

AMP DISPLAY INC.

SPECIFICATIONS

CUSTOMER	
CUSTOMER PART NO.	
AMP PART NO.	AM-800480L6TZQW-TN0H
APPROVED BY	
DATE	

Approved For Specifications
Approved For Specifications & Sample

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

APPROVED BY	CHECKED BY	ORGANIZED BY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2015/07/16		New Release	Kokai
			,
		CA	
	6		
	K		

1. FEATURES

- (1) Construction : a-Si TFT-LCD with driving system, White LED Backlight
- (2) LCD type : Transmissive , Normally White
- (3) Number of the Colors : 16.7M colors (R,G,B 8bit digital each)
- (4) RGB Interface 45 pin.
- (5) LCD Power Supply Voltage : 3.3V single power input, built-in power supply circuit.
- (6) Viewing Direction: Wide view angle without Gray-inversion by EVA technology.
- (7) Projected Capacitive Touch Screen. I2C interface (Touch Controller: ST1633i).
- (8) ROHS compliant.

2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
Display size (diagonal)	5.0	inch
Resolution	800 (W) x RGB x 480 (H)	dot
Display area	110.6 (W) x 67.4 (H)	mm
Pixel pitch	0.135 (W) x 0.135 (H)	mm
Overall dimension	118.5(W) x 135.0(H) x 6.238(D)	mm
Color configuration	R.G.B Vertical stripe	

3. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Note	
Power Supply for logic	VCC	-0.5	5.0	V		
Input Signal Voltage	VI	-0.5	VCC + 0.5	V	(1)	
Operating Temperature	Тор	-20	70	°C	(2)	
Storage Temperature	Tstg	-30	80	°C	(2)	

Note 1: Hsync, Vsync, DEN, DCLK, R0~R7, G0~G7, B0~B7

Note 2: Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

4. OPTICAL CHARACTERISTIC	;S
---------------------------	----

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Front	θf		75	85	-		
Item Viewing Angle Contrast ratio Response Time Color chromaticity	Back	θb		75	85	-		(1)(2)(2)
Angle	Left	θΙ	CR≦ 10	75	85	-	aeg.	(1)(2)(3)
	Right	θr		75	85		\mathbf{V}	
Contrast ratio		CR	Θ=Φ=0°	150	250	~		(1)(3)
Response Time		Tr	<u>Θ-</u> Φ-0°		15	30	ms	(1)(4)
		T _f	$\Theta = \Psi = 0$		35	50	ms	(1)(4)
	Red	Rx		0.585	0.615	0.645		(1)
		Ry		0.314	0.344	0.374	- - -	
	0	Gx		0.277	0.307	0.337		
Color	Green	Gy	Q− Φ −0°	0.532	0.562	0.592		
chromaticity	Plue	Bx	Θ-Φ-0	0.103	0.133	0.163		
	Diue	Ву		0.120	0.150	0.180		
	\A/bita	Wx		0.279	0.309	0.339		
	vvnite	Wy		0.320	0.350	0.380		
Luminan (ILED=120	Luminance (ILED=120mA)		Θ=Φ=0°	409	512		cd/m²	(1)(5)
Luminance Un	iformity	ΔL	Θ = Φ=0°	70	-	-	%	(1)(5)(6)

Note 1: Ta=25°C. To be measured on the center area of panel after 10 minutes operation.

Note 2: Definition of Viewing Angle

Note 3: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio(CR)= Photo detector output when LCD is at "White" state Photo detector Output when LCD is at "Black" state

Note 4: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white"(falling time) and from "white" to "black" (rising time) respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 6 : Definition of Luminance Uniformity

 $\Delta L = [L(min.) \text{ of } 9 \text{ points } / L(max.) \text{ of } 9 \text{ points}] X 100\%$

Note 7: Condition: Ta=25°C, continuous lighting, Life time is estimated data.

Definitions of failure:

- 1. LCM brightness becomes half of the minimum value.
- 2. LED doesn't light normally.

5. ELECTRICAL CHARACTERISTICS

5.1 LCD driving

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Power supply voltage		VCC	3.0	3.3	3.6	V	
Input voltage for logic	H Level	VIH	0.7 VCC		VCC	V	(1)
	L Level	VIL	0		0.3 VCC	V	(1)
Power Supply current		IDD		170	220	mA	(2)

Note 1: Hsync, Vsync, DEN, DCLK, R0~R7, G0~G7, B0~B7

Note 2: fV =60Hz , Ta=25°C , Display pattern : All Black

5.2 Electrical characteristic of LED Back-light

Paramenter	Symbol	Min.	Тур.	Max.	Unit	Condiction
	V		9.9	10.8	V	I _{LED}
LED vollage	VAK				V	=120mA,Ta=25°C
LED forward current	I _{LED}		200		mA	Ta=25℃
LED life time			30,000		Hre	Ta=25°C
			30,000		1113	(Note1)

The constant current source is needed for white LED back-light driving.

Note 1: Condition: Ta=25°C, continuous lighting, Life time is estimated data.

Definitions of failure:

- 1. LCM brightness becomes half of the minimum value.
- 2. LED doesn't light normally.

5.3 Touch Panel Specification

5.3.1 Basic Characteristic

ITEM	SPECIFICATION
Туре	Projective Capacitive Touch Panel
Activation	5-fingers or Signal-finger
X/Y Position Reporting	Absolute Position
Touch Force	No contact pressure required
Calibration	No need for calibration
Report Rate	Approx 60 points/sec
Control IC	SITRONIX ST1633i

5.3.2 Capacitive Touch Panel FPC Descriptions

No.	Symbol	I/O	Description	Remark
1	GND	-	Ground.(0V)	
2	SDA	I/O	12C Interface	
3	SCL	I	12C Internace.	
4	VDD	-	Power Supply for TP controller.(3.3V)	Note1
5	INT	0	IRQ Terminal.	
6	XRES	I	Terminal of Reset TP controller.	

Date : 2015/07/16

5.3.3 I2C Slave Interface

5.3.4 Default I2C Address

I2C address is default to **0x55** (7-bits address) for Sitronix Touch IC. If the I2C address is conflict with another I2C device's address on same bus, user can change I2C address by TTK PC Utility.

5.3.5 Register Read

For reading register value from I2C device, host has to tell I2C device the *Start Register Address* before reading corresponding register value.

								100		
I2C Start	I2C Header (W)	Start Reg. Addr. (a)	I2C Stop	I2C Start	I2C Header (R)	Value of Reg(a)	Value of Reg(a+1)	5	Value of Reg(a+n)	I2C Stop

Sitronix Touch IC I2C host interface protocol supports Repeated Register Read. That is, once the Start Register Address has been set by host, consequent I2C Read(R) transactions will directly read register values starting from the Start Register Address without setting address first, as shown in Figure

120	I2C	Value	Value of	Value of	120	120	I2C	Value	Volue of		120
12C	Header	of	Value of	 Value of	12C	12C Start	Header	of	Value of	 Value of	12C
Start	(R)	Reg(a)	Reg(a+1)	Reg(a+n)	Stop	Start	(R)	Reg(a)	Reg(a+1)	Reg(a+II)	Stop

5.3.6 Register Write

For writing register to I2C device, host has to tell I2C device the Start Register Address in each I2C Register Write transaction. Register values to the I2C device will be written to the address starting from the Start Register Address described in Register Write I2C transaction as shown in Figure

	I2C Start	I2C Header (W)	Start Reg. Addr. (a)	Value to Reg(a)	Value to Reg(a+1)		Value to Reg(a+n)	I2C Stop	
5	.3.7 S	AMPLE	CODES						
t	ypedef s	struct {				$ \Leftrightarrow $			
	u8 y	/_h: 3,							
	rese	erved: 1,				S.			
	x_h	: 3,							
	vali	d: 1;			\sim				
	u8 x	c_l ;							
	u8 y	/_l;			\mathbf{S}				
	u8 z	;							
}	xyz_dat	ta_t;		\bigcirc					
typede	ef struct	{							
u	18 finger	s: 4,		5)					
r	eserved	: 4;	17.						
u	ı8 keys;		LAUN						
х	yz_data	_t xyz_dat	a[10];						
} stx_i	report_d	lata_t;	5						
// I2C I	Master s	ends <i>count</i>	bytes data st	ored in <i>buf</i> to	I2C Slave.				
// I2C package: S I2C Addr W Data (buf) P									
extern	int i2c_	master_se	end(const ch	ar *buf, int c	ount);				
		5							

// I2C Master reads count bytes data to buf from I2C Slave. // I2C package: | S | I2C Addr | R | Data (buf) | Nak | P | extern int i2c_master_recv(char *buf, int count);

6. BLOCK DIAGRAM

7. INTERFACE PIN ASSIGNMENT

Pin No	Symbol	Function						
1	GND	Power Ground						
2	GND	Power Ground						
3	VCC	3.3V Power Supply for LCD						
4	VCC	3.3V Power Supply for LCD						
5	R0	Red Data 0 (LSB)						
6	R1	Red Data 1						
7	R2	Red Data 2						
8	R3	Red Data 3						
9	R4	Red Data 4						
10	R5	Red Data 5						
11	R6	Red Data 6						
12	R7	Red Data 7 (MSB)						
13	G0	Green Data 0 (LSB)						
14	G1	Green Data 1						
15	G2	Green Data 2						
16	G3	Green Data 3						
17	G4	Green Data 4						
18	G5	Green Data 5						
19	G6	Green Data 6						
20	G7	reen Data 7 (MSB)						
21	B 0	Slue Data 0 (LSB)						
22	B1	Blue Data 1						
23	B2	Blue Data 2						
24	B 3	Blue Data 3						
25	B4	Blue Data 4						
26	B5	Blue Data 5						
27	B6	Blue Data 6						
28	B7	Blue Data 7(MSB)						
29	GND	Power Ground						
30	DCLK	Clock Signals						
31	DISP	Display on/off (High: on, Low :off)						
32	HSYNC	Horizontal SYNC signal.						
33	VSYNC	Vertical SYNC signal						
34	DENA	Data Enable signal (to settle the viewing area)						
35	NC	No Connect						
36	NC	No Connect						
37	NC	No Connect						
38	NC	No Connect						
39	SC	Scan direction control (Low= Reverse, High= Normal)						
40	GND	Power Ground						
41	GND	Power Ground						

42	LED C1	LED cathode 1
43	LED A1	LED anode 1
44	LED C2	LED cathode 2
45	LED A2	LED anode 2

Remark:

- 1. GND Pin must ground contact, can not be floating.
- 2. SC are controlled function

(L/R)	(U/D)	Function
1	0	Normally display
0	1	Left and Right opposite , Up and Down opposite

8. INTERFACE TIMING

DARAMETER	Symbol		Spec.		Unit
FARAMETER	Symbol	Min.	Тур.	Max.	Onit
HS setup time	T _{hst}	6	-	-	ns
HS hold time	T _{hhd}	6	-	-	ns
VS setup time	T _{vst}	6	-	-	ns
VS hold time	T_{vhd}	6	-	0-1/	ns
Data setup time	T _{dsu}	6	-	\mathcal{M}	ns
Data hold time	T _{dhd}	6	-	とい	ns
DEN setup time	T _{esu}	6	- 10	2	ns
Source output settling time	T _{ST}	-		15	μs
Source output loading R	R _{SL}		2	-	kΩ
Source output loading C	C _{SL}	- >	60	- ()	pF
Repair OP output loading C	C _{RL}		150	2	pF
Repair OP output settling time	T _{RT}	//22	J.	(15)	μs
POL output delay time	T _{DP}	$\langle \gamma \rangle \lambda$	- (40	ns

Sync mode

		6										
Sync mode												
Parameter	Symbol		Spec.		Unit							
i alameter	Symbol	Min.	Тур.	Max.	Onic							
CLK frequency	Есрн	29.93	33.26	36.59	MHz							
CLK period	Тсрн	2	30.06	-	ns							
CLK pulse duty	Тсwн	40	50	60	%							
HS period	TH	930	1056	1057	T _{CPH}							
HS pulse width	TWH		128	-	T _{CPH}							
HS-first horizontal data time	T _{HS}	> 51	FHD[7:0]+8	38	T _{CPH}							
HS Active Time	T _{HA}	-	800	-	T _{CPH}							
VS period	Tv	490	525	526	Τ _Η							
VS pulse width	T _{wv}	1	2	-	Τ _Η							
VS-DE time	T _{VS}	S	TVD[6:0]+	8	T _H							
VS Active Time	T _{VA}	-	480	-	T _H							

Note: (1) T_{HS}+T_{HA}<T_H

DE mode

			()		
Paramotor	Symbol		Spec.		Unit
Falameter	Symbol	Min.	Тур.	Max.	Unit
CLK frequency	F _{CPH}	29.93	33.26	36.59	MHz
CLK period	T _{CPH}	$\langle \rangle$	30.06	リー	ns
CLK pulse duty	Тсин	40	50	60	%
DE period	TDEH+TDEL	1000	1056	1200	T _{CPH}
DE pulse width	Трен	\sim	800	-	T _{CPH}
DE frame blanking	TDEB	10	45	110	T _{DEH} +T _{DEL}
DE frame width	T _{DE}	()	480	-	T _{DEH} +T _{DEL}

Paramotor	Symbol		Spec.		Unit
Falameter	Symbol	Min.	Тур.	Max.	Unit
OEV pulse width	TOEV	-	150	-	T _{CPH}
CKV pulse width	Тски	-	133	-	T _{CPH}
DE(internal)-STV time	T_1	-	4	-	T _{CPH}
DE(internal)-CKV time	T ₂	-	40	-	T _{CPH}
DE(internal)-OEV time	T ₃	-	23	-	T _{CPH}
DE(internal)-POL time	Τ ₄	-	157	-	T _{CPH}
STV pulse width	-	-	1	-	Т _н

9. DISPLAYED COLOR AND INPUT DATA

DATA SIGNAL

		INPUT DATA																							
c	OLOR]	R DA	ATA						(G DA	ATA]	B D	ATA			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B 7	B6	B5	B4	B3	B 2	B1	B0
	-	MSB							LSB	MSB							LSB	MSB							LSB
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
BASIC	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
COLOR	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									
										•															
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
GREEN																									
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
BLUE																									
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

10. Reliability Test

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C, t=240 hrs	
Low Temperature Operation	-20±3°C, t=240 hrs	
High Temperature Storage	80±3°C, t=240 hrs	1,2
Low Temperature Storage	-30±3°C, t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-20°C (30min) ~ 70°C (30min) 100 cycles	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

11. USE PRECAUTIONS

11.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzene and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

11.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. 1MΩ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

11.3 Storage precautions

- Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

11.4 Operating precautions

- Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2VCC or less and H level: 0.8VCC or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

11.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warranty for all products and three months warrantee for all repairing products.

12. OUTLINE DIMENSION

13. PACKING DRAWING

