

# **Specification for Approval**

| Customer: |  |
|-----------|--|
|-----------|--|

Model Name:

| Sı           | upplier Approv | Customer approval |  |
|--------------|----------------|-------------------|--|
| R&D Designed | R&D Approved   | QC Approved       |  |
| Peter        | Peng Jun       |                   |  |



## **Revision Record**

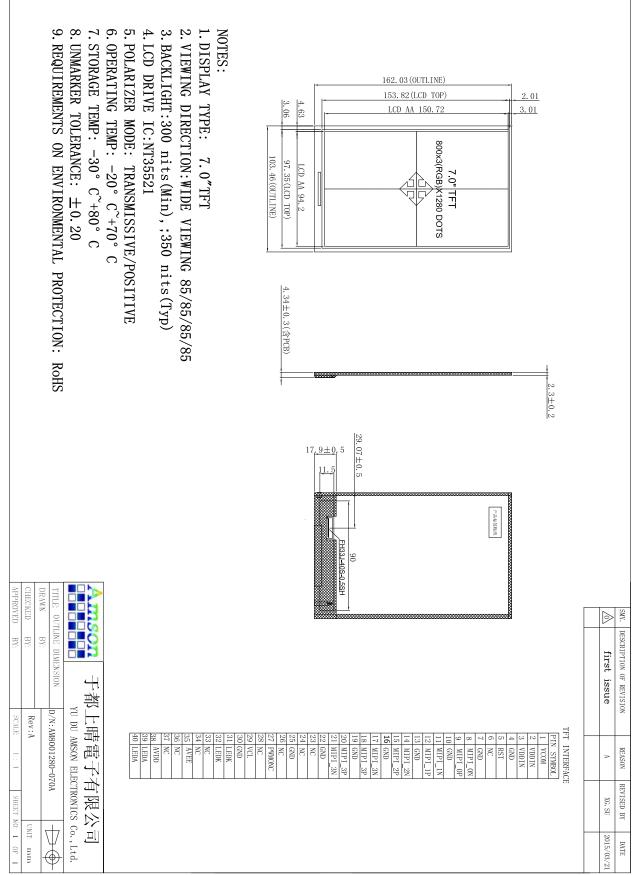
| REV NO. | <b>REV DATE</b> | CONTENTS  | Note |
|---------|-----------------|-----------|------|
| A       | 2015-03-21      | NEW ISSUE |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |
|         |                 |           |      |



## Table of Contents

| List | Description                             | Page No. |
|------|-----------------------------------------|----------|
|      | Cover                                   | 1        |
|      | Revision Record                         | 2        |
|      | Table of Contents                       | 3        |
| 1    | Numbering System                        | 4        |
| 2    | General Information                     | 4        |
| 3    | External Dimensions                     | 5        |
| 4    | Interface Description                   | 6        |
| 5    | Operation Specifications                | 8        |
| 6    | Power Sequence                          | 9        |
| 7    | Timing Characteristics                  | 11       |
| 8    | Backlight Characteristics               | 18       |
| 9    | Optical Characteristics                 | 19       |
| 10   | Reliability Test Conditions and Methods | 21       |
| 11   | Inspection Standard                     | 22       |
| 12   | Handling Precautions                    | 26       |
| 13   | Precaution for Use                      | 27       |
| 14   | Packing Method                          | 27       |




### 1. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.

If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution.

### 2. General Information

| ITEM                  | STANDARD VALUES                                         | UNITS |
|-----------------------|---------------------------------------------------------|-------|
| LCD type              | 7.0"TFT                                                 |       |
| Dot arrangement       | 800×3(RGB)×1280                                         | dots  |
| Color filter array    | RGB vertical stripe                                     |       |
| Display mode          | Normally White(IPS)                                     |       |
| Viewing Direction     | 85/85/85                                                |       |
| Driver IC             | NT35521                                                 |       |
| Module size           | 103.46(W)×162.03(H)×2.30(T)                             | mm    |
| Active area           | 94.20(W)×150.72(H)                                      | mm    |
| Dot pitch             | 0.03925(W)×0.1177(H)                                    | mm    |
| Interface             | MIPI                                                    |       |
| Operating temperature | -20 ~ +70                                               | °C    |
| Storage temperature   | -30 ~ +80                                               | °C    |
| Back Light            | 20White LED                                             |       |
| Brightness            | 300 cd/m <sup>2</sup> (Min);350 cd/m <sup>2</sup> (Typ) |       |
| Module Weight         | TBD                                                     | g     |

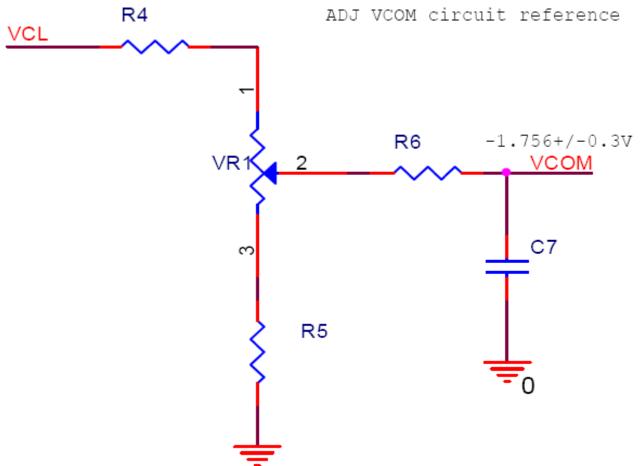


## 3. External Dimensions



**4. Interface Description** A 40pin connector is used for the module electronics interface. In this model used "FH33J-40S-0.5SH(10)" manufactured by Hirose or the same package connector.

| PIN NO. | PIN NAME | DESCRIPTION                                                                              |  |  |  |
|---------|----------|------------------------------------------------------------------------------------------|--|--|--|
| 1       | VCOM     | Common Voltage(-1.756+/-0.3V)                                                            |  |  |  |
| 2       | VDDIN    | Power supply for interface system except MIPI interface                                  |  |  |  |
| 3       | VDDIN    | pin ,VDDIN=3.3V                                                                          |  |  |  |
| 4       | GND      | GROUND                                                                                   |  |  |  |
| 5       | RST      | Device reset signal                                                                      |  |  |  |
| 6       | NC       | No connection                                                                            |  |  |  |
| 7       | GND      | GROUND                                                                                   |  |  |  |
| 8       | MIPI_0N  | MIPI Negative data signal(-)                                                             |  |  |  |
| 9       | MIPI_0P  | MIPI Positive data signal(+)                                                             |  |  |  |
| 10      | GND      | GROUND                                                                                   |  |  |  |
| 11      | MIPI_1N  | MIPI Negative data signal(-)                                                             |  |  |  |
| 12      | MIPI_1P  | MIPI Positive data signal(+)                                                             |  |  |  |
| 13      | GND      | GROUND                                                                                   |  |  |  |
| 14      | MIPI_CKN | MIPI Negative clock signal(-)                                                            |  |  |  |
| 15      | MIPI_CKP | MIPI Positive clock signal(+)                                                            |  |  |  |
| 16      | GND      | GROUND                                                                                   |  |  |  |
| 17      | MIPI_2N  | MIPI Negative data signal(-)                                                             |  |  |  |
| 18      | MIPI_2P  | MIPI Positive data signal(+)                                                             |  |  |  |
| 19      | GND      | GROUND                                                                                   |  |  |  |
| 20      | MIPI_3N  | MIPI Negative data signal(-)                                                             |  |  |  |
| 21      | MIPI_3P  | MIPI Positive data signal(+)                                                             |  |  |  |
| 22      | GND      | GROUND                                                                                   |  |  |  |
| 23      | NC       | No connection                                                                            |  |  |  |
| 24      | NC       | No connection                                                                            |  |  |  |
| 25      | GND      | GROUND                                                                                   |  |  |  |
| 26      | NC       | No connection                                                                            |  |  |  |
| 27      | PWMO     | PWM control signal for LED driver(CABC)                                                  |  |  |  |
| 28      | NC       | No connection                                                                            |  |  |  |
| 29      | VCL      | Output voltage pin ,use it to generate Vcom voltage by a VR circuit(output voltage-2.5v) |  |  |  |
| 30      | GND      | GROUND                                                                                   |  |  |  |
| 31      | LEDK     | The cathode of LED power                                                                 |  |  |  |
| 32      | LEDK     | The cathode of LED power                                                                 |  |  |  |
| 33      | NC       | No connection                                                                            |  |  |  |
| 34      | NC       | No connection                                                                            |  |  |  |
| 35      | AVEE     | Analog supply positive voltage                                                           |  |  |  |
| 36      | NC       | No connection                                                                            |  |  |  |




AM-8001280-070A

| 37 | NC   | No connection                  |
|----|------|--------------------------------|
| 38 | AVDD | Analog supply positive voltage |
| 39 | LEDA | The Anode of LED power         |
| 40 | LEDA | The Anode of LED power         |

Input, O: output, P: Power

Note1: Typical VCOM is only a reference value, it must be optimized according to each LCM, Be sure to use VR



Note2: Global reset pin Active Low to enter Reset State. Normally pull high. Suggest to connecting within RC reset circuit for stability.

### 5. Operation Specifications

### 5.1. Absolute Maximum Ratings

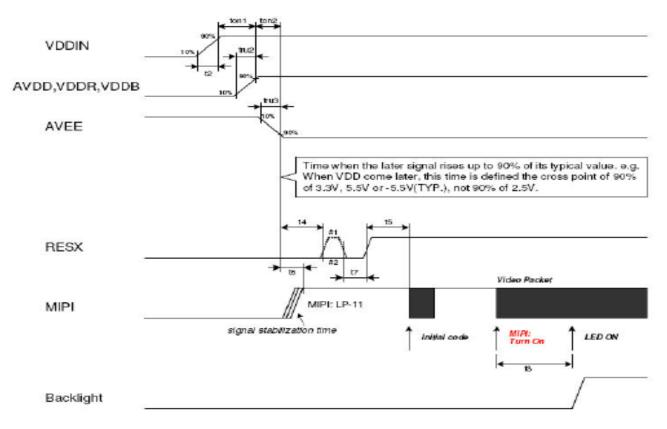
| ltem                  | Symbol | Min. | Max. | Unit |
|-----------------------|--------|------|------|------|
|                       | VDDIN  | -0.3 | 5.5  | V    |
| Power voltage         | AVDD   | -0.3 | 6.6  | V    |
|                       | AVEE   | +0.3 | -6.6 | V    |
| Operating Temperature | Тор    | -20  | 70   | °C   |
| Storage Temperature   | Tst    | -30  | 80   | °C   |
| Storage Humidity      | HD     | 20   | 90   | %RH  |

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

### 5.2. Operation Conditions

| Item                     | Symbol          | Min.     | Тур.   | Max.     | Unit          | Remark |
|--------------------------|-----------------|----------|--------|----------|---------------|--------|
|                          | VDDIN           | 3.0      | 3.3    | 3.6      | Power voltage | VDDIN  |
| Power voltage            | AVDD            | 5.2      | (5.8)  | 6.0      |               | AVDD   |
|                          | AVEE            | -6.0     | (-5.8) | -5.2     |               | AVEE   |
| Input logic High Voltage | V <sub>IH</sub> | 0.7VDDIN | -      | VDDIN    | Input logic   |        |
| Input logic Low Voltage  | V <sub>IL</sub> | 0        | -      | 0.3VDDIN | Input logic   |        |

### **5.3. Current Consumption**

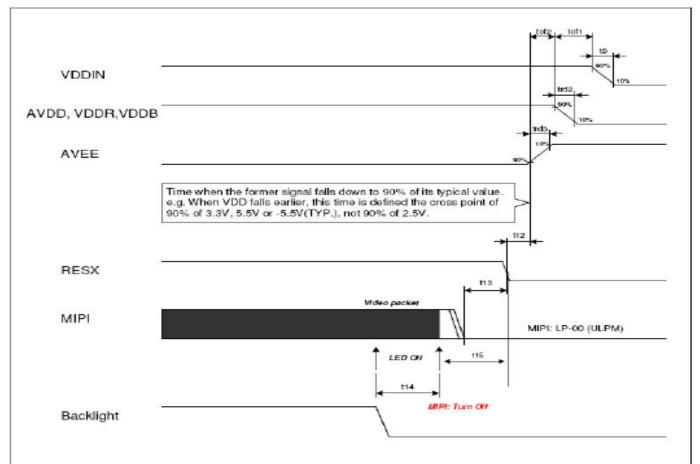

(GND =0V)

|                    |        | Values |      |     | Descrit |        |
|--------------------|--------|--------|------|-----|---------|--------|
| Item               | Symbol | Min    | Тур  | Max | Unit    | Remark |
|                    | IVDDIN | _      | (35) | _   | mA      |        |
| Current for Driver | IAVDD  | -      | (35) | _   | mA      |        |
|                    | IAVEE  | -      | (35) | _   | mA      |        |



### 6. Power Sequence

a. Power on:




Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level. Note 2: This power-on sequence is based on adding schottky diode on VGLX pin to ground. Note 3: Reset signal H to L to H (#1) is better than only L to H (#2).

| Symbol |      | Value    | TTute | Damash |        |
|--------|------|----------|-------|--------|--------|
| Symbol | Min. | Тур.     | Max.  | Unit   | Remark |
| ton1   |      | No limit |       | ms     |        |
| ton2   |      | 0(Note)  |       | ms     |        |
| ton3   |      | No limit | -     | ms     |        |
| ton4   |      | No limit | -     | ms     |        |
| t2     |      |          | 150   | μs     |        |
| tru1   |      |          | 150   | μs     |        |
| tru2   |      |          | 150   | μs     |        |
| tru3   |      |          | 150   | μs     |        |
| tru4   |      |          | 150   | μs     |        |
| t4     | 40   | -        | -     | ms     |        |



### b. Power off:



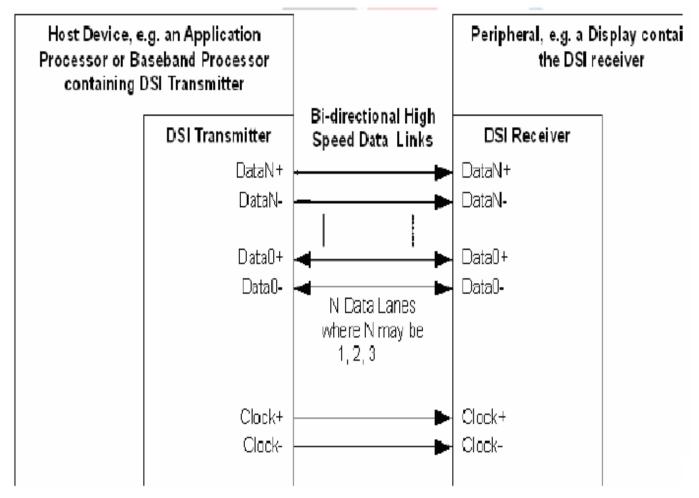
Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

| Symbol |      | Value    |      | TT-14 | Damak  |
|--------|------|----------|------|-------|--------|
| Symbol | Min. | Typ.     | Max. | Unit  | Remark |
| t9     | 150  |          |      | μs    |        |
| tof1   |      | No limit |      | ms    |        |
| tof2   |      | 0(Note)  | -    | ms    |        |
| tof3   |      | No limit | -    | ms    |        |
| tof4   |      | No limit |      | ms    |        |
| trd 1  | 150  |          |      | μs    |        |
| trd2   | 150  |          |      | μs    |        |
| trd3   | 150  |          |      | μs    |        |
| trd4   | 150  |          |      | μs    |        |
| t12    | 0    |          | -    | ms    |        |
| t13    | 0    |          |      | ms    |        |
| T14    | 0    |          |      | ms    |        |
| T15    | 10   |          |      | ms    |        |

YU DU AMSON ELECTRONICS CO., LTD.

Version: A




2015-03-21

### 7. Timing Characteristics

#### 7.1. MIPI interface (Mobile Industry Processing Interface) MIPI Lane Configuration

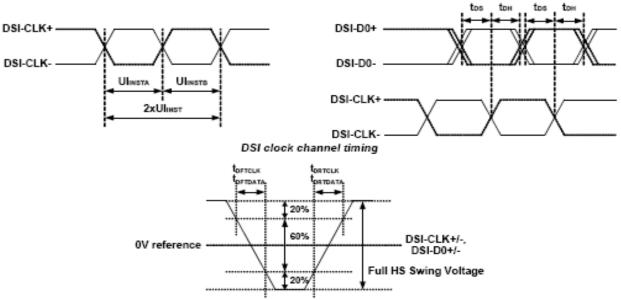
|                | MCU (Master) Display Module (Slave)        |  |  |  |  |  |
|----------------|--------------------------------------------|--|--|--|--|--|
|                | Unidirectional Lane                        |  |  |  |  |  |
| Clock Lane+/-  | <ul> <li>Clock Only</li> </ul>             |  |  |  |  |  |
|                | <ul> <li>Escape Mode(ULPS Only)</li> </ul> |  |  |  |  |  |
|                | Bi-directional Lane                        |  |  |  |  |  |
| Data Lane0+/-  | Forward High-Speed                         |  |  |  |  |  |
| Data Laneo //- | Bi-directional Escape Mode                 |  |  |  |  |  |
|                | Bi-directional LPDT                        |  |  |  |  |  |
| Data Lane1+/-  | Unidirectional                             |  |  |  |  |  |
| Data Lane 1-7- | Forward High speed                         |  |  |  |  |  |
| Data Lane2+/-  | Unidirectional                             |  |  |  |  |  |
| Data Lane2+/-  | Forward High speed                         |  |  |  |  |  |
| Deta Lanc2.    | Unidirectional                             |  |  |  |  |  |
| Data Lane3+/-  | Forward High speed                         |  |  |  |  |  |

The connection between host device and display module is as reference





### 7. MIPI signal Timing Characteristics

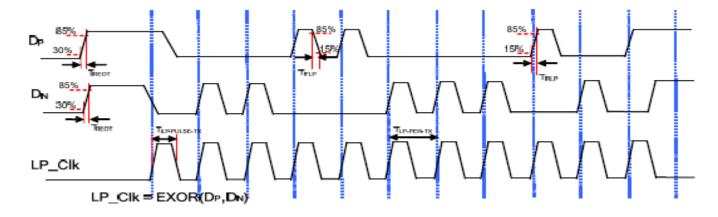

### 7.2.1. AC Electrical Characteristics

### **High Speed Mode**

| Signal     | Symbol              | Parameter                           | MIN             | TYP | MAX    | Unit | Description     |                 |
|------------|---------------------|-------------------------------------|-----------------|-----|--------|------|-----------------|-----------------|
|            |                     |                                     | 4               | -   | 8      | ns   | 4 Lane (Note 2) |                 |
| DSI-CLK+/- | DSI-CLK+/- 2xUIINST | Double UI instantaneous             | 3               | -   | 8      | ns   | 3 Lane (Note 2) |                 |
|            |                     |                                     | 2.352           | -   | 8      | ns   | 2 Lane (Note 3) |                 |
|            | UIINSTA             | UI instantaneous halfs              | 2               | -   | 4      | ns   | 4 Lane (Note 2) |                 |
| DSI-CLK+/- | UIINSTB             | (UI = UIINSTA =                     | (UL = UIINSTA = | 1.5 | -      | 4    | ns              | 3 Lane (Note 2) |
|            | 0.000               | UIINSTB)                            | 1.176           | -   | 4      | ns   | 2 Lane (Note 3) |                 |
| DSI-Dn+/-  | tDS                 | Data to clock setup time            | 0.15x           | -   |        | ps   |                 |                 |
| 001-011-7  | 100                 | Data to clock setup time            | UI              |     |        | P3   |                 |                 |
| DSI-Dn+/-  | tDH                 | Data to clock hold time             | 0.15x           | -   |        | ps   |                 |                 |
|            |                     | UI                                  |                 |     |        |      |                 |                 |
| DSI-CLK+/- | tDRTCLK             | Differential rise time for<br>clock | 150             | -   | 0.3×UI | ps   |                 |                 |
| DSI-Dn+/-  | tDRTDATA            | Differential rise time for<br>data  | 150             | -   | 0.3xUI | ps   |                 |                 |
|            |                     | Differential fall time for          |                 |     |        |      |                 |                 |
| DSI-CLK+/- | tDFTCLK             | clock                               | 150             | -   | 0.3xUI | ps   |                 |                 |
| DSI-Dn+/-  | tDFTDATA            | Differential fall time for<br>data  | 150             | -   | 0.3×UI | ps   |                 |                 |

Note 1) Dn = D0, D1, D2 and D3.

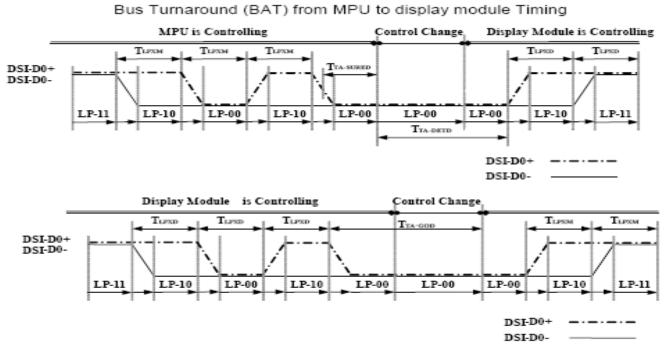
- Note 2) Maximum total bit rate is 2Gbps for 24-bit data format, 1.5Gbps for 18-bit data format and 1.33Gbps for 16-bit data format in 3 lanes or 4 lanes application which support to 800RGBx 1280 resolution.
- Note 3) Maximum total bit rate is 1.7Gbps for 24-bit data format, 1.275Gbps for 18-bit data format and 1.13Gbps for 16-bit data format in 2 lanes application which support to 720RGBx1280 resolution.




Rising and fall time on clock and data channel



| Parameter                                   | Symbol                 |      | Values |      | Unit | Remark |
|---------------------------------------------|------------------------|------|--------|------|------|--------|
| Parameter                                   | Symbol                 | Min. | Тур.   | Max. |      |        |
| DSI CLK frequency(LP)                       | FDSICLK_LP             |      |        | 10   | MHz  |        |
| DSI CLK Cycle Time(LP)                      | t <sub>clkc_lp</sub>   | 100  |        |      | ns   |        |
| DSI Data Transfer Rate(LP)                  | t <sub>dsir_lp</sub>   |      |        | 10   | Mbps |        |
| 15%-85% rise time and fall<br>time          | TRLP / TFLP            | 20   | 2      | 35   | ns   |        |
| 30%-85% rise time(from HS to<br>LP)         | TREOT                  | -    | -      | 35   | ns   |        |
| Pulse width of the LP<br>exclusive-OR clock | tlp-pulse-tx           | 50   | 65     | 2    | ns   |        |
| Period of the LP exclusive-OR<br>clock      | t <sub>LP-PRE-TX</sub> | 100  | 130    | -    | ns   |        |






### Low Power Mode

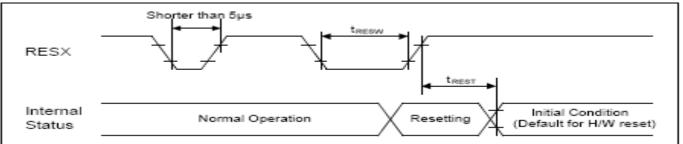
| Signal        | Symbol        | Parameter                                                                    | MIN         | түр | MAX         | Unit  | Description |
|---------------|---------------|------------------------------------------------------------------------------|-------------|-----|-------------|-------|-------------|
| DSI-D0+<br>/- | TLPXM         | Length of LP-00,<br>LP-01, LP-10 or<br>LP-11 periods<br>MPU ( Display Module | 50          | -   | 75          | ns    | Input       |
| DSI-D0+<br>/- | TLPXD         | Length of LP-00,<br>LP-01, LP-10 or<br>LP-11 periods<br>Display Module ( MPU | or 50 - 75  |     | 75          | ns    | Output      |
| DSI-D0+<br>/- | TTA-SU<br>RED | Time-out before the<br>MPU start driving                                     | TLPX<br>D   | -   | 2xTL<br>PXD | ns    | Output      |
| DSI-D0+<br>/- | TTA-GE<br>TD  | Time to drive LP-00<br>by display module                                     | 5xTL ns     |     | ns          | Input |             |
| DSI-D0+<br>/- | TTA-GO<br>D   | Time to drive LP-00<br>after turnaround<br>request - MPU                     | 4xTL<br>PXD | -   | -           | ns    | Output      |





Bus Turnaround (BAT) from display module to MPU Timing

| Signal                                               | Symbol          | Parameter MIN TYP MAX                                                                                    |             |          |         | Unit | Descripti<br>on |  |  |
|------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------|-------------|----------|---------|------|-----------------|--|--|
|                                                      |                 | Low Power Mode to Hig                                                                                    | gh Speed Mo | de Timir | ng      |      |                 |  |  |
| DSI-Dn+/-                                            | TLPX            | Length of any low power<br>state period                                                                  | 50 1        |          |         | ns   | Input           |  |  |
| DSI-Dn+/-                                            | THS-PRE<br>PARE | Time to drive LP-00 to<br>prepare for HS<br>transmission                                                 | 40+4×UI     | -        | 85+6×UI | ns   | Input           |  |  |
| DSI-Dn+/-                                            | THS-TER<br>M-EN | Time to enable data<br>receiver line termination<br>measured from when Dn<br>crosses VILMAX              | -           | -        | 35+4×UI | ns   | Input           |  |  |
|                                                      |                 | High Speed Mode to Lo                                                                                    | w Power Mo  | de Timir | ng      |      |                 |  |  |
| DSI-Dn+/-                                            | THS-SKIP        | Time-out at display module<br>to ignore transition period<br>of EoT                                      | 40          |          | 55+4×UI | ns   | Input           |  |  |
| DSI-Dn+/-                                            | THS-EXIT        | Time to drive LP-11 after<br>HS burst                                                                    | 100         | -        | -       | ns   | Input           |  |  |
| DSI-Dn+/-                                            | THS-TRAI<br>L   | Time to drive flipped<br>differential state after last<br>payload data bit of a HS<br>transmission burst | 60+4×UI     | -        | -       | ns   | Input           |  |  |
|                                                      |                 | High Speed Mode to/from                                                                                  | Low Power   | Mode Tir | ming    |      |                 |  |  |
| DSI-CLK+/-                                           | TCLK-PO         | Time that the MPU shall                                                                                  | 60+52×UI    | -        | -       | ns   | Input           |  |  |
| Vet.Hor page<br>Vet.Hor page<br>DBL_CLK+<br>DBL_CLK+ |                 |                                                                                                          |             |          |         |      |                 |  |  |


#### **DSI Bursts**

Clock lanes- High Speed Mode to/from Low Power Mode Timing

V LLPRAN DSI-D0+ DSH00-



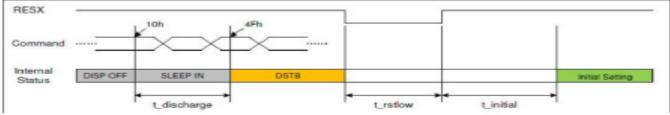
### 7.3. Reset Input Timing



| Signal | Symbol | Parameter                         | MIN | түр | мах | Unit | Description                                                     |
|--------|--------|-----------------------------------|-----|-----|-----|------|-----------------------------------------------------------------|
|        | tresw  | Reset "L" pulse width (Note<br>1) | 10  | -   | -   | μs   |                                                                 |
| RESX   |        |                                   | -   | -   | 5   | ms   | When reset<br>applied during<br>Sleep In Mode                   |
| RESK   | tres⊤  | Reset complete time (Note 2)      | -   | -   | 120 | ms   | When reset<br>applied during<br>Sleep Out<br>Mode<br>and Note 5 |

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

| RESX Pulse              | Action         |  |  |  |  |
|-------------------------|----------------|--|--|--|--|
| Shorter than 5µs        | Reset Rejected |  |  |  |  |
| Longer than 10µs        | Reset          |  |  |  |  |
| Between 5µs and<br>10µs | Reset Start    |  |  |  |  |


- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out -mode. The display remains the blank state in Sleep In-mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset
- complete time (t<sub>REST</sub>) within 5ms after a rising edge of RESX. Note 4) Spike Rejection also applies during a valid reset pulse as shown below:



Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec



### 7.4. Deep Standby Mode Timing

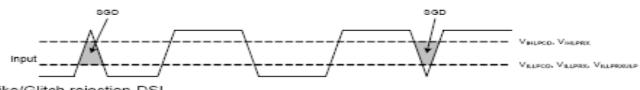


#### (VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70°C)

| Signal | Symbol     | Parameter                                   | MIN | ТҮР | MAX | Unit | Description |
|--------|------------|---------------------------------------------|-----|-----|-----|------|-------------|
|        | tdischarge | Sleep in into DSTB<br>delay time            | -   | -   | 100 | ms   |             |
| RESX   | trstlow    | Reset low pulse                             | 3   | -   | -   | ms   |             |
|        | tinitial   | Reset high to initial<br>setting delay time | -   | -   | 120 | ms   |             |

Note 1) t\_discharge suggested delay time over 100ms.

Note 2) t\_initial suggested delay time over 120ms..


### 7.5. DC Electrical Characteristics

#### 7.5.1. DC Characteristics for DSI LP Mode

| Parameter                          | Symbol Conditions |                                   | Spe | cificati | on   | UNIT  |
|------------------------------------|-------------------|-----------------------------------|-----|----------|------|-------|
|                                    | Symbol            | conditions                        | MIN | TYP      | XAM  | 01411 |
| Logic high level input<br>voltage  | VIHLPCD           | LP-CD                             | 450 | -        | 1350 | mV    |
| Logic low level input<br>voltage   | VILLPOD           | LP-CD                             | 0   | -        | 200  | mV    |
| Logic high level input<br>voltage  | VINLPRX           | LP-RX (CLK, D0, D1)               | 880 | -        | 1350 | mV    |
| Logic low level input<br>voltage   | VILLPRX           | LP-RX (CLK, D0, D1)               | D   | -        | 550  | mV    |
| Logic low level input<br>voltage   | VILLPROULP        | LP-RX (CLK ULP mode)              | 0   | -        | 300  | mV    |
| Logic high level<br>output voltage | VOHLPTX           | LP-TX (D0)                        | 1.1 | -        | 1.3  | v     |
| Logic low level output<br>voltage  | VOLLPTX           | LP-TX (D0)                        | -50 | -        | 50   | mV    |
| Logic high level input<br>current  | Ін                | LP-CD, LP-RX                      | -   | -        | 10   | μA    |
| Logic low level input<br>current   | hı.               | LP-CD, LP-RX                      | -10 | -        | -    | μA    |
| Input pulse rejection              | SGD               | DSI-CLK+/-, DSI-Dn+/- (Note<br>3) | -   | -        | 300  | Vps   |

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage) Note 2) DSI high speed is off.

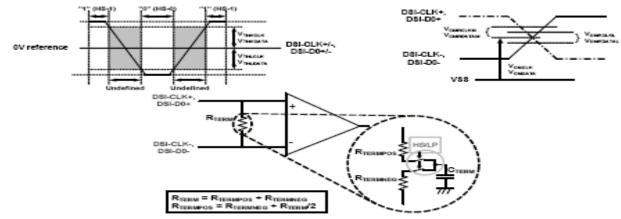
Note 3) Peak interference amplitude max. 200mV and interference frequency min. 450MHz.



Spike/Glitch rejection-DSI

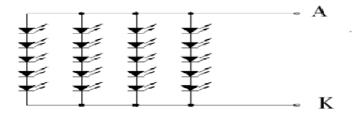


### 7.5.2. DC Characteristics for DSI HS Mode


| Parameter                                                   | Symbol                    | Conditions                          | Sp  | ecificati | on  | UNI |
|-------------------------------------------------------------|---------------------------|-------------------------------------|-----|-----------|-----|-----|
| Parameter                                                   | Symbol                    | Conditions                          | MIN | TYP       | MAX | Т   |
| Input voltage common<br>mode range                          | VCMCLK<br>VCMDATA         | DSI-CLK+/-, DSI-Dn+/-<br>(Note2, 3) | 70  | -         | 330 | m∨  |
| Input voltage common<br>mode variation (≤<br>450MHz)        | VCMRCLKL<br>VCMRDATA<br>L | DSI-CLK+/-, DSI-Dn+/- (Note<br>4)   | -50 | -         | 50  | m∨  |
| Input voltage common<br>mode variation (≥<br>450MHz)        | VCMRCLKM<br>VCMRDATA<br>M | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 100 | mV  |
| Low-level differential<br>input voltage threshold           | VTHLCLK<br>VTHLDATA       | DSI-CLK+/-, DSI-Dn+/-               | -70 | -         | -   | m∨  |
| High-level differential<br>input voltage threshold          | VTHHCLK<br>VTHHDATA       | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 70  | m∨  |
| Single-ended input low<br>voltage                           | VILHS                     | DSI-CLK+/-, DSI-Dn+/- (Note<br>3)   | -40 | -         | -   | m∨  |
| Single-ended input high<br>voltage                          | VIHHS                     | DSI-CLK+/-, DSI-Dn+/- (Note<br>3)   | -   | -         | 460 | m∨  |
| Differential input<br>termination resistor                  | RTERM                     | DSI-CLK+/-, DSI-Dn+/-               | 80  | 100       | 125 | Ω   |
| Single-ended threshold<br>voltage for termination<br>enable | VTERM-EN                  | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 450 | m∨  |
| Termination capacitor                                       | CTERM                     | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 14  | pF  |

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage). Note 2) Includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without VCMRCLKM / VCMRDATAM.


Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.

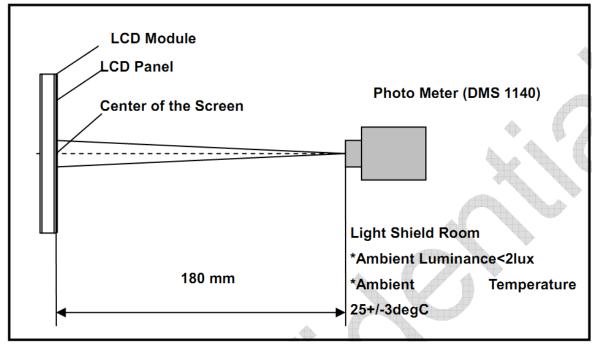


Differential voltage range, termination resistor and Common mode voltage

### 8. Backlight Characteristic

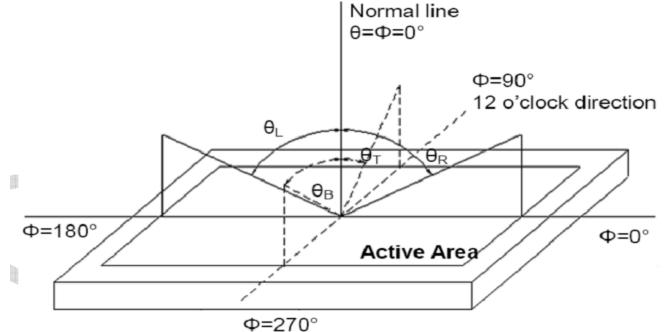


### LED Circuit diagram (5 channeling x4 Tied for)


| Item                          | Symbol | MIN | TYP  | MAX  | UNIT              | <b>Test Condition</b> |
|-------------------------------|--------|-----|------|------|-------------------|-----------------------|
| Supply Voltage                | VF     | 14  | 15.5 | 17.5 | V                 | lf=80mA               |
| Supply Current                | lf     |     | 80   | 100  | mA                | -                     |
| Luminous Intensity<br>for LCM | -      | 300 | 350  | -    | Cd/m <sup>2</sup> | lf=80mA               |
| Uniformity for LCM            | -      | 75  | 80   | -    | %                 | lf=80mA               |
| Life Time                     | 20000  |     | -    | -    | Hr                | lf=80mA               |
| Backlight Color               | White  |     |      |      |                   |                       |



### 9. Optical Characteristics

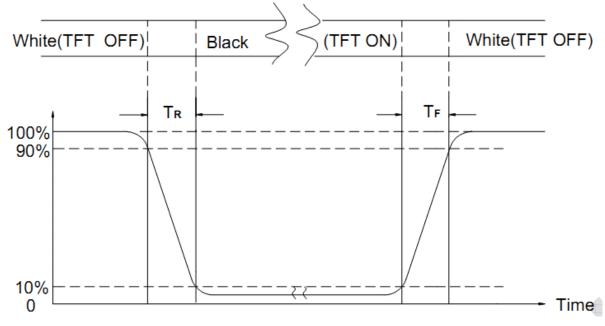

| Item                      | Condition  | s  | Min. | Тур. | Max. | Unit              | Note        |
|---------------------------|------------|----|------|------|------|-------------------|-------------|
|                           | Horizontal | θL | 70   | 85   | -    |                   |             |
| Viewing Angle             | HUHZUHIai  | θR | 70   | 85   | -    | dograa            | (1) (2) (6) |
| (CR>10)                   | Vertical   | θт | 70   | 85   | -    | degree            | (1),(2),(6) |
|                           |            | θв | 70   | 85   | -    |                   |             |
| Contrast Ratio            | Center     |    | 600  | 800  | -    | -                 | (1),(3),(6) |
| LCM Luminance             | Center poi | nt | 300  | 350  | -    | Cd/m <sup>2</sup> |             |
| Dooponoo Timo             | TON        |    | -    | 11   | 14   | msec              | (1) (4) (6) |
| Response Time             | TOFF       |    |      | 9    | 11   | msec              | (1),(4),(6) |
|                           | Red x      |    |      | TBD  |      | -                 |             |
|                           | Red y      |    |      | TBD  |      | -                 |             |
|                           | Green x    |    |      | TBD  |      | -                 |             |
| CF Color                  | Green y    |    |      | TBD  |      | -                 | (1) (6)     |
| Chromaticity<br>(CIE1931) | Blue x     |    |      | TBD  |      | -                 | (1), (6)    |
|                           | Blue y     |    |      | TBD  |      | -                 |             |
|                           | White x    |    |      | TBD  |      | -                 |             |
|                           | White y    |    |      | TBD  |      | -                 |             |
| NTSC                      | CIE1931    |    | 45   | 60   | -    | %                 | (1),(6)     |
| Transmittance             | -          |    | -    | 4.13 | -    | %                 | (1),(5),(6) |

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.





### Note (2) Definition of Viewing Angle




Note (3) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition of response time



Note (5) Definition of Transmittance (Module is without signal input) Transmittance = Center Luminance of LCD / Center Luminance of Back Light x 100%

Note (6) Definition of color chromaticity (CIE1931)

Color coordinates measured at the center point of LCD



### 10. Reliability Test Conditions and Methods

| NO. | TEST ITEMS                       | TEST CONDITION                                                                                        | INSPECTION AFTER<br>TEST                                                                                   |  |
|-----|----------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
|     | High<br>Temperature<br>Storage   | 80°C±2°C×200Hours                                                                                     |                                                                                                            |  |
|     | Low<br>Temperature<br>Storage    | -30°C±2°C×200Hours                                                                                    |                                                                                                            |  |
|     | High<br>Temperature<br>Operating | 70°C±2°C×120Hours                                                                                     | Inspection after<br>2~4hours storage at<br>room temperature,                                               |  |
|     | Low<br>Temperature<br>Operating  | -20°C±2°C×120Hours                                                                                    | the samples should<br>be free from defects:<br>1, Air bubble in the                                        |  |
|     | Temperature<br>Cycle(Storage)    | -20°C $\iff$ 25°C $\iff$ 70°C<br>(30min) (5min) (30min)<br>1cycle<br>Total 10cycle                    | LCD.<br>2, Seal leak.<br>3, Non-display.<br>4, Missing segments.<br>5, Glass crack.                        |  |
|     | Damp Proof<br>Test (Storage)     | 50°C±5°C×90%RH×120Hours                                                                               | 6, Current IDD is<br>twice higher than<br>initial value.                                                   |  |
|     | Vibration Test                   | Frequency:10Hz~55Hz~10Hz<br>Amplitude:1.5M<br>X,Y,Z direction for total 3hours<br>(Packing Condition) | 7, The surface shall<br>be free from damage.<br>8, The electric<br>characteristic<br>requirements shall be |  |
|     | Drooping Test                    | Drop to the ground from 1M height<br>one time<br>every side of carton.<br>(Packing Condition)         | satisfied.                                                                                                 |  |
|     | ESD Test                         | Voltage:±8KV,R:330Ω,C:150PF,Air<br>Mode,10times                                                       |                                                                                                            |  |

#### REMARK:

1, The Test samples should be applied to only one test item.

2, Sample side for each test item is 5~10pcs.

3,For Damp Proof Test, Pure water(Resistance > 10M $\Omega$ )should be used.

4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5, EL evaluation should be accepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic. AM-8001280-070A

Version: A



2015-03-21

### 11. Inspection Standard

#### 11.1. QUALITY :

THE QUALITY OF GOODS SUPPLIED TO PURCHASER SHALL COME UP TO THE FOLLOWING STANDARD. 11.1.1. THE METHOD OF PRESERVING GOODS

AFTER DELIVERY OF GOODS FROM AMSON TO PURCHASER. PURCHASER SHALL CONTROL THE LCM AT -10 °C TO 40 °C , AND IT MIGHT BE DESIRABLE TO KEEP AT THE NORMAL ROOM TEMPERATURE AND HUMIDITY UNTIL INCOMING INSPECTION OR THROWING INTO PROCESS LINE.

#### 11.1.2. INCOMING INSPECTION

(A) THE METHOD OF INSPECTION

IF PURCHASER MAKE AN INCOMING INSPECTION, A SAMPLING PLAN SHALL BE APPLIED ON THE CONDITION THAT QUALITY OF ONE DELIVERY SHALL BE REGARDED AS ONE LOT.

(B) THE STANDARD OF QUALITY

ISO-2859-1 (SAME AS MIL-STD-105E), LEVEL II SINGLE PLAN.

| CLASS    | AQL(%) |
|----------|--------|
| CRITICAL | 0.4 %  |
| MAJOR    | 0.65 % |
| MINOR    | 1.5 %  |
| TOTAL    | 1.5 %  |

EVERY ITEM SHALL BE INSPECTED ACCORDING TO THE CLASS.

(C) MEASURE

IF AS THE RESULT OF ABOVE RECEIVING INSPECTION, A LOT OUT IS DISCOVERED. PURCHASER SHALL BE INFORM SELLER OF IT WITHIN SEVEN DAYS. BUT FIRST SHIPMENT WITHIN FOURTEEN DAYS.

#### 11.1.3. WARRANTY POLICY

AMSON WILL PROVIDE ONE-YEAR WARRANTY FOR THE PRODUCTS ONLY IF UNDER SPECIFICATION OPERATING CONDITIONS. AMSON WILL REPLACE NEW PRODUCTS FOR THESE DEFECT PRODUCTS WHICH UNDER WARRANTY PERIOD AND BELONG TO THE RESPONSIBILITY OF AMSON.

- 11.2. CHECKING CONDITION
- 11.2.1. CHECKING DIRECTION SHALL BE IN THE 45 DEGREE AREA TO FACE THE SAMPLE.
- 11.2.2. CHECKER SHALL SEE OVER 300±25 mm. WITH BARE EYES FAR FROM SAMPLE AND USING 2 PCS. OF 20W FLUORESCENT LAMP.



### 11.3. INSPECTION PLAN :

| 11.0. III E E | HON I LAN.                                                                               | 1                                                                                                                                    |          |
|---------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|
| CLASS         | ITEM                                                                                     | JUDGEMENT                                                                                                                            | CLASS    |
| PACKING &     | 1. OUTSIDE AND INSIDE PACKAGE                                                            | "MODEL NO." , "LOT NO." AND "QUANTITY"<br>SHOULD INDICATE ON THE PACKAGE.                                                            | Minor    |
| INDICATE      | 2. MODEL MIXED AND QUANTITY                                                              | OTHER MODEL MIXEDREJECTED                                                                                                            | Critical |
|               | 3. PRODUCT INDICATION                                                                    | "MODEL NO." SHOULD INDICATE ON<br>THE PRODUCT                                                                                        | Major    |
| ASSEMBLY      | 4. DIMENSION,<br>LCD GLASS SCRATCH<br>AND SCRIBE DEFECT.                                 | ACCORDING TO SPECIFICATION OR<br>DRAWING.                                                                                            | Major    |
|               | 5. VIEWING AREA                                                                          | POLARIZER EDGE OR LCD'S SEALING LINE<br>IS VISABLE IN THE VIEWING AREA<br>                                                           |          |
|               | 6. BLEMISH V BLACK SPOT V<br>WHITE SPOT IN THE LCD<br>AND LCD GLASS CRACKS               | ACCORDING TO STANDARD OF VISUAL<br>INSPECTION(INSIDE VIEWING AREA)                                                                   | Minor    |
| APPEARANCE    | 7. BLEMISH • BLACK SPOT<br>WHITE SPOT AND SCRATCH<br>ON THE POLARIZER                    | ACCORDING TO STANDARD OF VISUAL<br>INSPECTION(INSIDE VIEWING AREA)                                                                   | Minor    |
|               | 8. BUBBLE IN POLARIZER                                                                   | ACCORDING TO STANDARD OF VISUAL<br>INSPECTION(INSIDE VIEWING AREA)                                                                   | Minor    |
|               | 9. LCD'S RAINBOW COLOR                                                                   | STRONG DEVIATION COLOR (OR NEWTON<br>RING) OF LCDREJECTED.<br>OR ACCORDING TO LIMITED SAMPLE<br>(IF NEEDED, AND INSIDE VIEWING AREA) | Minor    |
|               | 10. ELECTRICAL AND OPTICAL<br>CHARACTERISTICS<br>( CONTRAST: VOP :<br>CHROMATICITY ETC ) | ACCORDING TO SPECIFICATION OR<br>DRAWING . (INSIDE VIEWING AREA )                                                                    | Critical |
| ELECTRICAL    | 11.MISSING LINE                                                                          | MISSING DOT LINE CHARACTER                                                                                                           | Critical |
|               | 12.SHORT CIRCUIT-<br>WRONG PATTERN DISPLAY                                               | NO DISPLAY VRONG PATTERN<br>DISPLAY CURRENT CONSUMPTION<br>OUT OF SPECIFICATION REJECTED                                             | Critical |
|               | 13. DOT DEFECT (FOR COLOR AND TFT)                                                       | ACCORDING TO STANDARD OF VISUAL                                                                                                      | Minor    |



### 11.4. STANDARD OF VISUAL INSPECTION

| NO.    | CLASS | ITEM                                                                               | JUDGEMENT                                                             |        |  |
|--------|-------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|--|
|        |       |                                                                                    | (A) ROUND TYPE: unit : mm.                                            | $\neg$ |  |
|        |       | BLACK AND WHITE SPOT<br>FOREIGN MATERIEL<br>DUST IN THE CELL<br>BLEMISH<br>SCRATCH | DIAMETER (mm.) ACCEPTABLE Q'TY                                        |        |  |
|        | MINOR |                                                                                    | $\Phi \leq 0.1$ DISREGARD                                             |        |  |
|        |       |                                                                                    | $0.1 < \Phi \leq 0.25$ 3 (Distance>5mm)                               |        |  |
|        |       |                                                                                    | 0.25 < Φ 0                                                            |        |  |
| 11 4 1 |       |                                                                                    | NOTE: $\Phi = (\text{LENGTH} + \text{WIDTH})/2$                       |        |  |
| 11.4.1 |       |                                                                                    | (B) LINEAR TYPE: unit : mm.                                           |        |  |
|        |       |                                                                                    | LENGTH WIDTH ACCEPTABLE Q'TY                                          |        |  |
|        |       |                                                                                    | W ≦0.03 DISREGARD                                                     | _      |  |
|        |       |                                                                                    | $L \leq 5.0$ 0.03 < W $\leq 0.07$ 3 (Distance>5mm)                    |        |  |
|        |       |                                                                                    | 0.07 < W FOLLOW ROUND TYP                                             | PE     |  |
|        |       |                                                                                    | unit : mm.                                                            | $\neg$ |  |
|        |       |                                                                                    |                                                                       |        |  |
|        |       | BUBBLE IN POLARIZER                                                                | $\Phi \leq 0.2$ DISREGARD                                             |        |  |
| 11.4.2 | MINOR |                                                                                    | $0.2 < \Phi \leq 0.5$ 2 (Distance>5mm)                                |        |  |
|        |       |                                                                                    | 0.5 < Φ 0                                                             |        |  |
|        |       |                                                                                    |                                                                       |        |  |
|        |       |                                                                                    |                                                                       |        |  |
|        |       | Dot Defect                                                                         |                                                                       |        |  |
|        |       |                                                                                    | Items ACC. Q'TY                                                       |        |  |
|        |       |                                                                                    | Bright dot N≤ 4                                                       |        |  |
|        |       |                                                                                    | Dark dot N≦ 4                                                         |        |  |
|        |       |                                                                                    | Pixel Define : L Divel                                                |        |  |
|        | MINOR |                                                                                    | Pixel Define : Pixel                                                  |        |  |
|        |       |                                                                                    |                                                                       |        |  |
|        |       |                                                                                    |                                                                       |        |  |
| 11.4.3 |       |                                                                                    |                                                                       |        |  |
|        |       |                                                                                    | ← Dot →← Dot →                                                        |        |  |
|        |       |                                                                                    | Note 1: The definition of dot: The size of a defective dot over       |        |  |
|        |       |                                                                                    | 1/2 of whole dot is regarded as one defective dot.                    |        |  |
|        |       |                                                                                    | Note 2: Bright dot: Dots appear bright and unchanged in size          |        |  |
|        |       |                                                                                    | in which LCD panel is displaying under black pattern.                 |        |  |
|        |       |                                                                                    | Note 3: Dark dot: Dots appear dark and unchanged in size in           |        |  |
|        |       |                                                                                    | which LCD panel is displaying under pure red, green<br>,blue pattern. |        |  |
|        |       |                                                                                    | , vide pattern.                                                       |        |  |
|        |       |                                                                                    |                                                                       |        |  |



## AM-8001280-070A

Version: A

2015-03-21

| NO.     | CLASS | ITEM                                                    | JUDGEMEN                                                                                            | T                                                                                            |
|---------|-------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 11.4.4  | MINOR | LCD GLASS<br>CHIPPING                                   | S S                                                                                                 | Y > S<br>Reject                                                                              |
| 11.4.5  | MINOR | LCD GLASS<br>CHIPPING                                   | SX                                                                                                  | X or Y > S<br>Reject                                                                         |
| 11.4.6  | MAJOR | LCD GLASS<br>GLASS CRACK                                | T                                                                                                   | Y > (1/2)⊺<br>Reject                                                                         |
| 11.4.7  | MAJOR | LCD GLASS<br>SCRIBE DEFECT                              | $\Lambda_{\tau}^{\pm} \xrightarrow{\vdash a^{\rightarrow}} \overset{\downarrow}{\longrightarrow} B$ | <ol> <li>a&gt; L/3, A&gt;1.5mm.<br/>Reject</li> <li>B: ACCORDING<br/>TO DIMENSION</li> </ol> |
| 11.4.8  | MINOR | LCD GLASS<br>CHIPPING<br>( ON THE TERMINAL<br>AREA )    | T                                                                                                   | $\Phi = (x+y)/2 > 2.5 \text{ mm}$<br>Reject                                                  |
| 11.4.9  | MINOR | LCD GLASS<br>CHIPPING<br>( ON THE TERMINAL<br>SURFACE ) | TZX                                                                                                 | Y > (1/3) T<br>Reject                                                                        |
| 11.4.10 | MINOR | LCD GLASS<br>CHIPPING                                   | X -> -y<br>Z                                                                                        | Y > T Reject                                                                                 |



### **12. Handling Precautions**

### 12.1. Mounting method

The LCD panel of AMSON TFT module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

### 12.2. Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

[Recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI) , Sulfur (S)

If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

### 12.3. Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to power or ground, do not input any signals before power is turned on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

### 12.4. packing

- Module employs LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

### 12.5. Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- Slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the maximum operating temperature, 50%Rh or less is required.



#### 12.6. storing

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
   [It is recommended to store them as they have been contained in the inner container at the time of delivery from us.

#### 12.7. Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

### **13. Precaution for Use**

### 13.1.

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

### 13.2.

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification.
- When a new problem is arisen this is not specified in this specification.
- When an inspection specifications change or operating condition change in customer is reported to AMSON TFT and some problem is arisen in this specification due to the change.
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

## 14. Packing Method TBD