. ABSOLUTE MAXIMUM RATINGS

| ABOOLOTE MAXIMOM KATINGO        |               |      |     |                        |              |  |  |  |  |
|---------------------------------|---------------|------|-----|------------------------|--------------|--|--|--|--|
| item                            | Symbol Values |      |     | Unit                   | Remark       |  |  |  |  |
| 1.0111                          | Cymbol        | Min  | Max | Onic                   | Romank       |  |  |  |  |
| Power Supply for logic          | VCC           | -0.3 | 5.0 | V                      | GND=0        |  |  |  |  |
| Operation Temperature (Ambient) | Тор           | -20  | 70  | $^{\circ}\!\mathbb{C}$ |              |  |  |  |  |
| Storage Temperature (Ambient)   | Тѕт           | -30  | 80  | $^{\circ}\!\mathbb{C}$ | Note 1       |  |  |  |  |
| LED Forward current             | lf            |      | 20  | mA                     | OneLED/Note2 |  |  |  |  |
| LED Power Dissipation           | Pd            |      | 64  | mW                     | One LED      |  |  |  |  |

<sup>\*</sup>TFT LCD Ratings

Note 1: Hsync, Vsync, DEN, DCLK, R0~R7, G0~G7, B0~B7

Note 2: Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

#### 4. OPTICAL CHARACTERISTICS

| Item           |      | Symbol  | Condition   | Min.   | Тур.  | Max.  | Unit  | Note   |        |
|----------------|------|---------|-------------|--------|-------|-------|-------|--------|--------|
| Response       | Time |         | $T_r + T_f$ | O-4-0° | ı     | 40    |       | ms     | (3)    |
| Contrast ratio |      |         | СR Θ=Ф=0°   |        |       | 250   | -     | -      | (1)    |
| Viewing        | Ve   | ertical | Θ           | CR≧10  |       | 90.   | -     | Dog    | (4)    |
| Angle          | Hori | izontal | Ф           | CR≦ IU |       | 130   | -     | Deg.   | (4)    |
| Luminance      |      | L       | Θ=Ф=0°      |        | 400   |       | cd/m² | (2)    |        |
| Color White    |      | Wx      | 0 + 0       |        | 0.301 |       |       | (2)(3) |        |
| chromatici     | ity  | VVIIIC  | Wy          |        |       | 0.339 |       |        | (2)(3) |

#### NOTE:

Measure Condition:IL= 20.0mA
Measure Item Definition as follow:

(1)Definition of Contrast Ratio: (Measured by BM-7 (TOPCON) [dark room])
Contrast Ratio (CR)= (White) Luminance of ON ÷ (Black) Luminance of OFF

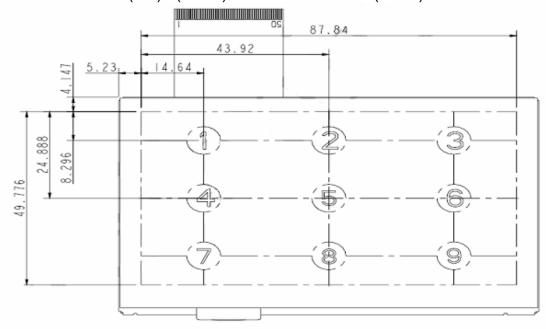



Fig.9-1: Test Point Position

(2) Definition of Center Luminance & Luminance Uniformity: (Measured by BM-7 (TOPCON) [dark room])

Center Luminance: Measure luminance on Point No5 as figure 9-1.

Luminance Uniformity : Measure maximum luminance(L(MAX)) and minimum luminance (L(MIN)) on the  $\bf 9$  points as figure 9-1.

 $L = [L(MIN)/L(MAX)] \times 100\%$ 

# (3) Response Time (White - Black)

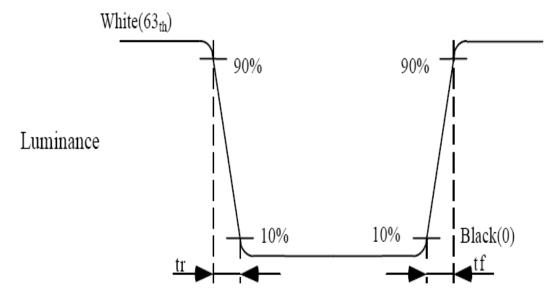
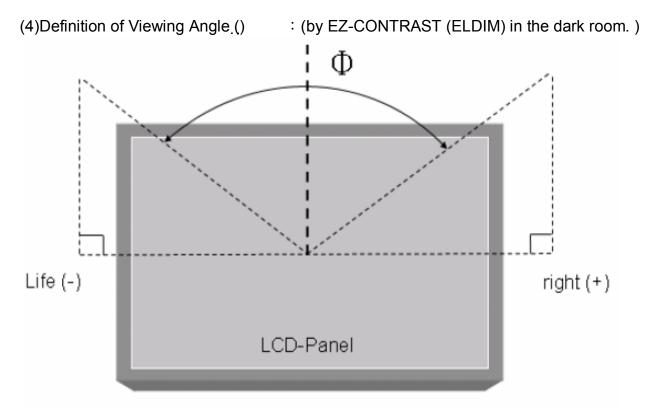




Fig.9-2: Definition of Response Time (White - Black)



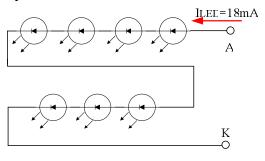
5

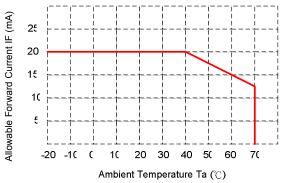


## 5. ELECTRICAL CHARACTERISTICS

# **LCD** driving

| Item                    |         | Symbol          | Min.    | Тур. | Max.    | Unit     | Note |
|-------------------------|---------|-----------------|---------|------|---------|----------|------|
| Power supply voltage    |         | VDD             | 3.0     | 3.3  | 3.6     | <b>\</b> |      |
| Input voltage for logic | H Level | V <sub>IH</sub> | 0.8 VDD |      | VDD     | V        | (1)  |
|                         | L Level | $V_{IL}$        | 0       |      | 0.2 VDD | ٧        | (1)  |
| Power Supply current    |         | IDD             |         | 45   |         | mA       | (2)  |

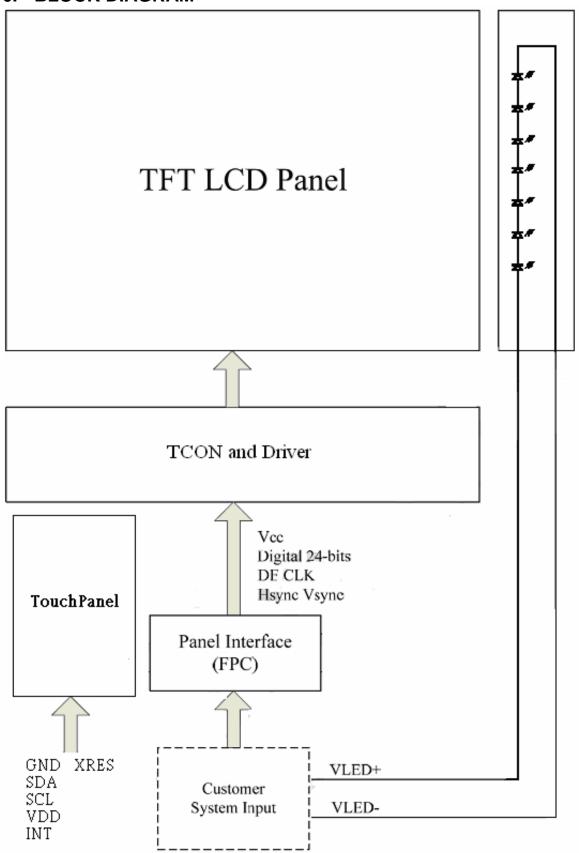

Note 1: Hsync, Vsync, DEN, DCLK, R0~R5, G0~G5, B0~B5


Note 2: fV =60Hz , Ta=25°C , Display pattern : All Black

LED back light specification

| Item                  | Symbol                       | Conditions           | MIN.         | TYP.      | MAX. | Unit |
|-----------------------|------------------------------|----------------------|--------------|-----------|------|------|
| Forward voltage       | $V_{f}$                      | I <sub>f</sub> =18mA |              | 23.1      | 25.2 | V    |
| Forward current       | I <sub>f</sub> 7-chip serial |                      | -            | 18        | 20   | mA   |
| Uniformity (with L/G) | -                            | I <sub>f</sub> =18mA | 75%*1        | -         | -    |      |
| Life Time             |                              | Ta=25°C,             | 17.7K        |           |      | Hrs  |
| (LED Dice)            | -                            | I <sub>F</sub> =20mA | 17.7K        |           |      | ПІВ  |
| Luminous color        | White                        |                      |              |           |      |      |
| Chip connection       |                              | 7 ch                 | nip serial c | onnection |      |      |

■ The constant current source is needed for white LED back-light driving. When LCM is operated over 60 deg.C ambient temperature, the I<sub>LED</sub> of the LED back-light should be adjusted to 15mA max





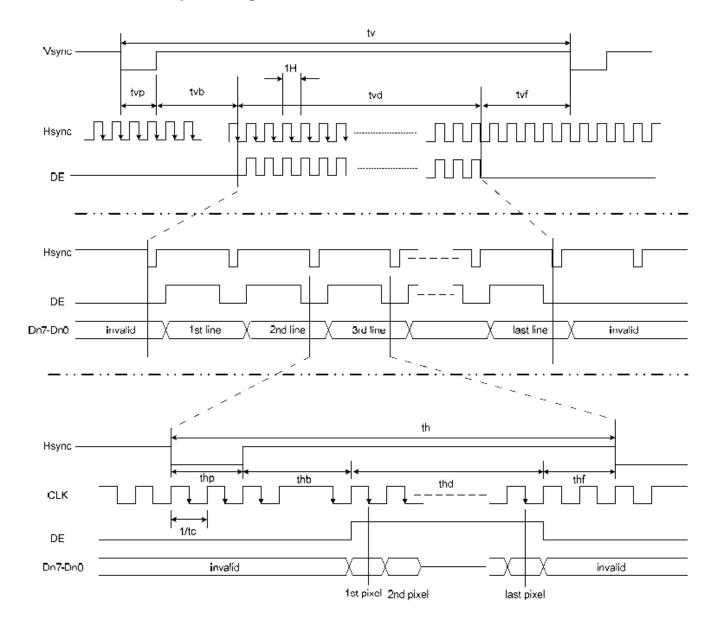

# Pin definition of Backlight

| Pin no | Symbol | Function    |
|--------|--------|-------------|
| 1      | LED_K  | LED Cathode |
| 2      | NC     | Keep NC     |
| 3      | NC     | Keep NC     |
| 4      | LED_A  | LED Anode   |

## 6. BLOCK DIAGRAM



# 7. TFT LCD Panel FPC Descriptions


| Pin no | Symbol | Function             |
|--------|--------|----------------------|
| 1      | GND    | Ground               |
| 2      | GND    | Ground               |
| 3      | VCC    | Power Supply(3.3V)   |
| 4      | VCC    | Power Supply(3.3V)   |
| 5      | R0     | Red Data Bit 0       |
| 6      | R1     | Red Data Bit 1       |
| 7      | R2     | Red Data Bit 2       |
| 8      | R3     | Red Data Bit 3       |
| 9      | R4     | Red Data Bit 4       |
| 10     | R5     | Red Data Bit 5       |
| 11     | R6     | Red Data Bit 6       |
| 12     | R7     | Red Data Bit 7       |
| 13     | G0     | Green Data Bit 0     |
| 14     | G1     | Green Data Bit 1     |
| 15     | G2     | Green Data Bit 2     |
| 16     | G3     | Green Data Bit 3     |
| 17     | G4     | Green Data Bit 4     |
| 18     | G5     | Green Data Bit 5     |
| 19     | G6     | Green Data Bit 6     |
| 20     | G7     | Green Data Bit 7     |
| 21     | B0     | Blue Data Bit 0      |
| 22     | B1     | Blue Data Bit 1      |
| 23     | B2     | Blue Data Bit 2      |
| 24     | B3     | Blue Data Bit 3      |
| 25     | B4     | Blue Data Bit 4      |
| 26     | B5     | Blue Data Bit 5      |
| 27     | B6     | Blue Data Bit 6      |
| 28     | B7     | Blue Data Bit 7      |
| 29     | GND    | Ground               |
| 30     | DCLK   | Dot Data Clock       |
| 31     | DISP   | Display ONOFF        |
| 32     | Hsync  | Horizotal Sync Input |
| 33     | Vsync  | Vertical Sync Input  |
| 34     | NC     | Not Connection       |
| 35     | NC     | Not Connection       |
| 36     | NC     | Not Connection       |
| 37     | NC     | Not Connection       |
| 38     | Test1  | Not Connection       |
| 39     | Test2  | Not Connection       |
| 40     | Test3  | Not Connection       |

**Capacitive Touch Panel FPC Descriptions** 

| No. | Symbol | I/O | Description                           | Remark |
|-----|--------|-----|---------------------------------------|--------|
| 1.  | GND    | -   | Ground.(0V)                           |        |
| 2.  | SDA    | I/O | I2C Interface.                        |        |
| 3.  | SCL    | I   | 120 interface.                        |        |
| 4.  | VDD    | -   | Power Supply for TP controller.(3.3V) |        |
| 5.  | INT    | 0   | IRQ Terminal.                         |        |
| 6.  | XRES   | I   | Terminal of Reset TP controller.      |        |

### 8. INPUT SIGNAL

## 8.1 Parallel RGB input timing Chart



### 8.2 Timing Specification

Parallel RGB input timing requirement

| PARAMETER                 | Symbol             | Min.      | Тур.  | Max. | Unit |
|---------------------------|--------------------|-----------|-------|------|------|
| Clock cycle               | 1/t <sub>c*1</sub> |           | 9     | 15   | MHz  |
| Hsync cycle               | 1/f <sub>н</sub>   |           | 17.14 | -    | KHz  |
| Vsync cycle               | 1/f <sub>v</sub>   |           | 59.94 | -    | Hz   |
|                           | Horizonta          | al Signal |       |      |      |
| Horizontal cycle          | th*2               | 525       | 525   | 605  | CLK  |
| Horizontal display period | thd                | 480       | 480   | 480  | CLK  |
| Horizontal front porch    | thf                | 2         | 2     | 82   | CLK  |
| Horizontal pulse width    | thp                | 2         | 41    | 41   | CLK  |
| Horizontal back porch     | thb                | 2         | 2     | 41   | CLK  |
|                           | Vertical           | Signal    |       |      |      |
| Vertical cycle            | tv                 | 285-      | 286   | 511  | Н    |
| Vertical display period   | tvd                | 272       | 272   | 272  | Н    |
| Vertical front porch      | tvf                | 1         | 2     | 227  | Н    |
| Vertical pulse width      | tvp                | 1         | 10    | 11   | Н    |
| Vertical back porch       | tvb                | 1         | 2     | 11   | Н    |

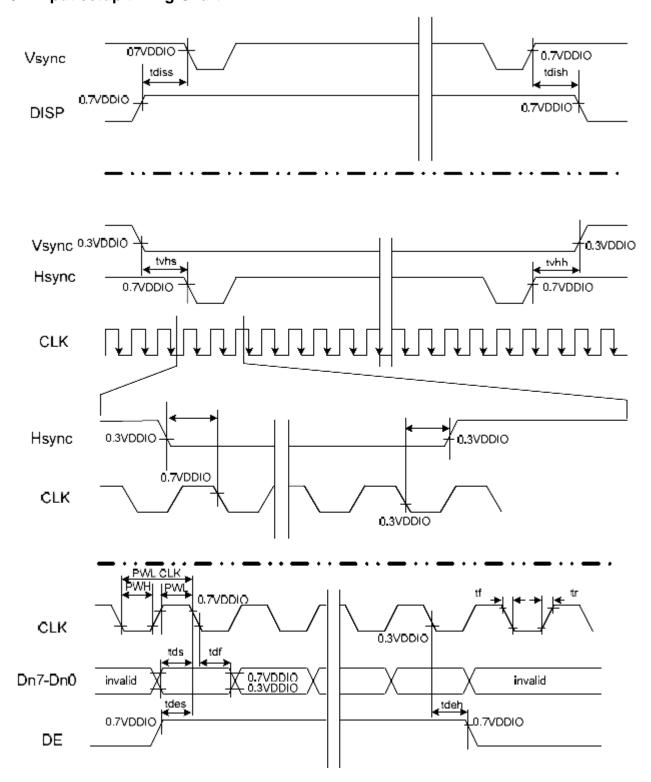
Note:

(1) Unit: CLK=1/fCLK, H=th,

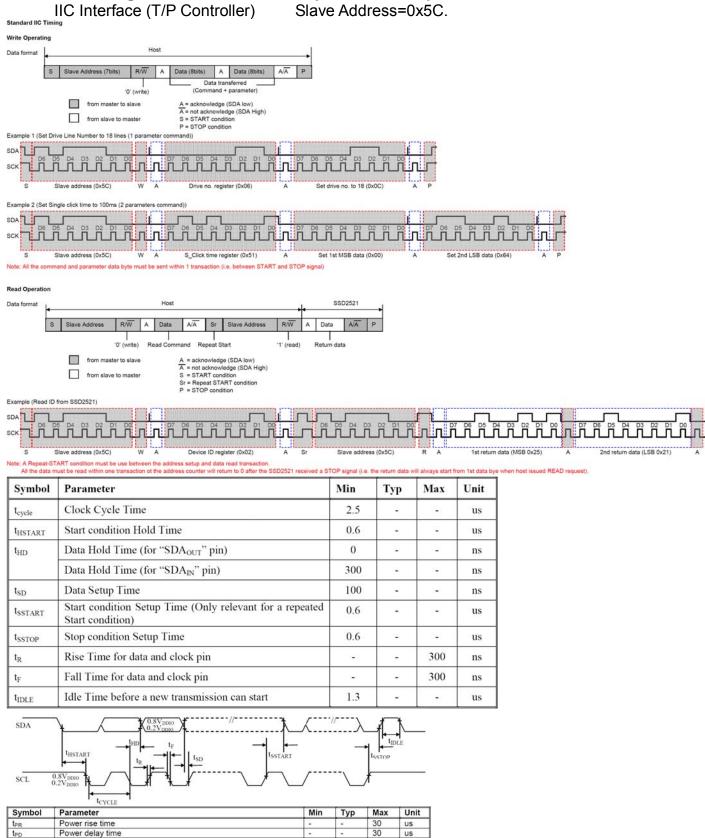
(2)It is necessary to keep tvp+tvb=12 and thp+thb=43 in sync mode.

# 8.3 Timing Chart 2

Input setup timing requirement


|                         | input obtap tilling rodanoment      |      |      |      |      |  |  |  |  |
|-------------------------|-------------------------------------|------|------|------|------|--|--|--|--|
| PARAMETER               | <b>Symbol</b>                       | Min. | Тур. | Max. | Unit |  |  |  |  |
| DISP setup time         | <b>t</b> diss                       | 10   | -    | -    | ns   |  |  |  |  |
| DISP hold time          | <b>t</b> dish                       | 10   | -    |      | ns   |  |  |  |  |
| Clock period            | PW <sub>CLK</sub> *1                | 66.7 | -    | -    | ns   |  |  |  |  |
| Clock pulse high period | PWH*1                               | 26.7 | -    | -    | ns   |  |  |  |  |
| Clock pulse low period  | PWL*1                               | 26.7 | -    | -    | ns   |  |  |  |  |
| Hsync setup time        | ths                                 | 10   | -    | -    | ns   |  |  |  |  |
| Hsync hold time         | t <sub>hh</sub>                     | 10   | -    |      | ns   |  |  |  |  |
| Data setup time         | t <sub>ds</sub>                     | 10   | -    | -    | ns   |  |  |  |  |
| Data hold time          | $\mathbf{t}_{\scriptscriptstyledh}$ | 10   | -    | -    | ns   |  |  |  |  |
| DE setup time           | $t_{\scriptscriptstyle des}$        | 10   | -    | -    | ns   |  |  |  |  |
| DE hold time            | $t_{\scriptscriptstyledeh}$         | 10   | -    | -    | ns   |  |  |  |  |
| Vsync setup time        | $t_{\sf vhs}$                       | 10   | -    | -    | ns   |  |  |  |  |
| Vsync hold time         | $t_{\scriptscriptstylevhh}$         | 10   | -    | -    | ns   |  |  |  |  |
| NI. t.                  |                                     |      | •    | •    | •    |  |  |  |  |

Note


1. For parallel interface, maximum clock frequency is 15MHz.

2. tr, tf is defined 10% to 90% of signal amplitude.

## 8.4 Input setup timing Chart



#### 8.5 AC Timing characteristic of the capacitive touch panel



Chip stable time

Chip need time after hardware reset

**t**STABLE

t<sub>RES</sub>

TREADY

us

us

10

# 9. TP controller command table

| Reg#              | Function                                            | R/W/C | No. of<br>Byte | Parameter                                                                                       | Default |  |
|-------------------|-----------------------------------------------------|-------|----------------|-------------------------------------------------------------------------------------------------|---------|--|
| R00h No Operation |                                                     | С     | 0              | N/A                                                                                             | N/A     |  |
| R01h              | Software Reset                                      | С     | 0              | N/A                                                                                             | N/A     |  |
| R02h              | Device ID                                           | R     | 2              | nibble based representation of "2521"                                                           | 0x2521  |  |
| R06h              | 6h Number of Driving<br>Electrodes                  |       | 1              | [7:4]: Reserved [3:0]: Select between 6 to 21 electrodes according to mapping in specification. | 0x0F    |  |
| R07h              | Number of Sensing<br>Electrodes                     | W     | 1              | [7:3]: Reserved [2:0]: Select between 6 to 12 electrodes according to mapping in specification. | 0x06    |  |
| R08h              | Select Drive Pin and Slew<br>Rate for Drive Line 00 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x00    |  |
| R09h              | Select Drive Pin and Slew<br>Rate for Drive Line 01 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x01    |  |
| RAh               | Select Drive Pin and Slew<br>Rate for Drive Line 02 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x02    |  |
| RBh               | Select Drive Pin and Slew<br>Rate for Drive Line 03 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x03    |  |
| RCh               | Select Drive Pin and Slew<br>Rate for Drive Line 04 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x04    |  |
| RDh               | Select Drive Pin and Slew<br>Rate for Drive Line 05 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x05    |  |
| REh               | Select Drive Pin and Slew<br>Rate for Drive Line 06 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x06    |  |
| RFh               | Select Drive Pin and Slew<br>Rate for Drive Line 07 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x07    |  |
| R10h              | Select Drive Pin and Slew<br>Rate for Drive Line 08 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x08    |  |
| R11h              | Select Drive Pin and Slew<br>Rate for Drive Line 09 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x09    |  |
| R12h              | Select Drive Pin and Slew<br>Rate for Drive Line 10 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x0A    |  |
| R13h              | Select Drive Pin and Slew<br>Rate for Drive Line 11 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x0B    |  |
| R14h              | Select Drive Pin and Slew<br>Rate for Drive Line 12 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x0C    |  |
| R15h              | Select Drive Pin and Slew<br>Rate for Drive Line 13 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x0D    |  |
| R16h              | Select Drive Pin and Slew<br>Rate for Drive Line 14 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x0E    |  |
| R17h              | Select Drive Pin and Slew<br>Rate for Drive Line 15 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x0F    |  |
| R18h              | Select Drive Pin and Slew<br>Rate for Drive Line 16 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x10    |  |
| R19h              | Select Drive Pin and Slew<br>Rate for Drive Line 17 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x11    |  |
| R1Ah              | Select Drive Pin and Slew<br>Rate for Drive Line 18 | W     | 1              | [7:5] Slew rate<br>[4:0] Drive pin select                                                       | 0x12    |  |

| R1Bh                      | Select Drive Pin and Slew<br>Rate for Drive Line 19                            | W | 1 | [7:5] Slew rate<br>[4:0] Drive pin select                                                                                                                                                                                                                                                                                                                                                                                   | 0x13 |
|---------------------------|--------------------------------------------------------------------------------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| R1Ch                      | Select Drive Pin and Slew<br>Rate for Drive Line 20                            | W | 1 | [7:5] Slew rate<br>[4:0] Drive pin select                                                                                                                                                                                                                                                                                                                                                                                   | 0x14 |
| R23h                      | System Enable (wake-up)                                                        |   | 1 | Dummy Byte. For example, 0x00 can be sent.                                                                                                                                                                                                                                                                                                                                                                                  | N/A  |
| R24h                      | System Disable (go to sleep)                                                   | С | 1 | Dummy Byte.<br>For example, 0x00 can be sent.                                                                                                                                                                                                                                                                                                                                                                               | N/A  |
| R25h Write Operation Mode |                                                                                | W | 1 | [7:4]: reserved [3:0]: 0000 = Idle mode 0001 = Idle mode 0010 = Fast Scan, 200Hz 0011 = Fast Scan, 166Hz 0100 = Fast Scan, 142Hz 0101 = Fast Scan, 125Hz 0110 = Fast Scan, 100Hz 0111 = Normal Scan, 83.3Hz 1000 = Normal Scan, 71.4Hz 1001 = Normal Scan, 62.5Hz 1010 = Normal Scan, 55.5Hz 1011 = Normal Scan, 50.0Hz 1100 = Slow Scan, 45.5Hz 1101 = Slow Scan, 37.0Hz 1110 = Slow Scan, 30.3Hz 1111 = Slow Scan, 25.0Hz | 0x00 |
| R26h                      | Read Operation Mode                                                            | R | 1 | Ditto                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x00 |
| R27h                      | Set Power Down Time                                                            | W | 1 | [7:3]: reserved<br>[2:0]: 000 = 200ms (5Hz)<br>001 = 140ms (7Hz)<br>010 = 100ms (10Hz)<br>011 = 70ms (14Hz)<br>100 = 50ms (20Hz)<br>101 = 35ms (28Hz)<br>110 = 25ms (40Hz)<br>111 = 17.7ms (56Hz)                                                                                                                                                                                                                           | 0x04 |
| R28h                      | Set No. of Frames escape without finger touch before entering Power Save Mode. | W | 1 | [7:4]: reserved [3:0]: 0000 = 20 frames 0001 = 40 frames 0010 = 60 frames 0011 = 80 frames 0100 = 100 frames 0101 = 120 frames 0110 = 140 frames 0111 = 160 frames 1000 = 180 frames 1011 = 200 frames 1011 = 220 frames 1011 = 240 frames 1111 = 280 frames 1111 = 300 frames 1111 = 320 frames                                                                                                                            | 0x08 |
| R29h                      | Number of idle cycles insert between driving two rows.                         | W | 1 | [7:4]: reserved<br>[2:0] =: No. of idle cycles – 2<br>Range: 2 – 9 cycles                                                                                                                                                                                                                                                                                                                                                   | 0x07 |

| R2Ah | Number of Sub Frames per frame scan.                                                       | W | 1 | [7:2]: reserved<br>[1:0]: No. of sub frames – 1<br>Range: 1 – 4 sub frames                                              | 0x03         |
|------|--------------------------------------------------------------------------------------------|---|---|-------------------------------------------------------------------------------------------------------------------------|--------------|
| R33h | Min Finger Area<br>(in unit of crossover points)                                           | W | 1 | [7:0]: set minimum area for valid finger detection                                                                      | 0x02         |
| R34h | Min Finger Level (in unit of delta difference)                                             | W | 1 | [7:0] set minimum level for valid finger detection                                                                      | 0x05         |
| R35h | Min Finger Weight (in unit of delta difference)                                            | W | 2 | [7:0]: set minimum weight for valid finger detection                                                                    | 0x00<br>0x0A |
| R36h | Max Finger Area (in unit of crossover points)                                              | W | 1 | [7:0]: set maximum area for valid finger detection                                                                      | 0x1E         |
| R37h | Control depth of image segmentation                                                        | W | 1 | [7:2]: reserved<br>[1:0]: 0 = 68% of max value<br>1 = 63% of max value<br>2 = 56% of max value<br>3 = 49% of max value  | 0x00         |
| R38h | Select Delta Data Range                                                                    | W | 1 | [7:2]: reserved<br>[1:0]: 00 = delta_data[7:0]<br>01 = delta_data[8:1]<br>10 = delta_data[9:2]<br>11 = delta_data[10:3] | 0x00         |
| R39h | Select CG calculation method                                                               | W | 1 | [7:1]: reserved [0]: 0 = Weighted Avg. 1 = Curve Fitting                                                                | 0x00         |
| R3Ah | Enable filtering in init calibration sequence                                              | W | 1 | [7:1]: reserved [0]: 0 = disable filter 1 = enable filter                                                               | 0x00         |
| R3Bh | Invert polarity of delta                                                                   | W | 1 | [7:1]: reserved<br>[0]: 0 = invert<br>1 = non-invert                                                                    | 0x00         |
| R51h | Single Click Timing (in 1ms unit)                                                          | W | 2 | [15:11]: Reserved<br>[10:0]: define single click timing                                                                 | 0x00<br>0x00 |
| R52h | Double Click Timing (in 1ms unit)                                                          | W | 2 | [15:11]: Reserved<br>[10:0]: define double click timing                                                                 | 0x00<br>0x00 |
| R53h | CG Tolerance<br>(in 1/32 electrode span)                                                   | W | 1 | [7]: Reserved<br>[6:0]: define CG tolerance                                                                             | 0x00         |
| R54h | X Tracking tolerance<br>(in 1/32 electrode span)                                           | W | 1 | [7:0]: X coordinate tracking tolerance                                                                                  | 0x00         |
| R55h | Y Tracking tolerance<br>(in 1/32 electrode span)                                           | W | 1 | [7:0] Y coordinate tracking tolerance                                                                                   | 0x00         |
| R56h | Enable Adaptive Moving<br>Average filter to smooth<br>fingers' output coordinates.         | W | 1 | [7:1]: reserved [0]: 0 = disable filter 1 = enable filter                                                               | 0x00         |
| R57h | Select the scaling factor for finger speed (in 1/32 electrode span)                        | W | 1 | [7:1]: reserved<br>[0]: 0 = speed / 4<br>1 = speed / 8                                                                  | 0x00         |
| R58h | Select the scaling factor for<br>finger press weight<br>(in unit of a delta<br>difference) | W | 1 | [7:2]: reserved<br>[1:0]: 00 = weight/1<br>01 = weight/2<br>10 = weight/4<br>11 = weight/8                              | 0x00         |

16

| R66h | Scaling factor for X coordinate. Floating point format is ##.#####.        | W | 1 | [7:0]: X scaling factor. 2-bit integer part and 6-bit fractional part.                                                                                                                                             | 0x40                         |
|------|----------------------------------------------------------------------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| R67h | Scaling factor for Y coordinate. Floating point format is ##.#####.        | W | 1 | [7:0]: Y scaling factor. 2-bit integer part and 6-bit fractional part.                                                                                                                                             | 0x40                         |
| R68h | Offset of X coordinate.<br>(in unit of pixel. That is,<br>after X scaling) | W | 1 | [7:6]: reserved<br>[5:0]: X offset                                                                                                                                                                                 | 0x00                         |
| R69h | Offset of Y coordinate.<br>(in unit of pixel. That is,<br>after Y scaling) | W | 1 | [7:6]: reserved<br>[5:0]: Y offset                                                                                                                                                                                 | 0x00                         |
| R79h | Event Status                                                               | R | 1 | [7]: Reserved [6]: Large Object detected [5]: FIFO overflow [4]: FIFO not empty [3]: Finger 3 detected [2]: Finger 2 detected [1]: Finger 1 detected [0]: Finger 0 detected                                        | N/A                          |
| R7Ah | Event Mask                                                                 | W | 2 | [15]: Unknown event mask [14:8]: Reserved [7]: FM Event mask [6]: FL Event mask [5]: FE Event mask [4]: DFDC Event mask [3]: DFSC Event mask [2]: SFDC Event mask [1]: SFSC Event mask [0]: Reserved               | 0x00<br>0x00                 |
| R7Bh | IRQ Mask                                                                   | W | 1 | [7]: Reserved [6]: Large Object status mask [5]: FIFO overflow status mask [4]: FIFO not empty status mask [3]: Finger03 status mask [2]: Finger02 status mask [1]: Finger01 status mask [0]: Finger00 status mask | 0x00                         |
| R7Ch | Finger01 (X,Y) coordinates, speed index and press weight index.            | R | 4 | [31:24]: x-coordinate[7:0]<br>[23:16]: y-coordinate[7:0]<br>[15:12]: x-coordinate [11:8]<br>[11:08]: y-coordinate [11:8]<br>[07:04]: press weight index[3:0]<br>[03:00]: speed index [3:0]                         | 0xFF<br>0xFF<br>0xFF<br>0x00 |
| R7Dh | Finger02 (X,Y) coordinates, speed index and press weight index.            | R | 4 | Ditto                                                                                                                                                                                                              | Ditto                        |
| R7Eh | Finger03 (X,Y) coordinates, speed index and press weight index.            | R | 4 | Ditto                                                                                                                                                                                                              | Ditto                        |
| R7Fh | Finger04 (X,Y) coordinates, speed index and press weight index.            | R | 4 | Ditto                                                                                                                                                                                                              | Ditto                        |

| R80h | Event Stack                                    | R | R 4 [31:28]: Finger flag [3:0]<br>[27:24]: Event number [3:0]<br>[23:16]: x-coordinate[7:0]<br>[15:08]: y-coordinate[7:0]<br>[07:04]: x-coordinate [11:8]<br>[03:00]: y-coordinate [11:8] |                                                                                                                            |      |  |  |
|------|------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|--|--|
| R81h | Event Stack Clear                              | C | 0                                                                                                                                                                                         | Clear the Event Stack when not overflow                                                                                    | N/A  |  |  |
| RA2h | Reset Init Reference<br>Procedure              | W | 1                                                                                                                                                                                         | Dummy Byte                                                                                                                 | N/A  |  |  |
| RC1h | Charge Pump 2 <sup>nd</sup> Booster<br>Control | W | 1                                                                                                                                                                                         | [7:6]: Reserved<br>[5:4]: 2 <sup>nd</sup> Booster Control<br>00: x6<br>01: Reserved<br>10: x5<br>11: x4<br>[3:0]: Reserved | 0x32 |  |  |
| RD5h | Select Driving voltage level                   | W | 1                                                                                                                                                                                         | [7:4]: reserved<br>[3:0]: 0 = 8.0V,                                                                                        | 0x00 |  |  |

<sup>\*</sup>Check the datasheet of SSD2531 for further detail.

#### 10. Touch Panel Initial code

```
void TP_ini(void)
//IO I2C WR(device Addr, Command, parameter);
//IO I2C WR 2Byte(device Addr, Command, parameterH, parameterL);
IO_{I2C_{WR}(0x5C,0x23,0x00)};
Delay(10);
IO_I2C_WR(0x5C,0x2B,0x03);
IO_{I2C_{WR}(0x5C_{V},0xD4_{V},0x00)};
IO_I2C_WR(0x5C,0x06,0x0D);
IO_I2C_WR(0x5C,0x07,0x05);
IO I2C WR(0x5C,0x08,0x00);
IO_I2C_WR(0x5C,0x09,0x01);
IO I2C WR(0x5C,0x0A,0x02);
IO_I2C_WR(0x5C,0x0B,0x03);
IO I2C WR(0x5C,0x0C,0x04);
IO I2C WR(0x5C,0x0D,0x05);
IO_I2C_WR(0x5C,0x0E,0x06);
IO_I2C_WR(0x5C,0x0F,0x07);
IO_I2C_WR(0x5C,0x10,0x08);
IO_{I2C_{WR}(0x5C,0x11,0x09)};
IO I2C WR(0x5C,0x12,0x0A);
IO I2C WR(0x5C,0x13,0x0B);
IO_I2C_WR(0x5C,0x14,0x0C);
IO_{I2C_{WR}(0x5C_{V},0x15_{V},0x0D)};
IO_I2C_WR(0x5C,0x16,0x0E);
IO I2C WR(0x5C,0x17,0x0F);
IO_{I2C_{WR}(0x5C,0x18,0x10)};
IO_I2C_WR(0x5C,0x19,0x11);
IO I2C WR(0x5C,0x1A,0x12);
IO_{I2C_{WR}(0x5C,0x1B,0x13)};
IO I2C WR(0x5C,0x1C,0x14);
IO_I2C_WR(0x5C,0x2A,0x03);
IO_I2C_WR(0x5C,0x8D,0x01);
Delay(100);
IO_{I2C_{WR}(0x5C_{y},0x8D_{y},0x00)};
IO_I2C_WR(0x5C,0x25,0x0C);
Delay(100):
IO_I2C_WR(0x5C,0xC1,0x02);
IO_{I2C}WR(0x5C,0xD5,0x0C);
Delay(300);
IO_I2C_WR(0x5C,0x38,0x00);
IO I2C WR(0x5C,0x33,0x01);
IO_{I2C_{WR}(0x5C_{y},0x34_{y},0x3A_{y})};
IO I2C WR 2Byte(0x5C,0x35,0x00,0x40);
IO_I2C_WR(0x5C,0x36,0x1E);
IO_{I2C_{WR}(0x5C,0x37,0x03)};
```

```
IO_I2C_WR(0x5C,0x39,0x01);
IO_I2C_WR(0x5C,0x56,0x01);
IO_I2C_WR_2Byte(0x5C,0x51,0x00,0xFF);
IO_I2C_WR_2Byte(0x5C,0x52,0x00,0xFF);
IO_I2C_WR(0x5C,0x53,0x20);
IO_I2C_WR(0x5C,0x54,0x40);
IO_I2C_WR(0x5C,0x55,0x40);
IO_I2C_WR(0x5C,0xD9,0x01);
IO_I2C_WR(0x5C,0xD8,0x03);
IO_I2C_WR(0x5C,0xD7,0x04);
IO_I2C_WR(0x5C,0x2C,0x02);
IO_I2C_WR(0x5C,0x3D,0x01);
IO_I2C_WR(0x5C,0xD6,0x01);
IO_I2C_WR(0x5C,0xA2,0x00);
IO_I2C_WR(0x5C,0x2C,0x02);
IO_I2C_WR(0x5C,0x66,0x35);
IO_I2C_WR(0x5C,0x67,0x36);
}
```

11. Color Data Assignment

| COLOR | INPUT      | R DATA |    |    |    |    |    |    |     | G DATA |    |       |          |           |    |    |     | B DATA |    |    |    |    |    |    |     |
|-------|------------|--------|----|----|----|----|----|----|-----|--------|----|-------|----------|-----------|----|----|-----|--------|----|----|----|----|----|----|-----|
|       | DATA       | R7     | R6 | R5 | R4 | R3 | R2 | R1 | R0  | G7     | G6 | $G_5$ | G4       | G3        | G2 | G1 | G0  | В7     | В6 | В5 | В4 | В3 | В2 | В1 | B0  |
|       |            | MSB    |    |    |    |    |    |    | LSB | MSB    |    |       |          |           |    |    | LSB | MSB    |    |    |    |    |    |    | LSB |
|       | BLACK      | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | RED(255)   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| BASIC | GREEN(255) | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1      | 1  | 1     | 1        | 1         | 1  | 1  | 1   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| COLOR | BLUE(255)  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|       | CYAN       | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1      | 1  | 1     | 1        | 1         | 1  | 1  | 1   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|       | MAGENTA    | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|       | YELLOW     | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1      | 1  | 1     | 1        | 1         | 1  | 1  | 1   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | WHITE      | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1      | 1  | 1     | 1        | 1         | 1  | 1  | 1   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|       | RED(0)     | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | RED(1)     | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0      |    | 0     | ******** | ********* |    | 0  |     | 0      | 0  | 0  | 0  | ΰ  | 0  | 0  | 0   |
|       | RED(2)     | 0      | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| RED   |            |        |    |    |    |    |    |    |     |        |    |       |          |           |    |    |     |        |    |    |    |    |    |    |     |
|       |            |        |    |    |    |    |    |    |     |        |    |       |          |           |    |    |     |        |    |    |    |    |    |    |     |
|       | RED(254)   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | ()  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | RED(255)   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | GREEN(0)   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | GREEN(1)   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 1   | - 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | GREEN(2)   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0,    | 0        | 0         | 0  | 1  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| GREEN |            |        |    |    |    |    |    |    |     |        |    |       |          |           |    |    |     |        |    |    |    |    |    |    |     |
|       |            |        |    |    |    |    |    |    |     |        |    |       |          |           |    |    |     |        |    |    |    |    |    |    |     |
|       | GREEN(254) | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1,     | 1  | 1     | 1        | 1         | 1  | 1  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | GREEN(255) | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1      | 1  | 1     | 1        | 1         | 1  | 1  | 1   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | BLUE(0)    | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0.    | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
|       | BLUE(1)    | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 1   |
|       | BLUE(2)    | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 1  | 0   |
| BLUE  |            |        |    |    |    |    |    |    |     |        |    |       |          |           |    |    |     |        |    |    |    |    |    |    |     |
|       |            |        |    |    |    |    |    |    |     |        |    |       |          |           |    |    |     |        |    |    |    |    |    |    |     |
|       | BLUE(254)  | 0      | 0  | 9  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 0   |
|       | BLUE(255)  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0     | 0        | 0         | 0  | 0  | 0   | 1      | 1  | 1  | 1  | 1  | 1  | 1  | 1   |

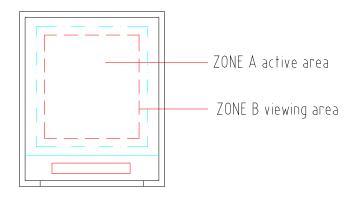
#### 12. QUALITY AND RELIABILITY

#### 12.1Test Conditions

Tests should be conducted under the following conditions:

Ambient temperature :  $25 \pm 5^{\circ}$ C Humidity :  $60 \pm 25\%$  RH.

#### 12.2 Sampling Plan


Sampling method shall be in accordance with MIL-STD-105E, level II, normal single sampling plan.

#### 12.3 Acceptable Quality Level

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

#### 12.4Appearance

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under florescent light. The inspection area of LCD panel shall be within the range of following limits.



#### 13. Incoming Inspection Standard

#### 131-1Scope

Specifications contain

13-1.1 Display Quality Evaluation

13-1.2 Mechanics Specification

#### 13-2. Sampling Plan

Unless there is other agreement, the sampling plan for incoming inspection shall follow MIL-STD-105E LEVEL II.

13-2.1 Lot size: Quantity per shipment as one lot (different model as different lot ).

13-2.2 Sampling type: Normal inspection, single sampling.

13-2.3 Sampling level: Level II.

13-2.4 AQL: Acceptable Quality Level

Major defect: AQL=0.65 Minor defect: AQL=1.0

#### 13-3. Panel Inspection Condition

#### 13-3.1 Environment:

Room Temperature: 25±5°C.

Humidity: 65±5% RH.
Illumination: 300 ~ 700 Lux.
13-3.2 Inspection Distance:

35-40 cm

#### 13-3.3 Inspection Angle:

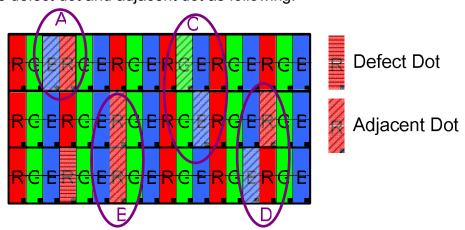
The vision of inspector should be perpendicular to the surface of the Module.

#### 13-3.4 Inspection time:

Perceptibility Test Time: 20 seconds max.

#### 13-4. Display Quality

#### 13-4.1 Function Related:

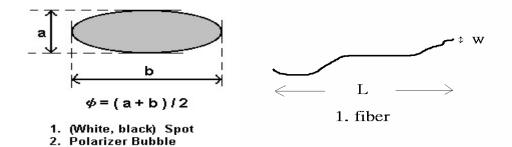

The function defects of line defect, abnormal display, and no display are considered Major defects

#### 13-4.2 Bright/Dark Dots:

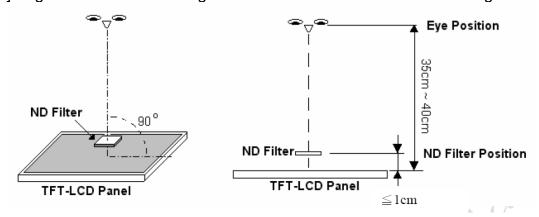
| Defect Type / Specification | G0 Grade | A Grade |
|-----------------------------|----------|---------|
| Bright Dots                 | 0        | N≤ 1    |
| Dark Dots                   | 0        | N≤ 3    |
| Total Bright and Dark Dots  | 0        | N≤ 3    |

23

[Note 1]
Judge defect dot and adjacent dot as following.




- (1) One pixel consists of 3 sub-pixels, including R,G, and B dot.(Sub-pixel = Dot)
- (2) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.
- (3) Allow above (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.
- (4) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.
- (5) There should be no distinct non-uniformity visible through 6% ND Filter within 2 sec inspection times.


### 11-4. Visual Inspection specifications

| Defect Type                                                      | Specification                                 | Count(N) |
|------------------------------------------------------------------|-----------------------------------------------|----------|
| Dot Shape<br>(Particle · Scratch and Bubbles in display area)    | D≤ 0.15mm                                     | Ignored  |
|                                                                  | 0.15mm <d≤ 0.3mm<="" td=""><td>N≤ 3</td></d≤> | N≤ 3     |
|                                                                  | D>0.3mm                                       | N=0      |
| Line Shape<br>(Particles · Scratch · Lint and Bubbles in display | W≤ 0.05mm                                     | Ignored  |
| area)                                                            | 0.05mm <w≤0.1mm<br>L≤3mm</w≤0.1mm<br>         | N≤ 3     |
|                                                                  | W>0.1mm , L>                                  | N=0      |
|                                                                  | 3mm                                           |          |

#### [Note2] W: Width[mm], L: Length[mm], N: Number, φ: Average Diameter



[Note3] Bright dot is defined through 6% transmission ND Filter as following.



Judge defect dot and adjacent dot as following. Allow below (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.

- (1) The defects that are not defined above and considered to be problem shall be reviewed and discussed by both parties.
- (2) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.

## 14. Reliability Test

| Test Item                  | Test Conditions                                                                                                       |     |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| High Temperature Operation | 70±3°C , t=96 hrs                                                                                                     |     |  |  |  |  |  |
| Low Temperature Operation  | -20±3°C , t=96 hrs                                                                                                    |     |  |  |  |  |  |
| High Temperature Storage   | 80±3°C , t=96 hrs                                                                                                     |     |  |  |  |  |  |
| Low Temperature Storage    | -30±3°C , t=96 hrs                                                                                                    | 1,2 |  |  |  |  |  |
| Thermal Shock Test         | -30°C ~ 25°C ~ 80°C<br>30 m in. 5 min. 30 min. (1 cycle)<br>Total 5 cycle                                             | 1,2 |  |  |  |  |  |
| Humidity Test              | 40 °C, Humidity 90%, 96 hrs                                                                                           |     |  |  |  |  |  |
| Vibration Test (Packing)   | Sweep frequency : 10 ~ 55 ~ 10 Hz/1min  Amplitude : 0.75mm  Test direction : X.Y.Z/3 axis  Duration : 30min/each axis |     |  |  |  |  |  |

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

## Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

#### 15. USE PRECAUTIONS

#### 15.1 Handling precautions

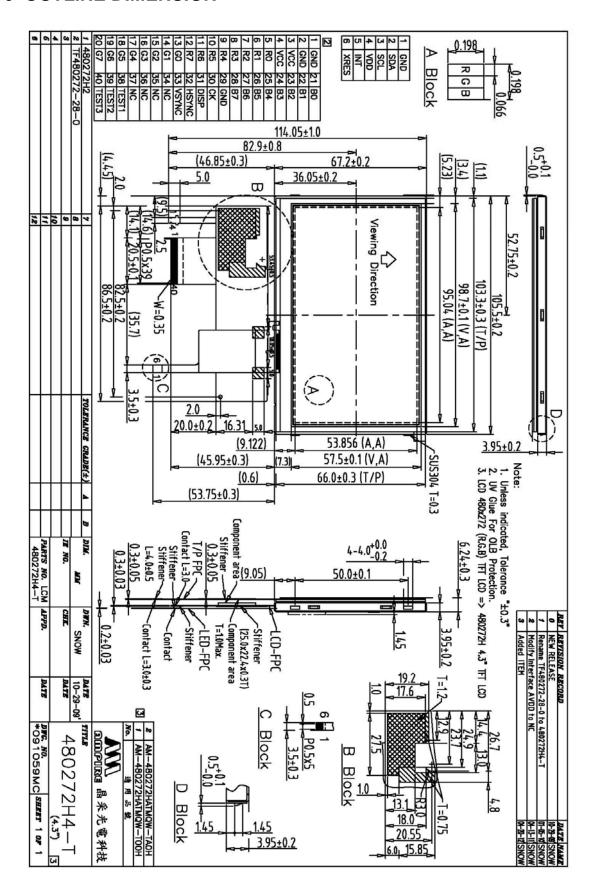
- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzene and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

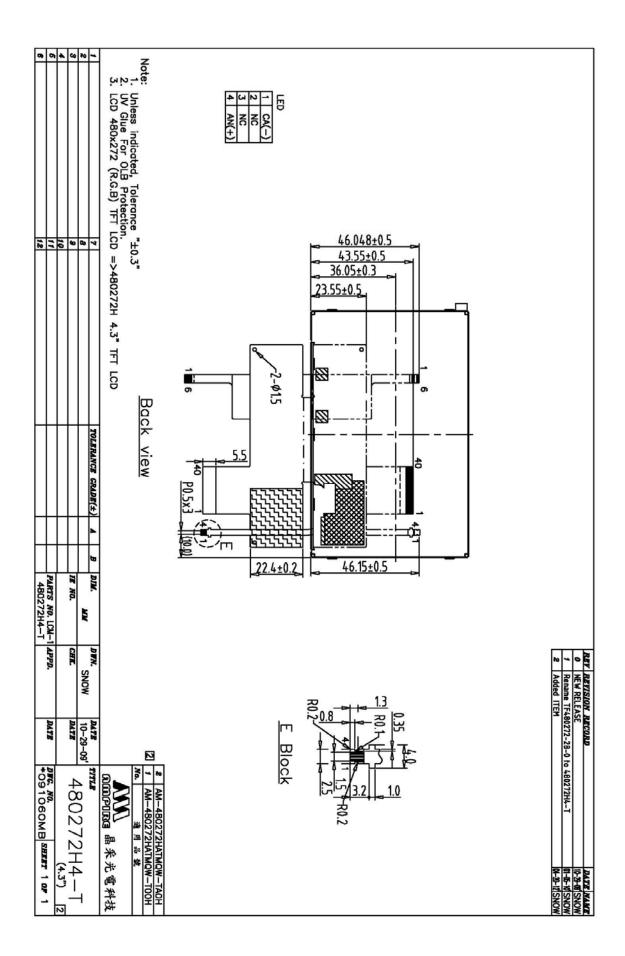
#### 15.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx.  $1M\Omega$  and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

#### 15.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.


#### 15.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

#### 15.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

#### **16 OUTLINE DIMENSION**



