DESCRIPTION

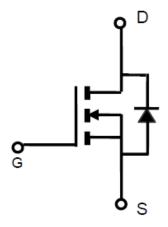
The AM2300 is the N-Channel logic enhancement mode power field effect transistor is produced using high cell density. Advanced trench technology to provide excellent $R_{DS(ON)}$.

This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application, and low in-line power loss are needed in a very small outline surface mount package.

AM2300 is available in SOT-23 packages.

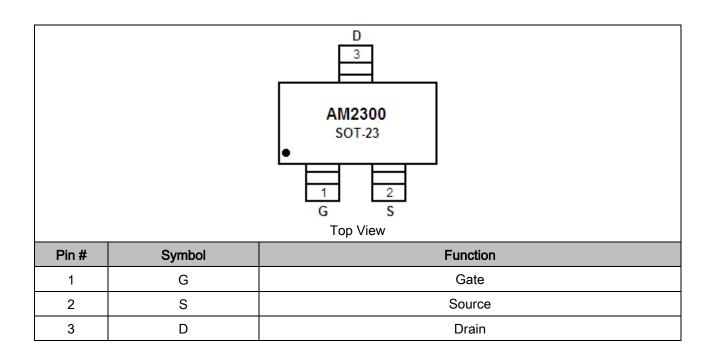
ORDER INFORMATION

Package Type	Part Number			
SOT-23	Гэ	AM2300E3R		
501-23	E3	AM2300E3VR		
Note	V: Green Package			
Note	R : Tape & Reel			
AiT provides all Pb free products				
Suffix " V " means Green Package				


FEATURES

- 20V/4.0A, $R_{DS(ON)} = 26m\Omega(typ.)@V_{GS} = 4.5V$
- 20V/3.0A, $R_{DS(ON)} = 31m\Omega(typ.)@V_{GS} = 2.5V$
- 20V/2.0A, $R_{DS(ON)} = 44m\Omega(typ.)@V_{GS} = 1.8V$
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and Maximum DC current capability
- Available in SOT-23 Package

APPLICATION


- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter

PIN CONFIGURATION

REV1.0 - JUN 2010 RELEASED - - 1

PIN DESCRIPTION

REV1.0 - JUN 2010 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C Unless otherwise specified

20V
20 V
±12V
4A
20A
1A
.25W
W8.C
50°C
50°C

Stresses above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL INFORMATION

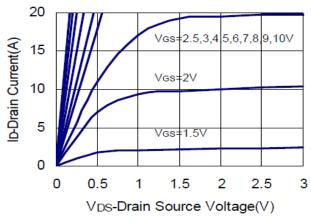
Symbol	Max	Unit
θја	120	°C/W

REV1.0 - JUN 2010 RELEASED - - 3

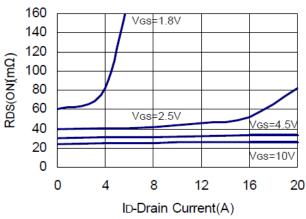
ELECTRICAL CHARACTERISTICS

T_A = 25°C Unless otherwise specified

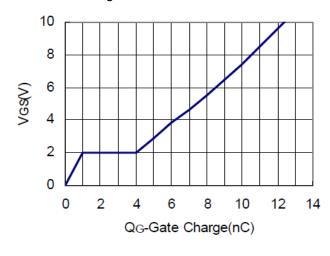
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Static Parameters						
Drain-Source Breakdown	V _{(BR)DSS}	\/ -0\/ L -2F0A	20	-	-	V
Voltage		V _{GS} =0V,I _D =250μA	20			
Gate Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	0.4	-	1.0	V
Gate Leakage Current	I_{GSS}	V _{DS} =0V,V _{GS} =±12V	-	_	±100	nA
		V _{DS} =20V,V _{GS} =0V	-		1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V			40	μΑ
		TJ=55°C	-	-	10	
On-State Drain Current	I _{D(ON)}	V _{DS} ≧5V,V _{GS} =4.5V	5	_	-	Α
Drain-source On-Resistance	Rds(on)	V _{GS} =4.5V,I _D =4.0A	-	26	30	mΩ
		V _{GS} =2.5V,I _D =3.0A	-	31	38	
		V _{GS} =1.8V,I _D =2.0A	-	44	55	
Source-Drain Doide						
Diode Forward Voltage	V_{SD}	I _S =1A,V _{GS} =0V	-	0.7	1.2	V
Dynamic Parameters						
Total Gate Charge	Q_g	V _{DS} =10V	-	6.5	-	
Gate-Source Charge	Q_gs	V _{GS} =4.5V	-	0.7	-	nC
Gate-Drain Charge	Q_{gd}	I _D =5.5A	-	2.8	-	
Input Capacitance	Ciss	V _{DS} =10V	-	440	-	
Output Capacitance	Coss	V _{GS} =0V	-	110	-	pF
Reverse Transfer Capacitance	C_{RSS}	f=1MHz	-	90	-	
Turn-On Time	$t_{\sf d(on)}$	V _{DD} =10V	_	6	10	
	t r	R _L =10Ω	-	15	28	
	$t_{d(off)}$	I _D =1.0A	-	26	48	nS
Turn-Off Time	t _f	V _{GEN} =4.5V		16 28		
		R _G =6Ω	_		28	

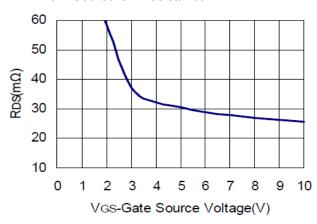

Note: 1. Pulse test: pulse width <= 300us, duty cycle<= 2%

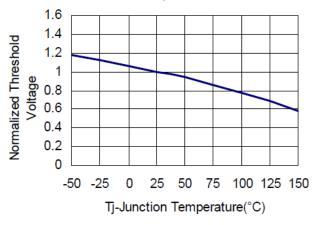
REV1.0 - JUN 2010 RELEASED - - 4 -

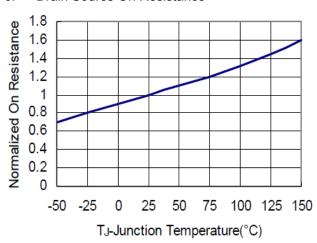

^{2.} Static parameters are based on package level with recommended wire-bonding

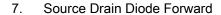
TYPICAL PERFORMANCE CHARACTERISTICS

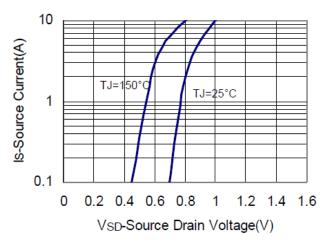

1. Output Characteristics


3. Drain Source On Resistance

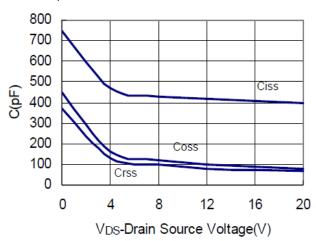

5. Gate Charge


2. Drain-Source On Resistance

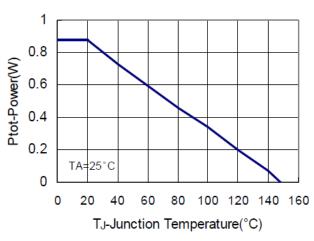

4. Gate Threshold Voltage

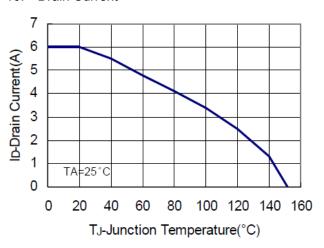


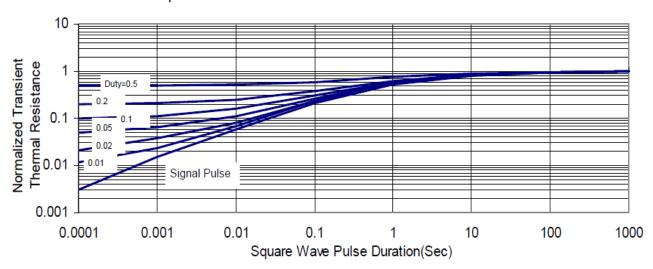
6. Drain Source On Resistance



REV1.0 - JUN 2010 RELEASED - - 5 -

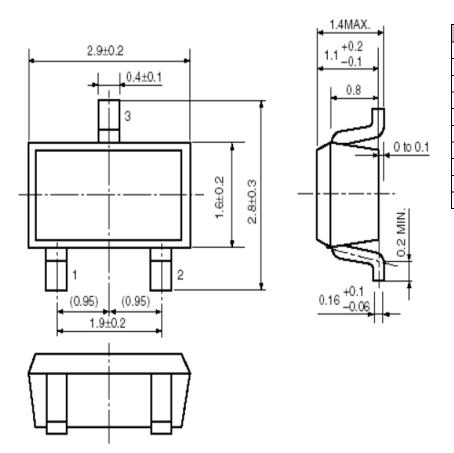



8. Capacitance


9. Power Dissipation

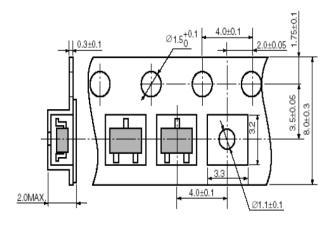
10. Drain Current

11. Thermal Transient Impedance

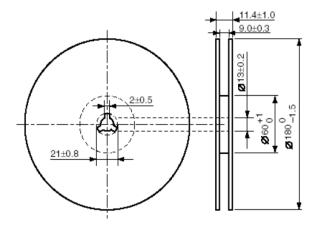


REV1.0 - JUN 2010 RELEASED - - 6 -

MOSFET


PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)



Symbol	Min	Max
Α	2.800	3.040
В	2.100	2.640
С	1.200	1.400
D	0.890	1.030
Е	1.780	2.050
F	0.450	0.600
G	0.013	0.100
Н	0.890	1.120
J	0.085	0.180
K	0.370	0.510

Tape Dimension

Tape & Reel Dimension

REV1.0 - JUN 2010 RELEASED - - 7

20V N-CHANNEL ENHANCEMENT MODE

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUN 2010 RELEASED - - 8 -