Am2910

Microprogram Controller

DISTINCTIVE CHARACTERISTICS

o Twelve Bits Wide
Address up to 4098 words of microcode with ane chip. All
internal elements are a full 12 bits wide,

& Internal Loop Counter
Pre-settable 12-bit down-counter for repeating instructions
and counting loop iterations.

® Four Address Sources
Microprogram Address may be selected from microprogram
counter, branch address bus, 5-level push/pop stack, or in-
ternal holding register.

® Sixteen Powerful Microinstructions
Executes 16 sequence control instructions, most of which
are conditional on external condition input, state of internal
loop counter, or both,

® Qutput Enable Controls for Three Branch Address Sources
Built-in decoder function to enable external devices onto
branch address bus. Eliminates external decoder.

® All Registers Positive Edge-triggered
Simplifies timing problems, Eliminates long set-up times.

¢ Fast Control from Condition Input
Delay from condition code input to address output only
21ns typical.

GENERAL DESCRIPTION

The Am2810 Microprogram controtler is an address sequencer
intended for controliing the sequence of execution of micro-
instructions stored in microprogram memory. Besides the ca-
pability of sequential access, it provides conditional branching
to any microinstruction within its 4096-microword range. A
{ast-in, first-out stack provides microsubroutine return linkage
and looping capability ; there are five levels of nesting of micro-
subroutines. Microinstruction loop count control is provided
with a count capacity of 4096,

During each microinstruction, the Microprogram controller
provides a 12-bit address from one of four sources: 1} the
microprogram address register (4PC), which usually contains
an address one greater than the previous address; 2| an ex-
ternal (direct) input {D}; 3) a register/counter {R} retaining
data |loaded during a previous microinstruction; or 4) a five-
deep last-in, first-out stack (F).

For a detailed discussion of this architectural approach to micro-
program control units, refer to “"The Microprogramming Hand-
book", an AMD applications publication.

Am2910 BLOCK DIAGRAM

o, or
s y
b
o —1 O
W | e |8
YR
oeTECTOR]]
[bz
our
M] F
T LU LS
é ., |
< 'g p F e 1> smiRoPROGRAM
- g MULTIFLEXER COUNTRH—
REGISTER
- i it
J Q o
zD 2 o WNCREMENTER 1—<2)
= 2 4
§ i |eusrommouoiciesn
L) H
O]
BE
= 3\ —
12-BIT DA
0 d) - DATA PATH
2 E IE M CONTROL PATH
=

Figure 1.
MPR-108

TABLE OF CONTENTS
Block Diagramchiiiiia i 6-156
Ordering Informationcooii, 6-158
Pin Connectionscccviirvernmrnanencnracrsnn 6-168
Instruction Codes it 6-159
DCCharacteristicsccoovviiieiiniincennnnss 6-160
AC Characteristicscccoiiiiieinan.. 8-161
Tast CirGUIts coie i e e 6-162
Microcomputer Architecturel 6-163
Instruction Explanationscooviieena, 6-165
Alternative System Architecture 6-168

For applications information, see Chapter Il of Bit Slice Micro-
processor Design, Mick & Brick, McGraw Hill Pubfications.

6-156

Am2910

ARCHITECTURE OF THE Am2910

The Am2810 is a bipclar microprogram controller intended
for use in high-speed microprocessor applications. It allows
addressing of up to 4K words of microprogram. A biock dia-
gram is shown in Figure 1.

The controller contains a four-input multiplexer that is used to
select either the register/counter, direct input, microprogram
counter, or stack as the source of the next microinstruction
address.

The register/counter consists of 12 D-type, edge-triggered flip-
flops, with a common clock enable. When its foad control,
RLD, is LOW, new data is loaded on a positive clock transition.
A few instructions include load; in most systems, these in-
structions will be sufficient, simplifying the microcode. The
output of the register/counter is available to the multiplexer as
a source for the hext microinstruction address. The direct input
furnishes a source of data for loading the register/counter.

The Am2910 contains a microprogram counter {uPC) that is
composed of a 12-bit incrementer followed by a 12-bit register.
The 4PC can be used in eithar of two ways: When the carry-in
to the incrementer is HIGH, the microprogram register is
loaded on the next clock cycle with the current Y output
word plus one (Y + 1 = uPC). Sequential microinstructions are
thus executed, When the carry-in is LOW, the incramenter
passes the Y output word unmodified so that #PC is reloaded
with the same Y word on the next clock cycle {Y —~ uPC), The
same microinstruction is thus executed any number of times.

The third source for the multiplexer is the direct (D) input.
This source is used for branching.

The fourth source avaifable at the multiplexer input is a 5-word
by 12-bit stack (file}. The stack is used to provide return
address linkage when executing microsubroutines or loaps,
The stack contains a built-in stack pointer {SP} which always
points to the last file word written, This allows stack refarence
operations (looping) to be performed without a pop.

The stack pointer operates as an up/down counter. During
microinstructions 1, 4, and 5, the PUSH operation may occur.
This causes the stack pointer to increment and the file to
be written with the required return linkage. On the cycle
tollowing the PUSH, the return data is at the new |ocation
pointed to by the stack pointer.

During five microinstructions, a POP operation may occus.
The stack pointer decrements at the next rising clock edge
following a POP, effectively removing old information from
the top of the stack,

The stack pointer kinkage is such that any sequence of pushes,
pops, or stack references can be achieved. At RESET (Instruc-
tion 0}, the depth of nesting becomes zero. For each PUSH,
the nesting depth increases by one; for each POP, the depth
decreasas by one. The depth can grow to five, After a depth of
five is reached, FULL goes LOW. Any further PUSHes onto a
full stack overwrite information at the top of the stack, but
Jeave the stack pointer unchanged. This operation will usually
destroy useful information and is normally avoided. A POP
from an empty stack may place non-meaningful data on the Y
outputs, hut is otherwise safe. The stack pointer remains at
zero whenever a POP is attempted from a stack already empty.

The register/counter is operated during three microinstructions
{8, 9, 15) as a 12-bif down counter, with result = zero available
as a microinstruction branch test eriterion. This provides effi-
cient iteration of microinstructions. The register/counter is
arranged such that if it is preloaded with a number N and then
used as a loop termination counter, the sequence will be exe-
cuted exactty N+1 times. During instruction 15, a three-way
branch under combined control of the loop counter and the
condition code is available.

The device provides threestate Y outputs. These can be par-
ticularly useful in designs requiring automatic checkout of the
processor. The microprogram controller outputs can be forced
into the high-impedance state, and pre-programmed sequences
of microinstructions can be executed via external access to the
address lines.

OPERATION

Table | shows the result of each instruction in controlling the
multiplexer which determines the Y outputs, and in controlling
the three enable signals PL, MAP, and VECT, The effect on
the register/counter and the stack after the next positive-going
clock edge is also shown. The multiplexer determines which
internal source drives the Y outputs. The value loaded into
UPC is either identical to the Y output, or else one greater,
as determined by CIL. For each instruction, one and only one
of the three outputs PL, MAF, and VECT is LOW. I these
outputs control three-state enables for the primary source of
microprogram jumps {usually part of a pipeline register),
a PROM which maps the instruction to a microinstruction
starting location, and an optional third source [often a vector
from a DMA or interrupt source), respectively, the three-state
sources can drive the D inputs without further logic.

Several inputs, as shown in la_ble 11, can modify instruction
exgcution. The combination CC HIGH and CCEN LOW is used
as a test in 9 of the 16 instructions. RLD, when LOW, causes
the D input to be loaded into the register/counter, overriding
any HOLD or DEC operation specified in the instruction, OE,
normally LOW, may be forced HIGH to remove the Am2910
Y outputs from a three-state bus.

The stack, a five-word last-in, first-out 12-bit memory, has a
pointer which addresses the value presently on the top of the
stack. Explicit control of the stack pointer occurs during in-
struction 0 (RESET], which makes the stack empty by resetting
the SP to zero. After a RESET, and whenever else the stack is
empty, the contents of the top of stack is undefined until a
PUSH occurs. Any POPs performed while the stack is empty
put undefined data on the F outputs and leave the stack
pointer at zero.

Any time the stack is full {five more PUSHes than POPs have
occurred since the stack was last empty}, the FULL warning
output occurs. This signal first appears on the microcycle after
a fifth PUSH. No additional PUSH should be attempted onto
a full stack; if tried, information within the stack will be over-
written and lost.

6-157

Am2910

ORDERING INFORMATION

Package Type Operating Range Screening Level
Order Number (Note 1) {Note 2) (Note 3)
AM2910PC P40] C1
AM2910DC D40 c C1
AM2910DC-B D-40 c B-2 (Note 4)
AM2210DM D-40 M c-3
AM2910DM-B D-40 M B-3
AM2910FM F.42 M C-3
AM2910FM-B F-d42 M B-3
AM2910XC Dice ¢ f";"“' Inspection

" o MIL-STD-883

AM2910XM Dice M Method 2010B.

specified.

STD-883, Class B.
4. 96 hour burn-in.

2. C=0C1io +70°C, Voo = 4.75V t0 5.25V, M = — 55°C to +125°C, Vo = 4.50V 1o 5.50V.
3. See Appendix A for details of screening. Levels C-1 and C-3 confarm to MIL-STD-883, Class C. Level B-3 conforms to MIL-

Order the part numbsr according to the table below to obtain the desired package, temperatura range, and screening level.

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak, Number following letter is number of leads. See Appendix B for detailed
outlina. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise

Metallization and Pad Layout

34
b1

7 E 9 10 1 12 13 14 15

Die Siza 0.170" x 0.194"
{Note: Numbers refer to DIP connections)

CONNECTION DIAGRAMS — Top Views

DIP
¥q 1e af 10
oy]2 [] ¥s
vs] 3 LY L
s [4 st [¥z
VECT [s 36101
s w1 Y
WAF 7 34100
] L] a[]Y
2] 2[a
vee [Am2910 3{]cp
hWn 30 [J anD
g [T] 2 » [0
£TER (] 14 2a[]¥n
[i RTY 7 [
o (] s % Yip
L [] s zséﬂm
og [J1? 24 ¥g
g[8 2 [0
=r% s 1] [1Y
he = 2|V

MPR-107

Pin 1 is marked for orientation.

Flat Package
vici 1o -~/ 230,
]2 a [y,
wap []3 «wo,
B[] sy,
1 }5 E N
Yoo O 8 Erg it
=7 {0,
L]s sy,
CCEN % o,
€ {Ju aldy
ALD] 1+ 2[dmue
FuLe] 12 [
pg [} 13 30 J Y
Yo (14 2]
o, 415] ce
¥, (2] 18 27 GND
o,] 17 20] OF
Yy] 18 25 [T ¥
be [] 18 oy,
¥y [20 23 Ne
o, N 21 Y,

MPR-108

6-158

Am2916 .

TABLE 1. INSTRUCTIONS
REG/ | FAIL __ o PASS__
CNTR CCEN = LOW and CC = HIGH | CCEN = HIGH or CC = LOW REG/

I3tg | MNEMONIC NAME R 18 Y STaCK v STACK CNTR | ENABLE
a L4 JUMPR ZERD X 0 CLEAR 1] CLEAR HOLD PL
1 CJs COND JSB PL X PC HOLD D PUSH HOLD PL
2 JMAP JUMP MAP X D HOLD (] HOLD HOLD MAP
3 cJp COND JUMP PL X PC HOLD D HOLD HOLD PL
4 PUSH PUSH/COND LD CNTR X PC PUSH PC PUSH Note 1 PL
3 JSRP COND JSB RIPL X 3] PUSH O PUSH HOLO L
] cav COND JUMP VECTOR X PC HOLD D HOLD HOLD VECT
7 JRFP COND JUMP R/PL X HQLD P HOLD HOLD PL.
8 RFCT REPEAT LOQOP,CNTR # 20 F HOLD F HOLD DEC Pt

=0 PC POP PC POP HOLD PL
#0 s} HOLD D HOLD DEC PL
° RPeY REFEAT PL.CNTR %0 =0 PC HOLD PC HOLD HOLD PL
10 CRTN COND RTN X PC HOLD F POP HOLD PL
11 CIPP COND JUMPPL & POP X PC HOLD D POP HOLD PL
12 EDCT LD CNTR & CONTINUE X PC HQLD PC HOLD LOAD PL
13 LoOP TEST END LOOP X F HOLD PC POP HOLD PL
14 CONT CONTINUE x PC HOLD PC HOLD HOLD 4
#*0 F HOLD Pc FOP DEC PL
15 TWB THREE-WAY BRANCH =0 o FOP P Far HOLD L
Note 1: If TCEN = LOW and TC = HIGH, hold; else load. X = Don’t Care
TABLE {1. PIN FUNCTIONS
Abbreviation Name Funetion
Dj Direct Input Bit Direct input to register/counter and multiplexer. Dg is LSB
fi instructien Biti Selects one-nf-sixteen instructions for the Am2910
tc Condition Cade Used as test criterion. Pass test is a LOW on CC.
GCEN Candition Code Enable Whenever 1he signag is HIGH, CCis ignored and the part operates
as though CC were true (LOW).
Ccl Carry-In Low order carry input to incrementer for microprogram ceunter
®LD Register Load When LOW forces loading of register/counter regardiess of
instruction or cendition
OE Qutput Enable Three-state control of Y; outputs
o Cleck Pulse Triggers all internal s1ate changes at LOW-10-HIGH edge
Vee +5 Volts
GND Ground
Y; Microprogram Address Bit i Address to microprogram memory. Yq is LSB, Y17 is M5B
FOLL Full Indicates that five items are on the stack
C Pipeline Address Enable Can select #1 source (usually Pipeline Register) as direct
input source
™AP Map Address Enable Can selact #2 source {usually Mapping PROM or PLA) as
direct input source
VECT Vector Address Enable Can select #3 source (for example, Interrupt Starting Address}
as direct input source

6-159

' - - - - L TN T e S e -
Am2910
MAXIMUM RATINGS (Above which the useful life may be impaired)
Storage Temperature —85°C 1o +150°C -
Temperature (Ambient} Under Bias —55°C to +125°C :

0.6V 1o +7.0V }

-

Supply Voltage to Ground Potential
DE Voltage Applied to Outputs for High Qutput State —0.5V to Vg max. ¢
DC Input Voltage ~0,5V to +5.6V!
DC Qutput Current, Into Quiputs 30m&:
DC Input Current —30mA to +5.0m#
ELECTRICAL CHARACTERISTICS The Following Conditions Apply Unless Otherwise Specified:
COM'L Tp =0°Cto+70°C Vee = 5.0V 165% MIN. = 476V MAX =525V
MIL Tg=-55°Cto+126°C Vg =5.0V £10% MIN. =450V MAX, =550V
DC CHARACTERISTICS OVER OPERATING RANGE Tye :
Parameters Description Test Conditions (Note 1) Min. {Note2) Max. Units =
Vee = MIN, igH = —1.6mA
A" o] HIGH Vol
OH utput oltage VIN = V| or ViL 24 Volts
= Yo—-11. 1 = {2ZmA
VoL Output LOW Voltage 506_ c‘"N' v _D . oL 0% Volts
IN=VIH 2 VIL | B, VECT, MAP, FULL, g = 8mA
Guaranteed Input Logical HIGH
v { H
IH nput HIGH Level {Note 4) voltage for all inputs 20 Voits
Guaranteed input lagical LOW
v
n Input LOW Level {Note 4) voktage for all inputs 0.8 Volts
V) Input Clamp Voitage Voo =MIN, 1y = —18mA —15 Volts
Dp-.11 —0.87
Cl, CCEN —.54
hL Input LOW Current Voo = MAX,, Vy = 0.5V 1g.a. OE, RLD -0.72 mA
[+ -1.31
CP —-2.14
Cp-11 80
Ci, CCEN ki)
{IT%} Input HIGH Current Voo = MAX,, Viy = 2.7V 1p.3. OE, RLD a0 A
[+ 50
cP 100
1 input HIGH Current Voo = MaX,, Viy = 58v 1.0 mA
Output Short Circuit Currant _
'se {Note 3) Veg = MAX. ~30 —f5 mA
1 s =
QzL Output OFF Current Vee = MAX. Voyr =05V -5 A
lozH OF = 2.4V VouT = 24V 50 :
Ta=25C 195 | 320
Ta =0°Cto+70°C
Am2810PC, DC A s 2 Ssa
Ice Power Supply Current Vee = MAX, Ta = +70°C 280 mA,
Tg=-565"Cto
Am29100M, FM +125°C 340
To =+125°C 227
Notes: 1, For condltlons sthown as MIN, or MAX,, use the appropriate value specitied under Electrical Characterlstics for the spplicable device type.
2. Typical limits are at Ve = 5.0V, 25°C ambient and maximum loading,
3. N&x morae than one output should be shorted at a time. Duration of the short circuit test should not exceed one second,
4. These input levels provide no guaranteed noise immunity and should onfy be tested in a static-, noise-free environment,
v
INPUTS 1.8v
oV
o t L)
3.0V
CLOCK 15v
ov
il See Tables A for t; and t for various |
ook Qe inputs. See Tables B for combinational '
! i delays from clock and other inputs to
outputs. See Figure & for timing of a
ovteurs R e Eou cyepre § for viming of 2
Figure 2. Switching Waveforms. MPR-1%

6-160

Am2910 SWITCHING CHARACTERISTICS

The tables below define the Am2910 switching characteristics. Tables A are set-up and hold times relative to the clock LOW-to-HIGH
transition, Tables B are combinational delays. Tables C are clock requirements, All measurements are made at 1.5V with input levels at
OV or 3V. Al values are in ns. All outputs have maximum DC loading.

I. TYPICAL ROOM TEMPERATURE CHARACTERISTICS (T, = 25°C, Vg = 5.0V, C_ = 50pF)

A. Set-up and Hold Times B. Combinational Delays C. Clock Requireaments (Note 1)
Input ts th input Y |PL, VECT, MAF | Full Minimurn Clock LOW Time 30 | ns
Dj~»+R 9 4 Dy-Dqq 14 - - Minimum Clock HIGH Time 30 | ns
Di=+PC 34 3 lg-l3 40 27 - Minimwsm Clock Period, Ll R
lo-l3 64 0 cC 21 - _ =89, 15 (Nota 2) ETR
= p 0 == T — - Winimum Clock Period, =14 | 68 | o
CCEN 49 0 CP {Note 2} 54 - 28
cl 26 2 1=8915 79 Z p
RLD 18 2 cP . -
Alt gther | <6 L
OE (Mote 3y | 26124 ~ -
Il. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE
Am2910PC,DC (T, = 0°C to +70°C, V¢ = 4.75V 10 5.25, C = 50pF)
A. Set-up and Hold Times B. Combinational Delays €. Clock Requirements (Note 1}
Input tg th Input Y |PL, VECT, MAP | Full Minimum Clock LOW Time 50 | ns
D3R 24 [Dg-Dqq 20 - - Minimum Clock HIGH Time 35 [ns
Dy~ PC 58 4 lg-l3 70 51 - Minimum Clock Period, 138
(R 104 o = Py ~ N I =89 15 (Note 2) 163 ne
ool B0 o TOER a5 — — Minimum Clock Period, |1=14 83 | ns
TCEN B0 o CP (Note 2) 100 - &0
cl 48 54-‘ 1=8,815 425 - 60
Ao 36 6 cP
All other | =5 - 60
| TE note 31 | asm0 - -
lll. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
Am2910DM,FM (To = —55°C to +125°C, Ve = 4.5V 1o 5.5V, C| = 50pF)
A, Set-up and Hold Times B. Combinational Delays C. Clock Requirements (Note 1)
input ts tp Input ¥ | PL, VECT, MAP | Fuii Minimum Clack LOW Time 58 | ns
D;—+R 26 [Do-Dy4 25 - E Minimum Clock HIGH Time 42 | ns
D;>PC 62 4 ol 75 58 - Minimum Clock Period, L] g
[o 04& T P - N 1= 8BS Moe 2 7]
& 86 [} TTEN 50 Z - Minimum Clock Period, I=14 | 100 | ns
CCEN 85 0 CP{Note2) | 106 1 - 67
cl 58 5 1=89.15 [Ty3 - 67
ALD 42 [CP
Al athar | 8 - &
OE (Note 3) | 40130 - -
NOTES: change in the counter or could only decrement the counter. Use the
1. Clock periads for instructions not specified are determined by axternal longer delays from CP {0 outputs if the instruction prior to the clock was
canditions. 4 or 12 or ALD was LOW.
2. These instructions are condifional on the counter. Use the shorter 3. Enable/Disable. Disable times measurad to 0.5V change on output
specified delay times if the previous instruction could produce no voltage level with C, = 5.0pF.

6-161

Am2810

TEST OUTPUT LOAD CONFIGURATIONS FOR Am2910

A. THREE-STATE OUTPUTS 8. NORMAL OUTPUTS
Vee Yec
S 5, R
Vour o—&~«
L]
84
Vour &—0~"%

f 5 A= 24V
L loH

A 50 - Vge — VoL " 50 - Vpe - VoL
= —— 4 = —_ -
+ Vg /1K + /B,
'z

Notes: 1. C_ = 50pF includes scope probe, wiring and stray capacitances without device in test fixture.
2. 51, Sg, B4 are closed during function tests and all AC tests except outpul enable tests.
3. 51 and Sz are closed while Sz is open for tpzp test.
$1 and $p are closed while S3 is open for tpz test,
4. C = 5.0pF for output disable tests.

TEST OUTUPT LOADS FOR Am2910

Pin # Test

{DIP) Pin Label Circult Ry Rz
- Yo-11 A 300 1K
5 VECT B 476 1.5K
6 PL B 470 1.5K
7 MAP 8 470 1.5K
16 FULL B 470 1.5K

For additional information on testing, see section
“Guidelines on Testing Am2900 Family Devices.”

6-162

Am2910

Qk-HdM

QLW buisny saindwosoasily Jejodig 1exdA] g aanbig

S(1 IQELNDO

|

15140 912 sné SS3H0AY

¢

|

isua M)

—

SLLBIWY R

HILSIDIY IOV AHILNI SNE

HILSHIY
NOILINY LSNI

LINA LINA 1IN 1IN0
TOHLNOD IOHINOD TOHANDY IOHLNOD Lanuyailmi
WYH90Hg WYHSOHa WeDoud WyHDaHa b oo
atezuy etezwy oceeY eezwy Landy3Ln
A VAN AN AN Hosan
et 1 g
I
i
(=]
sLE 9} _ 3181934 NI 0 \
" wmatns | T
LNy
Uyg-Oyg u._mczwwﬂ
WOUd
ABOWIW WY HDOHAOHDN reCf 30 avin
HOLIIA
HILSIDIY Hnw
= LYl - 103135 l
8 s Lae 8’y DT I *
la 1d NIJJ 103A
r HOS53304d HOSSID0HS 408832044 HOS5220Hd * o xnw .;
OHdIW OHIM PR QuIN H3770H 1NOD WY HDOHd DRI 2 3002
uYI0aI9 Y0418 Hy 10418 Y 10dIB DLBZWY = NoLLIdNGD
1] veoszew 1 . vioezwy W L0BT vi06ZWY [T ey
] a 4vn
XAW \# 4 V & XNw H / INILNOY IDAHIS
LdiHS 14IMg L4nudILNI
40 s53H0QY
WO NIV 30 T]
ISLIB AL

is19 91) 508 Yiva

6-163

Am2910

0 JUMP ZERO (JZ)

1 COND JSB PL (CJS)

STACK
81
52
53

& 8
3398;

55

2 JUMF MAP {JMAP)

50

51

52

B3 20
]

3 COND JUMP PL ICJP}

51
a2
53

3

2 g
g

4 PUSH/COND LD CNTR {PUSH]

STACK

51
52
53

REGISTER/
COUNTER

f\

6 COND JUMP VECTOR {CJV}

7 COND JUMP R/PL {JRP)

52
53
0 &0

& COND JSB R/PL {JSRP}

8 REPEAT LOOP, CNTR = 0 {RFCT)

STACK
{PLISH}

REGISTER/

5t COUNTER

B2
53

L]

5

8 REPEAT PL,CNTR = 0 {RPCT)

COUNTER
{LDCT)

&1
52
53

i

11 COND JUMP PL & POP (CJPP)

STACK
50 (PUSHI
51
82 70
53 o0 n

54 80 g1 72
BS ’I B 92
56 82

12 LD CNTR & CONTINUE (LDCT)

COUNTER

51
52

+

10 COND RETURN (CRTN}

14 CONTINUE (CONT)

61

63

15 THREE-WAY BRANCH [TWB}

m STACK

& {PUSH)

63 REGISTER/
64 COUNTER
85 (}- 72

86 73

12 TEST END LOOP (LOOM)

51
52
53

65
56 (®
67

STACK
(PUSH)

Figure 4. Am2910 Execution Examples.
6-184

MPR-111

Am29tn

THE Am2910 INSTRUCTION SET

The Am291C provides 16 instructions which select the address
of the next microinstruction to be executed. Four of the in-
structions are unconditional — their effect depends only on
the instruction. Ten of the instructions have an effect which is
partially controlled by an external, data-dependent condition,
Three of the instructions have an effect which is partially con-
trolled by the contents of the internal register/counter. The
instruction set is shown in Table |. In this discussion it is
assumed that C; is tied HIGH.

In the ten conditional instructions, the resuit of the data-
dependent test is applied to TG, If the GC input is LOW, the
1est is considered to have been passed, and the action speci-
fied in the name occurs; otherwise, the test has failed and an
alternate (often simply the execution of the next seguential
microinstruction) occurs. Testing of CC may be disabled for a
specific microinstruction by setting CCEN HIGH, which uncon-
ditionally forces the action specified in the name; that is, it
forces a pass. Other ways of using CCEN include (1} tying it
HIGH, which is useful if no microinstruction is data-depandent;
(2} tying it LOW if data-dependent instructions are never forced
uncenditionally; or {3) tying it to the source of Am2910
instruction bit lg, which leaves instructions 4, 6, and 10 as
data-dependent but makes others unconditional. All of these
tricks save one bit of microcode width.

The effect of three instructions depends on the contents of the
register/counter, Unless the counter holds a value of zere, it
is decremented; if it does hold zero, it is held and a different
microprogram next address is selected. These instructions are
useful for executing a microinstruction loop a known number
of times. Instruction 15 is affected both by the external con-
dition code and the internal register/counter,

Perhaps the best technique for understanding the Am2910 is
to simply take each instruction and review its operation. In
order to provide some feel for the actual execution of these
instructions, Figure 4 is included and depicts examples of all
16 instructions.

The examples given in Figure 4 should be interpreted in the
following manner: The intent is to show microprogram flow
as various microprogram memory words are executed, For
example, the CONTINUE instruction, instruction number 14,
as shown in Figure 4, simply means that the contents of micro-
program memary word 50 is executed, then the contents of
word 51 is executed. This is followed by the contents of micro-
program memory word 52 and the contents of microprogram
memory word b3. The microprogram addresses used in the
examples were arbitrarily chosen and have no meaning other
than to show instruction flow. The exception to this is the
first example, JUMP ZERO, which forces the microprogram
location counter to address ZERQ. Each dot refers to the time
that the contents of the microprogram memory word is in
the pipeline register. While no special symbology is used for
the conditional instructions, the text to follow will explain
what the conditional choices are in each example.

It might be appropriate at this time to mention that AMD has
a microprogram assembler called AMDASM, which has the
capability of using the Am2910 instructions in symbolic repre-
sentation. AMDASM's Am2910 instruction symbolics (or mne-
monics) are given in Figure 4 for each instruction and are also
shown in Table L.

Instruction 0, JZ2 {JUMP and ZERO, or RESET) uncondi-
tionally specifies that the address of the next microinstruction
is zero, Many designs use this feature for power-up seguences

and provide the power-up firmware beginning at microprogram
memory word location 0.

tnstruction 1 is a CONDITIONAL JUMP-TO-SUBRQUTINE
via the address provided in the pipeline register. As shown in
Figure 4, the machine might have executed wotds at address
B0, 51, and 52. When the contents of address 52 is in the pipe-
line register, the next address control function is the CONDI-
TIONAL JUMP-TO-SUBROUTINE. Here, if the test is passed,
the next instruction executed will be the contents of micro-
program memory location 80. If the test has failed, the JUMP-
TOSUBROUTINE will not be executed; the contents of micro-
program memory location 53 will be executed instead. Thus,
the CONDITIONAL JUMP-TO-SUBRCUTINE instruction at
location 52 will cause the instruction either in location 90 or
in location 53 to be executed next. If the TEST input is such
that location 90 is selected, value 53 will be pushed onto the
internal stack. This provides the return linkage for the machine
when the subroutine beginning at location 90 is compieted.
In this example, the subroutine was completed at location 83
and a RETURN-FROM-SUBROUTINE would be found at
location 93.

Instruction 2 is the JUMP MAP instruction. This is an uncondi-
tional instruction which causes the MAF output to be enabled
so that the next microinstruction location is determined by
the address supplied via the mapping PROMs. Normally, the
JUMP MAP instruction is used at the end of the instruction
fetch sequence for the machine. ¥n the example of Figure 4,
microinstructions at locations 50, 51, 52, and 53 might have
been the fetch sequence and at its completion at location 53,
the jump map function would be contained in the pipeline
register. This example shows the mapping PROM outputs to
be 90; therefore, an unconditional jump to microprogram
memory address 90 is performed,

Instruction 3, CONDITIONAL JUMP PIPELINE, derives its
branch address from the pipeline register branch address value
(BRg — BR14 in Figure 2). This instruction provides a tech-
nique for branching to various microprogram sequences de-
pending upon the test condition inputs. Quite often, state
machines are designed which simply execute tests on various
inputs waiting for the condition to come true. When the true
condition is reached, the machine then branches and executes
a set of microinstructions to perform some function. This
usually has the effect of resetting the input being tested until
some point in the future. Figure 4 shows the conditional jump
via the pipeline register address at location 52. When the con-
tents of microprogram memory word 52 are in the pipeline
register, the next address will be either focation 53 or location
30 in this example. If the test is passed, the value currently in
the pipeline register {30} will be selected. If the test fails, the
next address selected will be contained in the microprogram
counter which, in this example, is 63,

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER
instruction and is used primarily for setting up lcops in micro-
program firmware. In Figure 4, when instruction 52 is in the
pipeline register, a PUSH will be made onto the stack and the
counter will be loaded based on the condition. When a PUSH
occurs, the value pushed is always the next sequential instruc-
tion address. In this case, the address is 53. If the test fails, the
counter is not loaded; it it is passed, the counter is loaded with
the value contained in the pipeline register branch address field.
Thus, a single microinstruction can be used to set up a loop to
be executed a specific number of times. Instruction B will

6-185

Am29i0

THE Am2910 INSTRUCTION SET (Cont.}

describe how to use the pushed value and the register/counter
for looping.

Instruction 5 is a CONDITIONAL JUMP-TO-SUBROUTINE
via the register/counter or the contents of the PIPELINE
register. As shown in Figure 4, a PUSH is always performed
and one of two subroutines executed. In this example, either
the subroutine beginning at address 80 or the subroutine be-
ginning at address 90 will be performed. A return-from-sub-
routine (instruction number 10} returns the microprogram
ftow to address 55, In order for this microinstruction control
sequence to operate correctly, both the next address fieids of
instruction 53 and the next address fields of instruction 54
would have to contain the proper value, Let's assume that the
branch address fields of instruction 53 contain the value 90 so
that it will be in the Am2910 register/counter when the con-
tents of address B4 are in the pipeline register, This requires
that the instruction at address 53 load the register/counter.
Now, during the execution of instruction 5 (at address 54), if
the test failed, the contents of the register {value = 90} will
select the address of the next microinstruction. If the test
input passes, the pipeline register contents (value = B80) will
determine the address of the next micreinstruction. There-
fore, this instruction provides the abijlity to select one of two
subroutines to be executed based on a test condition.

Instruction 6 is a CONDITIONAL JUMP VECTOR instruction
which provides the capability to take the branch address from
a third source heretofore not discussed. In arder for this in-
struction to be useful, the Am29t0 output, VECT is used to
control a threestate control input of a register, buffer, or
PROM containing the next microprogram address. This in-
struction provides one technique for performing interrupt type
branching at the microprogram level. Since this instruction is
conditional, a pass causes the next address to be taken from
the vector source, while failure causes the next address to be
taken from the microprogram counter. In the example of
Figure 4, if the CONDITIONAL JUMP VECTOR instruction is
contained at location 62, execution will continue at vector
address 20 if the CC input is LOW and the microinstruction at
address 53 will be executed if the CC input is HIGH.

Instruction 7 is a CONDITIONAL JUMP via the contents of
the Am2910 REGISTER/COUNTER or the contents of the
PYPELINE register. This instruction is very similar to instruc-
tion 5; the conditional jump-to-subroutine via R or PL. The
major difference between instruction 5 and instruction 7 is
that no push onto the stack is performed with 7. Figure 4
depicts this instruction as a branch to one of two locations
depending on the test condition. The example assumes the
pipeline register contains the value 70 when the contents of
address 52 is being executed, As the contents of address 53 is
clocked into the pipeline register, the value 70 is loaded into
the register/counter in the Am2910. The value 80 is available
when the contents of address 53 is in the pipeline register.
Thus, control is transferred to either address 70 or address 80
depending on the test condition.

Instruction 8 is the REPEAT LOOP, COUNTER # ZERO in-
struction. This microinstruction makes use of the decrementing
capability of the register/counter, To be useful, some previous
instruction, such as 4, must have loaded a count value intg the
ragister/counter. This instruction checks to see whether the
register/counter contains a non-zero value. If so, the register/
counter is decremented, and the address of the next micro-
instruction is taken from the top of the stack. If the register
counter contains zero, the foop exit condition is oceuring;
control falls through to the next sequential microinstruetion

by selecting uPC; the stack is POP'd by decrementing the stack
pointer, but the contents of the top of the stack are thrown
away.

An example of the REPEAT LOOP, COUNTER # ZERO in-
struction is shown in Figure 4. In this example, location 50
most likely would contain a PUSH/CONDITIONAL LOAD
COUNTER instruction which would have caused address 51 to
be PUSHed on the stack and the counter to be loaded with the
proper value for Jooping the desired number of times,

In this example, since the loop test is made at the end of the
instructions to be repeated (microaddress B4}, the propar
value to be loaded by the instructions at address 50 is one less
than the desired number of passes through the loop. This
method aliows a loop to be executed 1 to 4096 times, If it is
desired to execute the loop from O to 4085 times, the firm-
ware should be written to make the foop exit test immediately
after loop entry.

Single-microinstruction loops provide a highly efficient capa-
bility for executing a specific microinstruction a fixed number
of times. Examples include fixed rotates, byte swap, fixed
point multiply, and fixed point divide.

instruction 8 is the REPEAT PIPELINE REGISTER, COUNT-
ER ¥ ZERO instruction, This instruction is similar to instruc-
tion 8 except that the branch address now comes from the
pipeling register rather than the file. In some cases, this instruc-
tion may be thought of as a one-word file extension; that is,
by using this instruction, a loop with the counter can still be
performed when subroutines are nested five deep. This instruc-
tion's operation is very similar to that of instruction 8. The dif-
ferences are that on this instruction, a failed test condition
causes the source of the next microinstruction address to be
the D inputs; and, when the test condition is passed, this in-
struction does not perform a POP because the stack is not
being used.

In the example of Figure 4, the REPEAT PIPELINE, CQUNT-
ER # ZEROQ instruction is instruction 52 and is shown as a
single microinstruction loop. The address in the pipeline reg-
ister would be 52. Instruetion 51 in this example could be the |
LOAD COUNTER AND CONTINUE instruction {number 12). :
While the example shows a single microinstruction loop, by :
simply changing the address in a pipeline register, multi- @
instruction lcops can be perfermed in this manner for a fixed
number of times as determined by the counter.

Instruction 10 is the conditional RETURN-FROM-SUBROU-
TINE instruction, As the name implies, this instruction is used
to branch from the subroutine back to the next microinstruc-
tion address following the subroutine call. Since this instruc-
tion is conditional, the return is performed only i the test is ;
passed. If the test is failed, the next sequential microinstruction ;
is performed, The example in Figure 4 depicts the use of the
conditional RETURN-FROM-SUBROUTINE instruction in
both the conditional and the unconditional modes. This exam-
ple first shows a jump-to-subroutine at instruction location 52
where control is transferred to location 90, At location 93, a
conditional RETURN-FROM-SUBROUTINE instruction s ;
performed. If the test is passed, the stack is accessed and the |
program will transfer to the next instruction at address 53. If
the test is failed, the next microinstruction at address 94 will :
be executed. The program will continue to address 97 where
the subroutine is compiete. To perform an unconditional
RETURN-FROM-SUBRQUTINE, the conditional RETURN- -
FROM-SUBRQUTINE instruction is executed unconditionally ;
the microinstruction at address 97 is programmed to force

6-166

Am29to

THE Am2910 INSTRUCTION SET (Cont.)

CCEN HIGH, disabling the test and the forced PASS causes an
unconditional return.

Instruction 11 is the CONDITIONAL JUMP PiPELINE register
address and POP stack instruction. This instruction provides
another technigue for loop termination and stack maintenance.
The example in Figure 4 shows a loop being performed from
address 55 back to address 51. The instructions at locations 52,
63, and 54 are all conditional JUMP and POP instructions. At
address 52, if the CC input is LOW, a branch will be made
to address 70 and the stack will be properly maintained via a
POP, Should the test fail, the instruction at location 53 {the
next sequential instruction) will be executed. Likewise, at
address 53, either the instruction at 90 or 54 will be subse-
quently executed, respective to the test being passed or failed.
The instruction at 54 follows the same rules, going to either 80
or 55. An instruction sequence as described here, using the
CONDITIONAL JUMP PIPELINE and POP instruction, is very
useful when several inputs are being tested and the micropro-
gram is looping waiting for any of the inputs being tested to
occur before proceeding to another sequence of jnstructions,
This provides the powerful jump-table programming technique
at the firmware level.

Instruction 12 is the LOAD COUNTER AND CONTINUE in-
struction, which simply enables the counter to be loaded with
the value at its parallel inputs. These inputs are normally con-
nected to the pipeline branch address field which {in the
architecture being described here} serves to supply either a
branch address or a counter value depending upon the micro-
instruction being executed, There are altogether three ways of
loading the counter — the explicit load by this instruction 12;
the conditional load included as part of instruction 4; and the
use of the RLD input along with any instruction. The use of
RLD with any instruction overrides any counting or dacremen-
tation specified in the instruction, calling for a load instead. its
use provides additional microinstruction power, at the expense
of one bit of microinstruction width. This instruction 12 is
exactly equivalent to the combination of instruction 14 and
RLD LOW. lts purpose is to provide a simple capability to
load the register/counter in those implementations which do
not provide microprogrammed control for RLD.

Instruction 13 is the TEST END-OF-LOOP instruction, which
provides the capability of conditionally exiting a loop at the
bottom; that is, this is a conditional instruction that will cause
the microprogram to loop, viz the file, if the test is failed
else 10 comtinue 10 the next sequential instruction. The
example in Figure 4 shows the TEST END-OF-LOOP micro-
instruction at address 56. |f the test fails, the microprogram
will branch to address 52. Address 52 is on the stack because
a PUSH instruction had been executed at address 51. If the
test is passed at instruction 56, the loop is terminated and the
next sequential microinstruction at address 57 is executed,
which alsc causes the stack to be POP'd; thus, accomplishing
the required stack maintenance.

Instruction 14 is the CONTINUE instruction, which simply
causes the microprogram counter to increment so that the next
sequential microinstruction is executed. This is the simplest
microinstruction of all and should be the default instruction
which the firmware requests whenever there is nothing better
to do.

Instruction 15, THREE-WAY BRANCH, is the most complex.
It provides for testing of both a data-dependent condition and
the counter during one microinstruction and provides for se-
lecting among one of three microinstruction addresses as the
next microinstruction to be performed. Like instruction 8, a
previous instruction will have loaded a count into the register/
counter while pushing a microbranch address onto the stack.
Instruction 15 performs a decrement-and-branch -until-zero
function similar to instruction 8. The next address is taken
from the top of the stack until the count reaches zero; then
the next address comes from the pipeline register. The above
action continues as long as the test condition fails. If at any
execution of instruction 15 the test condition is passed, no
branch is taken; the microprogram counter register furmshes
the next address. When the locop is ended, either by the count
becoming zero, or by passing the conditional test, the stack is
POP’d by decrementing the stack pointer, since interest in the
value contained at the top of the stack is then complete.

The application of instruction 15 can enhance performance
of a variety of machineJevel instructions. For instance, {1} a
memory search instruction to be terminated either by finding
a desired memory content or by reaching the search limit;
{2) variable-fieldlength arithmetic terminated early upon
finding that the content of the portion of the field still un-
processed is all 2eroes; (3) key search in a dise controiler pro-
cessing variable length records; (4) normalization of a floating
point number.

As one example, consider the case of a memory search instruc-
tion. As shown in Figure 4, the instruction at microprogram
address 83 can be instruction 4 {(PUSH), which will push the
value 64 onto the mivroprogram stack and load the number N,
which is one less than the number of memory locations to be
searched before giving up. Location 84 contains a microin-
struction which fetches the next operand from the memory
area to be searched and compares it with the search key. Loca-
tion 65 contains a microinstruction which tests the result of the
comparison and also is a THREE-WAY BRANCH for micro-
program control. i no match is found, the test fails and the
microprogram goes back to location 64 for the next operand
address. When the count becomes zero, the microprogram
branches to location 72, which does whatever is necessary if
no match is found. If a match occurs on any execution of the
THREE-WAY BRANCH at location 65, control falls through
to location 66 which handles this case. Whether the instruction
ends by finding a match or not, the stack will have been POP'd
once, removing the value 64 from the top of the stack.

6-167

Am2910

OTHER ARCHITECTURES USING THE Am2910
{Shading shows path{s} which usually limit speed)

Figure 6.
A. Instruction Based B. Addressed Based

MAF

LTV

A Register at the Microprogram Memory output contains the The Register at the Am2810 output contains the address of

microinstruction being executed. The microprogram memory the microinstruction being executed. The Microprogram Mem-
and Am2901 delay are in series. Conditional branches are exe- ory and Am2901 are in series in the critical path, This archi-
cuted on same cycle as the ALU operation generating the tecture provides about the same speed as the Instruction based
condition. architecture, but requires fewer register bits, since only the

address (typically 10-12 bits) is stored instead of the instrue-
tion {typicaily 40-60 bits}.

MPR-114 MPR-115

C. Data Based D. Two Level Pipeline Based

MAP

p— CLOCK

t{a+1

STATUS
REGISTER

! Sia-1

_4 sTaTUS
REGISTER

l StA-1)

The Status Register provides conditional Branch control based Two level pipeline provides highest possible speed. it is more
on results of previous ALU cycle. The Microprogram Memory difficult to program because the selection of a microinstruction
and Am2801 are in series in the critical paths. oceurs two instructions ahead of its execution.

MPH-118 MPR-117

6-168

ARCHITECTURES USING THE Am2910
{Shading shows path(s) which usually limit speed)

Figure 5.

One Level Pipeline Based
{Recommended}

STATUS
AEGISTER

l ShA=1}

One fevel pipsline provides better speed than most other architectures. The pProgram Memory and the
Am2901 array are in parallel speed paths instead of in series, This is the recommended architecture for
Am2900 designs,

MPR-112
128 05 CYCLE TIME —————————ue]
CLOCK \ ?k
15ns
+— [CLOCK TO REQISTER OUTRUT]
PIPELINE Am2910
REGISTER * INSTRUCTION m
OUTPUT INPUTS
1Bm
-——!— {MUX SELECT TO QUTPUT}
MUX Am2810 SAARIARKRAN,
ouTPUT ° cC InNeuT ey
ccrToy
4Im
OGN KX X XX X XX XXX % X X
2910 OUTRUTS 0..’0‘.‘....‘.'."0’0’O‘O'O‘O‘0.0'O.'.0.0.9’0"'.’v z
PROM ACCESS TIME
}ra———50 g ——-d
MICROPROGRAM
MEMORY
OUTPUTS
5
REGISTER
SET-UP
TIME
Typical CCU Cycle Timing Waveforms.
This drawing shows the timing relationships in the CCU illustrated above.
MPR-113

6-169

