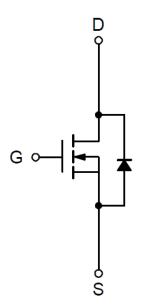
DESCRIPTION

AM1160H is available in a TO-252 package.

ORDERING INFORMATION

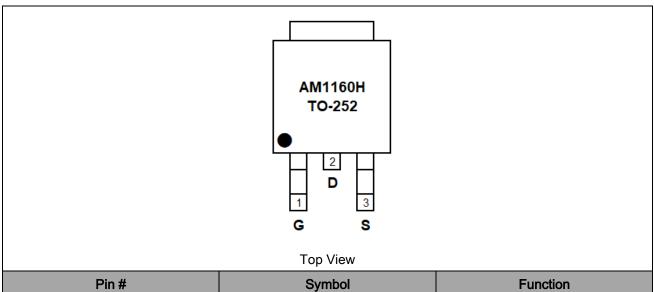
Package Type	Part Number			
TO-252	D	AM1160HDR		
SPQ: 2,500pcs/Reel	U	AM1160HDVR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- 600V/11A,
 R_{DS(ON)}= 0.36Ω(max.) @ V_{GS}= 10V
 V_{DS}@T_J, max=700V (typ.)
- Reliable and Rugged
- Avalanche Rated
- Available in a TO-252 package.

APPLICATION

- AC/DC Power Conversion in Switched Mode Power Supplies (SMPS).
- Uninterruptible Power Supply (UPS),
- Adapter.


PIN DESCRIPTION

N-Channel MOSFET

REV1.0 - SEP 2019 RELEASED - -1

PIN DESCRIPTION

 Pin #
 Symbol
 Function

 1
 G
 Gate

 2
 D
 Drain

 3
 S
 Source

REV1.0 - SEP 2019 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise noted

I _A = 25°C, unless otherwise noted			
V _{DSS} , Drain-Source Voltage		600V	
V _{GSS} , Gate-Source Voltage		±30V	
T _J , Maximum Junction Temperature		150°C	
T _{STG} , Storage Temperature Range		-55°C~+150°C	
Is, Diode Continuous Forward Current		11A ^{NOTE1}	
I _{DP} , Pulse Drain Current Tested	T _C =25°C	44ANOTE2	
	Tc=25°C	11A ^{NOTE1}	
I _D , Continuous Drain Current	T _C =100°C	6.9A ^{NOTE1}	
D. Mariana Barras Disain ation	T _C =25°C	108W	
P _D , Maximum Power Dissipation	T _C =100°C	43W	
Reuc, Thermal Resistance-Junction to Case		1.15°C/W	
R _{θJA} , Thermal Resistance-Junction to Ambient		62.5°C/W	
Drain-Source Avalanche Ratings			
dv/dt ^{NOTE2} , MOSFET dv/dt Ruggedness	50V/ns		
E _{AS} NOTE3, Avalanche Energy, Single Pulsed		140mJ	
I _{AR} NOTE4, Avalanche Current		2A	
E _{AR} NOTE4, Repetitive Avalanche Energy		0.4mJ	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: limited by maximum junction temperature.

NOTE2: V_{DS}=480V, I_D=11A.

NOTE3: I_D =2A, V_{DD} =50V, T_J =25°C.

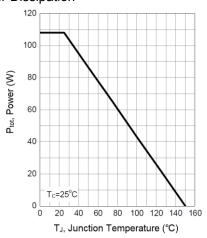
NOTE4: Repetitive Rating: Pulse width limited by maximum junction temperature.

REV1.0 - SEP 2019 RELEASED - - 3 -

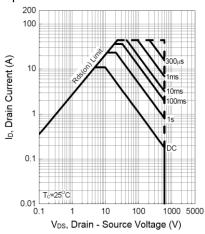
ELECTRICAL CHARACTERISTICS

TA 20 0, unices etherwise noted	T _A = 25°C, unless otherwise noted							
Parameter	Symbol	Conditions	Min	Тур.	Max	Units		
Static Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _{DS} =250μA	600	-	-	V		
		T _J =150	°C -	700	-			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =480V, V _{GS} =0V	-	-	1			
		T _J =150	°C -	-	200	μA		
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_{DS} =250 μ A	2.5	3.5	4.5	V		
Gate Leakage Current	I _{GSS}	V _{GS} =±30V, V _{DS} =0V	-	-	±100	nΑ		
Drain-Source On-state Resistance	R _{DS(ON)}	V _{GS} =10V, I _{DS} =4A	-	0.3	0.36	Ω		
Diode Characteristics			<u> </u>					
Diode Forward Voltage	V _{SD}	I _{SD} =11A, V _{GS} =0V	-	0.9	1.3	>		
Reverse Recovery Time	t _{rr}	1 444 1/ 0001/	-	240	-	ns		
Reverse Recovery Charge	Qrr	I _{SD} =11A, V _R =360V,	-	2.85	-	μC		
Peak Reverse Recovery Current	Irm	dl _{SD} /dt=100A/μs	-	27	-	Α		
Dynamic Characteristics ^{NOTE6}								
Gate Resistance	R _G	V _{GS} =0V, V _{DS} =0V, f=1MHz	-	2	-	Ω		
Input Capacitance	Ciss)/ 0)/)/ 05\/	-	820	1100	pF		
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V,	-	730	-			
Reverse Transfer Capacitance	Crss	Frequency=1.0MHz	-	16	-			
Turn-on Delay Time	t _{d(on)}	\/ -400\/ D -200	-	11	-			
Turn-on Rise Time	tr	V_{DD} =400V, R_L =36 Ω ,	_	12	-	ns		
Turn-off Delay Time	$t_{d(off)}$	I _{DS} =11A, V _{GEN} =10V,	-	26	-			
Turn-off Fall Time	t f	R _G =6Ω	_	8	-			
Gate Charge CharacteristicsNOTE6								
Total Gate Charge	Qg	\/400\/_\/40\	, -	24.5	32	nC		
Gate-Source Charge	Q _{gs}	V_{DS} =480V, V_{GS} =10V	', _	6.1	-			
Gale-Source Charge	.5	I _{DS} =4A						

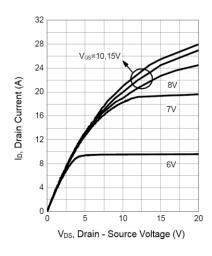
NOTE6: Pulse test; pulse width≤300µs, duty cycle≤2%.

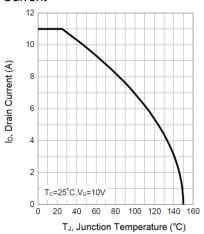

NOTE7: Guaranteed by design, not subject to production testing.

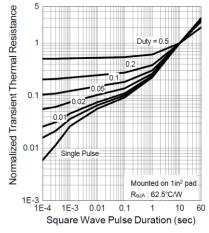
REV1.0 - SEP 2019 RELEASED -

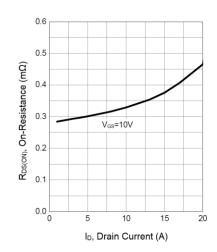


TYPICAL CHARACTERISTICS

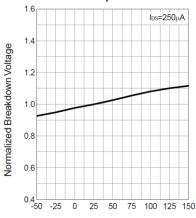

1. Power Dissipation


3. Safe Operation Area

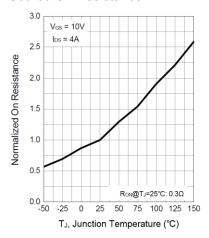

5. Output Characteristics


2. Drain Current

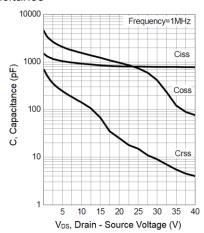
4. Thermal Transient Impedance


6. Drain-Source On Resistance

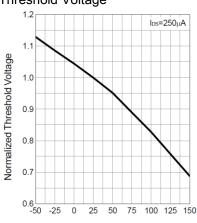
REV1.0 - SEP 2019 RELEASED - - 5 -



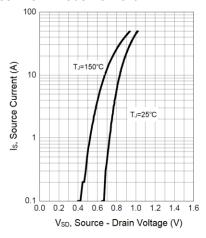
7. BV_{DSS} vs. Junction Temperature



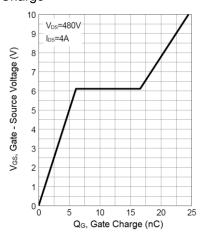
T_J, Junction Temperature (°C)


9. Drain-Source On Resistance

11. Capacitance

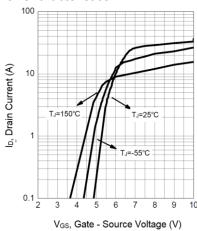


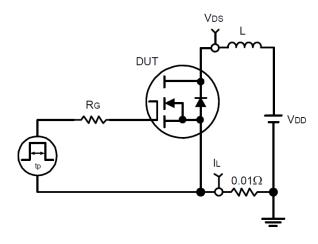
8. Gate Threshold Voltage

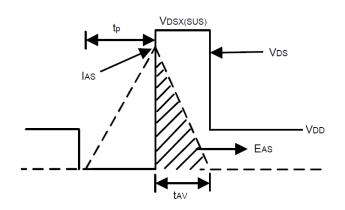


T_J, Junction Temperature (°C)

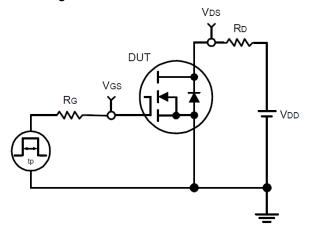
10. Source-Drain Diode Forward

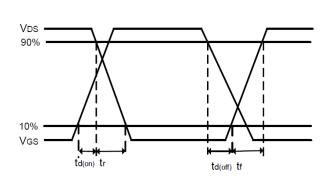

12. Gate Charge


REV1.0 - SEP 2019 RELEASED - - 6 -

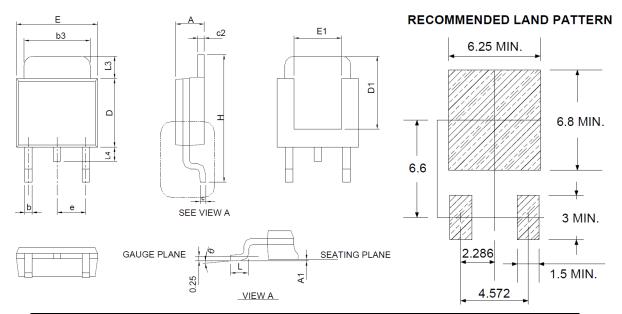


13. Transfer Characteristics




Avalanche Test Circuit and Waveforms

Switching Time Test Circuit and Waveforms



REV1.0 - SEP 2019 RELEASED - - 7 -

PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Symbol	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	2.18	2.39	0.086	0.094	
A1	-	0.13	-	0.005	
b	0.50	0.89	0.020	0.035	
b3	4.95	5.46	0.195	0.215	
С	0.46	0.61	0.018	0.024	
c2	0.46	0.89	0.018	0.035	
D	5.33	6.22	0.210	0.245	
D1	4.57	6.00	0.180	0.236	
Е	6.35	6.73	0.250	0.265	
E1	3.81	6.00	0.150	0.236	
е	2.29	BSC	0.090 BSC		
Н	9.40	10.41	0.370	0.410	
L	0.90	1.78	0.035	0.070	
L3	0.89	2.03	0.035	0.080	
L4	-	1.02	-	0.040	
θ	0°	8°	0°	8°	

REV1.0 - SEP 2019 RELEASED - -8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - SEP 2019 RELEASED - - 9 -