

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-800600GTMQW-02H
APPROVED BY	
DATE	

☑ Approved For Specifications

 \square Approved For Specifications & Sample

AMPIRE CO., LTD.

2F., No.88, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 221, Taiwan (R.O.C.) 台北縣汐止市新台五路一段 88 號 2 樓(東方科學園區 D 棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

Date: 2008/6/25 AMPIRE CO., LTD.

1

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2008/6/25	-	New Release	EricLin
2008/9/3		Add an INCOMING INSPECTION	Sunglin

1. Features

8 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 8" TFT-LCD panel, LED backlight and T-CON board unit.

(1) Construction: 8" a-Si TFT active matrix, White LED Backlight .

(2) Resolution (pixel): 800(R.G.B) X600

(3) Number of the Colors: 262K colors (R, G, B 6 bit digital each)

(4) LCD type: Transmissive, normally White

(5) Interface: 20 Pin (LVDS interface)

(6) Power Supply Voltage: 3.3V single power input.

(7) Viewing Direction: 6 O'clock (The direction it's hard to be discolored)

2. PHYSICAL SPECIFICATIONS

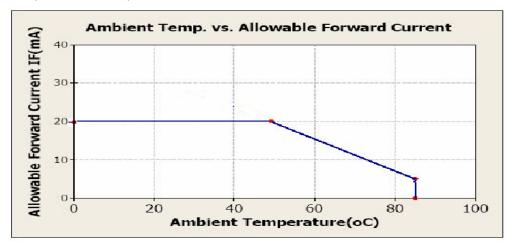
ltem	Specifications	unit
LCD size	8 inch (Diagonal)	
Resolution	800 x 3(RGB) x 600	dot
Dot pitch	0.0675(W) x 0.2025(H)	mm
Active area	162.0(W) x 121.5(H)	mm
Module size	183.0(W) x 141.0(H) x 5.8(D)	mm
Surface treatment	Anti-Glare	
Color arrangement	RGB-stripe	
interface	Digital	

3. ELECTRICAL CHARACTERISTICS

3-1 TFT LCD Module voltage

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Power Supply Voltage	VDD		3.3		V	
Power Supply Current	IDD		150	165	mA	
Power Consumption	PLCD		0.5	0.55	mW	

3-2 Backlight Driving Conditions


Date: 2008/6/25

Itam	Symbol		Values	l loit	Note	
Item	Symbol	Min.	Тур.	Typ. Max.		Note
LED voltage	VL	9.3	9.9	10.5	V	Note 1
LED current	IL		18	20	mA	Note 1
LED life time		20,000			Hr	Note 2

Note 1: The LED driving condition is defined for each LED module. (3 LED Serial)

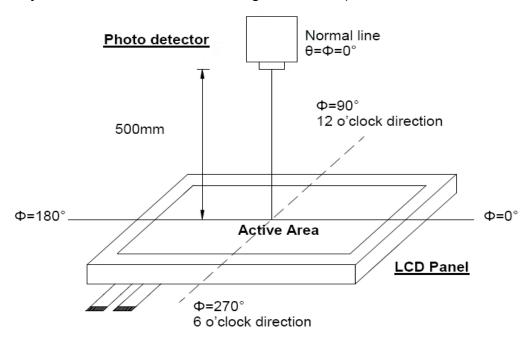
Note 2 : The "LED life time" is defined as the module brightness decrease to 50% original brightness that ambient temperature is 25° C and IL = 20mA.

Note 3 : When LCM is operated over 40° C ambient temperature, the ILED of each LED module (3 LED Serial) should be follow :

4. Optical Specifications

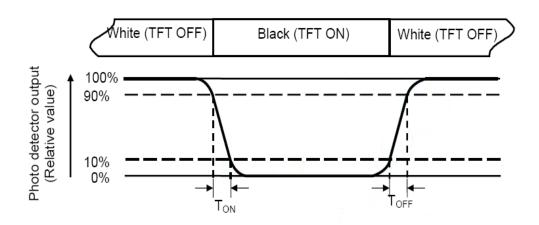
Item		Symbol	Condition		Values		l lnit	Note	
item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
		θ L	Φ = 180° (9 o'clock)		70				
Viewing a	ngle	θ R	$\Phi = 0^{\circ}$ (3 o'clock)		70		doaroo	Note 1	
(CR≧10		θ T	$\Phi = 90^{\circ}$ (12 o'clock)		60		degree	Note1	
		θ B	Φ = 270° (6 o'clock)		70				
Response	time	T _r +T _f			25		msec	Note3	
Contrast r	atio	CR			400			Note4	
	Red	Rx		0.57	0.62	0.67			
		Ry		0.29	0.34	0.39			
	Green -	Gx	Normal	0.29	0.34	0.39			
Color		Gy		0.56	0.61	0.66		Note5	
chromaticity	Divis	Вх	θ =Φ=0°	0.09	0.14	0.19		Note6	
	Blue	Ву		0.05	0.10	0.15			
	\	Wx		0.27	0.32	0.37			
	White	Wy		0.31	0.36	0.41			
Luminan	Luminance			250	300		cd/m²	Note6	
Luminan uniformi		YU		70	75		%	Note7	

Test Conditions:


- 1. VCC = 3.3V, I_L = 20mArms (Backlight current), the ambient temperature is $25^{\circ}C$.
- 2. The test systems refer to Note 2.

Note 1 : Definition of viewing angle range

Note 2: Definition of optical measurement system.


The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° / Height: 500mm.)

Note 3: Definition of Response time

Date: 2008/6/25

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Toff) is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio

Luminance measured when LCD on the "White" state

Contrast ratio (CR) =

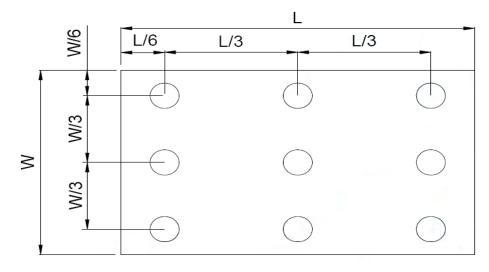
Luminance measured when LCD on the "Black" state

Note 5 : Definition of color chromaticity (CIE1931)

Color coordinated measured at center point of LCD.

Note 6 : All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 7: Definition of Luminance Uniformity

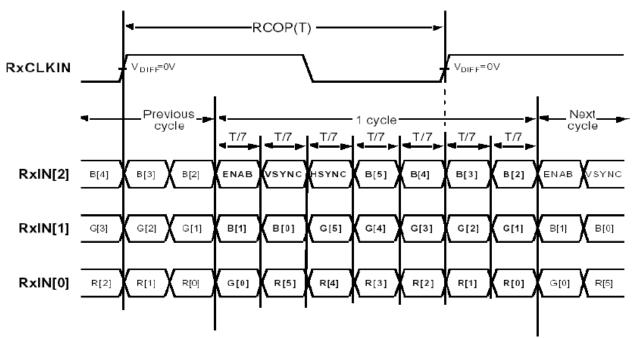

Date: 2008/6/25

Active area is divided into 9 measuring areas (Refer to bellow figure). Every measuring point is placed at the center of each measuring area.

Bmax: The measured maximum luminance of all measurement position.

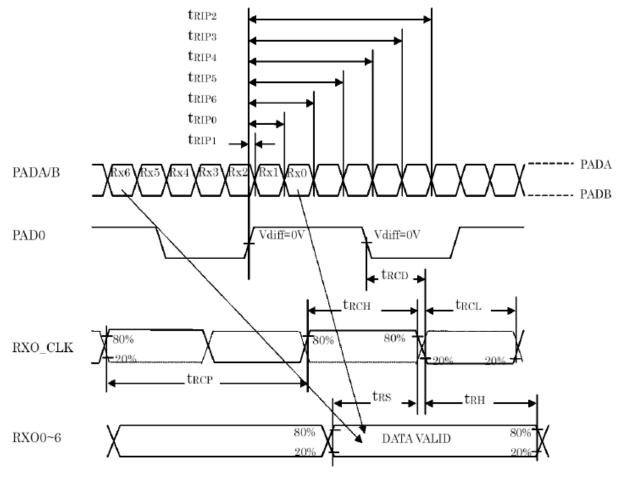
Bmin: The measured minimum luminance of all measurement position.

L ---- Active area length W ---- Active area width

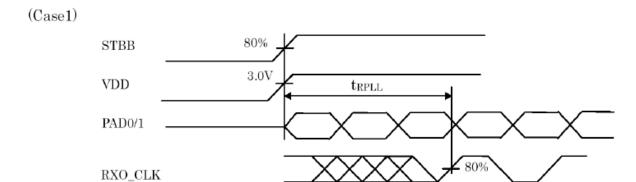


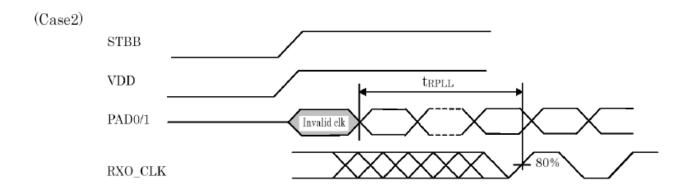
5. Pin Assignment (CN1)

in Acongriment (OIVI)				
Pin no	Symbol	Function		
1	VDD	POWER SUPPLY:3.3V		
2	VDD	POWER SUPPLY:3.3V		
3	Gnd	Power Ground		
4	Gnd	Power Ground		
5	INO-	Transmission Data of Pixels(R data input)		
6	IN0+	Transmission Data of Pixels(R data input)		
7	Gnd	Power Ground		
8	IN1-	Transmission Data of Pixels 1(G data input)		
9	IN1+	Transmission Data of Pixels 1(G data input)		
10	Gnd	Power Ground		
11	IN2-	Transmission Data of Pixels 2(B data input)		
12	IN2+	Transmission Data of Pixels 2(B data input)		
13	Gnd	Power Ground		
14	CLK-	Sampling Clock		
15	CLK+	Sampling Clock		
16	Gnd	Power Ground		
17	NC	No Connect		
18	NC	No Connect		
19	Gnd	Power Ground		
20	Gnd	Power Ground		


6. INPUT SIGNAL: (The information as below is to be defined.)

6-1 LVDS SIGNAL:


Note: R/G/B[5]s are MSBs and R/G/B[0]s are LSBs


6-2 LVDS AC Timing Diagram:

Date: 2008/6/25 AMPIRE CO., LTD.

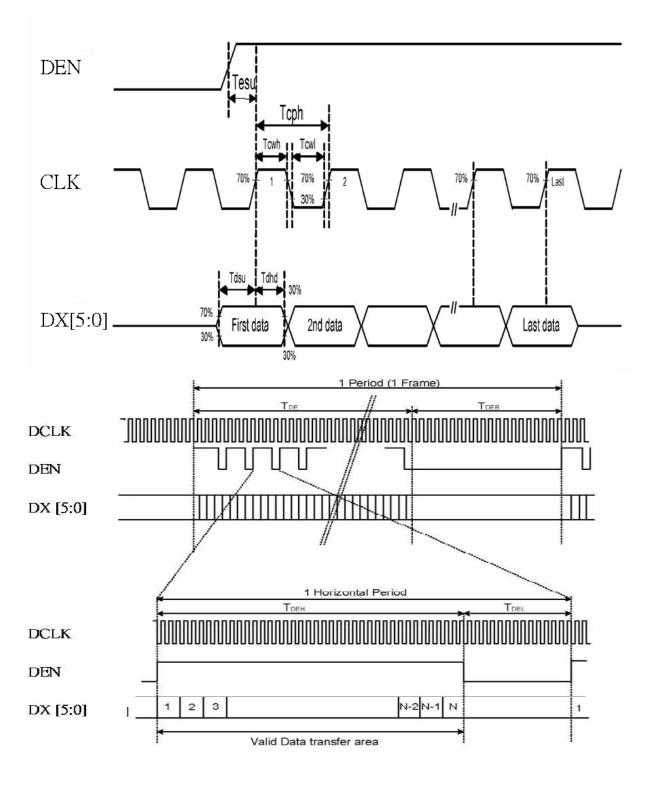
6-3 Phase Lock Loop Set Time

6-4 Switching Characteristics

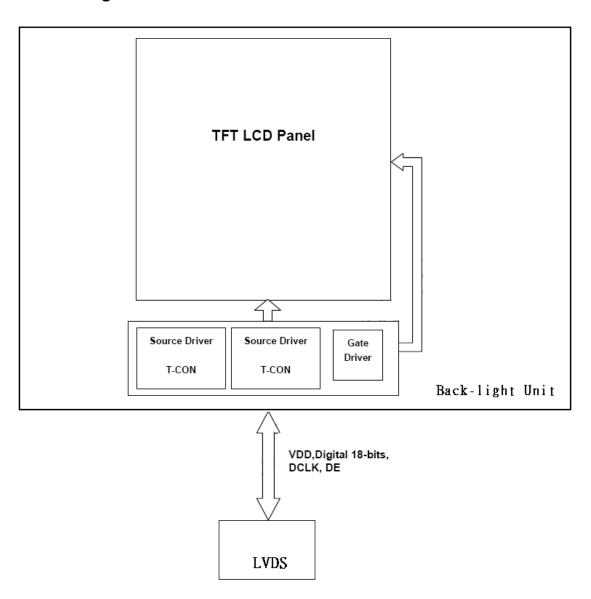
< recommended operating condition (unless otherwise noted) >

· recommended operating condition (diffess otherwise no						
Parameter	Symbol	min	typ	max	Unit	
RXO_CLK Period	$t_{ m RCP}$	11.76	Т	50	ns	
RXO_CLK High Time	$t_{ m RCH}$	-	T/2	-	ns	
RXO_CLK Low Time	$t_{ m RCL}$	-	T/2	-	ns	
PAD0/1 to RXO_CLK Delay	$t_{ m RCD}$	-	3 T /7		ns	
Data Setup to RXO_CLK	$\mathrm{t_{RS}}$	1.9	-	-	ns	
Data Hold from RXO_CLK	${ m t_{RH}}$	3.0		-	ns	
Input Data Position 0 (T=11.76ns) (note1)	$t_{\mathrm{RIP}1}$	-0.4	0	0.4	ns	
Input Data Position 1 (T=11.76ns) (note1)	$t_{ m RIP0}$	T/7-0.4	T/7	T/7+0.4	ns	
Input Data Position 2 (T=11.76ns) (note1)	${ m t_{RIP6}}$	2T/7-0.4	2 T /7	2T/7+0.4	ns	
Input Data Position 3 (T=11.76ns) (note1)	${ m t_{RIP5}}$	3T/7·0.4	3 T /7	3T/7+0.4	ns	
Input Data Position 4 (T=11.76ns) (note1)	t_{RIP4}	4T/7-0.4	4T/7	4T/7+0.4	ns	
Input Data Position 5 (T=11.76ns) (note1)	$t_{ m RIP3}$	5T/7-0.4	5T/7	5T/7+0.4	ns	
Input Data Position 6 (T=11.76ns) (note1)	${ m t_{RIP2}}$	6T/7-0.4	6T/7	6T/7+0.4	ns	
Phase Lock Loop Set	${ m t_{RPLL}}$			10	ms	

note1 : VDD=3.3V, Ta=25°C


6-5 TTL SIGNAL:

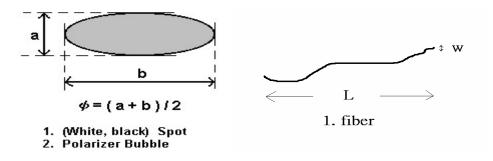
Timing Condition


Parameter	Symbol		Values	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
CLK Frequency	FCPH		39.79		MHZ	
CLK Period	FCPH		25.13		ns	
CLK Pulse Duty	FCWH	40	50	60	%	
DE Period	Fdeh+T DEL	1000	1056		TCPH	
DE Pulse Width	FDH		800		TCPH	
DE Frame Blanking	FHS	10	28	110	FDEH+ TDEL	
DE Frame Width	FEP	-	600		FDEH+ TDEL	
OEV Pulse Width	TOEV		150		TCPH	
OKV Pulse Width	TCKV		133		TCPH	
DE(internal)-STV Time	T1	1	4		TCPH	
DE(internal)-CKV Time	T2		40		TCPH	
DE(internal)-OEV Time	T3		23		TCPH	
DE(internal)-POL Time	T4		157		TCPH	
STV Pulse Width	-		1		TH	

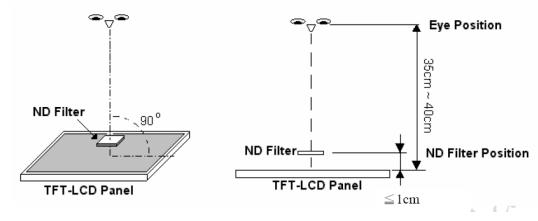
THS+THA<TH

6-6 Timing Characteristic

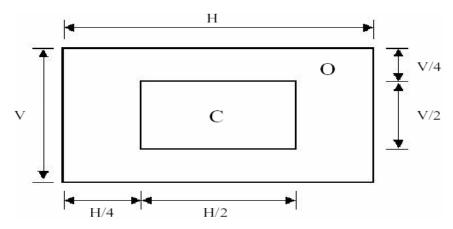
6-7 Block Diagram


7 INCOMING INSPECTION STANDARD FOR TFT-LCD PANEL

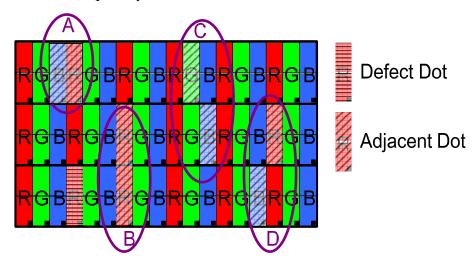
	DEFECT TYPE		LIMIT		Note	
VISUAL	INTERNAL		φ < 0.15mm	Ignore		
DEFECT		SPOT	0.15 mm $\leq \varphi \leq 0.5$ mm	N≤4	Note1	
			$0.5 \mathrm{mm} < \varphi$	N=0		
			0.03 mm $<$ W \leq 0.1 mm, L \leq	N≦3		
		FIBER	5mm	11=3	Note1	
			1.0mm $<$ W, 1.5 mm $<$ L	N=0		
		POLARIZER	$\varphi <$ 0.15mm	Ignore	Note1	
		. 02 (1221)	0.15 mm $\leq \varphi \leq 0.5$ mm	N≦2		


		BUBBLE	0.5mm < <i>φ</i>)	N=0	
	Mura		It' OK if mura is sli 6%NE	e through		
			A Grade	ВG	Grade	
	E	BRIGHT DOT	Total	Т	otal	Note3
_			N≦4	N≦5		Note2
		DARK DOT	N≦5	N	≦8	
ELECTRICAL DEFECT	TOTAL DOT		N≦9	N	≦12	Note2
32, 20,	TWO ADJACENT DOT		N≦4 pair	N≦	5 pair	Note4
	THREE OR MORE		N≤1			
	ΑĽ	DJACENT DOT	N	N ≦ 1		
	L	INE DEFECT	NOT AL	LOWED		

- (1) One pixel consists of 3 sub-pixels, including R,G, and B dot.(Sub-pixel = Dot)
- (2) LITTLE BRIGHT DOT ACCEPTITABLE UNDER 6 % ND-Filter


[Note1] W : Width[mm], L : Length[mm], N : Number, φ : Average Diameter

[Note2] Bright dot is defined through 6% transmission ND Filter as following.


[Note3]

C Area: Center of display area C Area: Outer of display area

[Note4]

Judge defect dot and adjacent dot as following. Allow below (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.

- (1) The defects that are not defined above and considered to be problem shall be reviewed and discussed by both parties.
- (2) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.

8. RELIABILITY TEST CONDITIONS

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C, t=96 hrs	
Low Temperature Operation	-20±3°C , t=96 hrs	
High Temperature Storage	80±3°C , t=96 hrs	1,2

Low Temperature Storage	-30±3°C , t=96 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Humidity Test	40 °C, Humidity 90%, 96 hrs	1,2

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9. USE PRECAUTIONS

9-1 Handling precautions

- (1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- (2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- (3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- (4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

9-2 Installing precautions

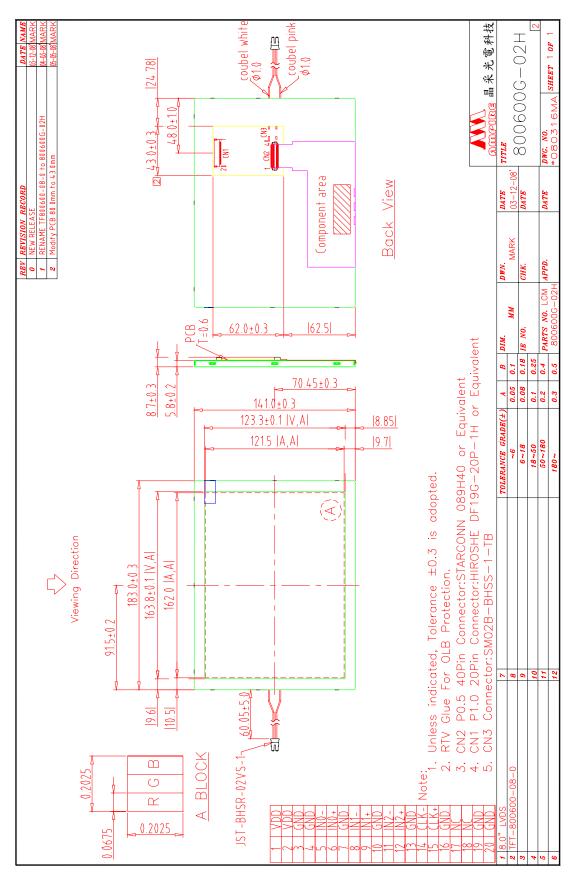
- (1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- (2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- (3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- (4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off

9-3 Storage precautions

Date: 2008/6/25

- (1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- (2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- (3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

17


9-4 Operating precautions

- (1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- (2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- (3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- (4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- (5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- (6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- (7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- (8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

9-5 Other

- (1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- (2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- (3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

10. OUTLINE DIMENSION

