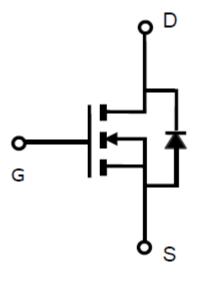


DESCRIPTION


The AM3414 is the N-Channel logic enhancement mode power field effect transistor is produced using high cell density.

Advanced trench technology to provide excellent R_{DS} (ON) low gate charge and operation with gate as 1.8V.

This device is suitable for use as a load switch or other general applications.

The AM3414 is available in SOT-23 Package

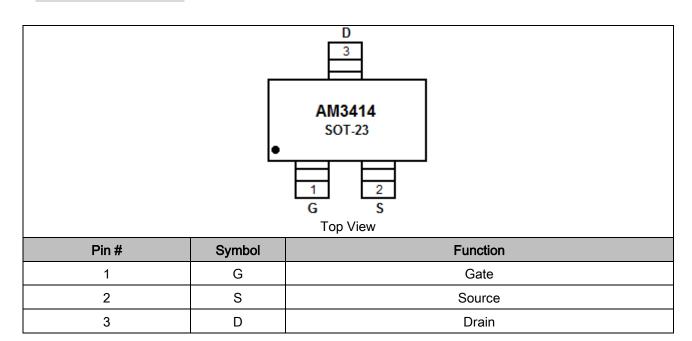
P-CHANNEL MOSFET

FEATURES

- 20V/5.0A, $R_{DS}(ON) = 30m\Omega(typ.)@V_{GS} = 4.5V$
- 30V/4.5A, $R_{DS}(ON) = 42m\Omega(typ.)@V_{GS} = 2.5V$
- 30V/3.8A, $R_{DS}(ON) = 50m\Omega(typ.)@V_{GS} = 1.8V$
- Super high density cell design for extremely low R_{DS}(ON)
- Exceptional on-resistance and Maximum DC current capability
- RoHs Compliant
- Available in SOT-23 package

APPLICATIONS

- Power Management in Note book
- Portable Equipment
- DSC
- LCD Display inverter
- Battery Powered System


ORDERING INFORMATION

Package Type	Part Number			
SOT 22	E3	AM3414E3R		
SOT-23	E3	AM3414E3VR		
Note	V: Green Package			
Note	R : Tape & Reel			
AiT provides all Pb free products				
Suffix " V " means Green Package				

REV1.0 -NOV 2011 RELEASED - -1

PIN DESCRIPTION

REV1.0 -NOV 2011 RELEASED - -2 -

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C Unless otherwise noted

VDS	s, Drain-Source Voltage			20 V
VGS	s, Gate-Source Voltage			±12 V
1-	Continuous Drain Current	T _C =25°CNote1	V _{GS} =10V	5.0 A
ID	Continuous Drain Current	Tc=70°CNote1	V GS - 10 V	4.0A
I _{DM} ,	Pulsed Drain CurrentNote2			20 A
P _D , Power Dissipation		T _A =25°C	1.4 W	
		T _A =70°C	0.9 W	
T _J , (Operation Junction Temperature			-55 °C to 150°C
Tsto	s, Storage Temperature Range	_	_	-55 °C to 150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

NOTE1: The value of R _{BJA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

NOTE2: The data tested by pulsed , pulse width \leq 300uS , duty cycle \leq 2%

THERMAL INFORMATION

Symbol	Parameter	Тур.	Max	Unit
R _{θJA}	Thermal Resistance-Junction to AmbientNote1 Steady-State	i	120	°C/W
ReJL Thermal Resistance Junction to Lead ^{Note1} Steady-State		-	80	°C/W

NOTE1: The value of R $_{\text{BJA}}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T_{A} =25°C.

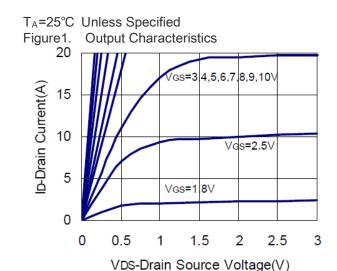
REV1.0 -NOV 2011 RELEASED - -3

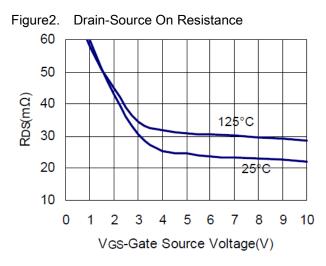
ELECTRICAL CHARACTERISTICS

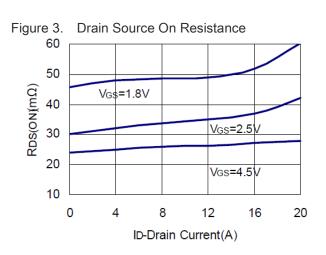
T_J = 25°C Unless otherwise specified

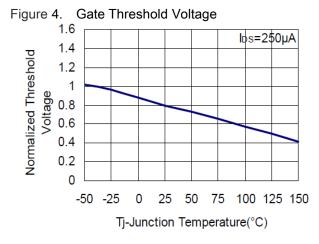
T _J = 25°C Unless otherwise specified						
Parameter	Symbol	Conditions	Min	Type	Max	Units
Static Parameters						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS}=0V,I_{D}=-250\mu A$	20			V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	0.5		1.0	V
Gate Leakage Current	Igss	$V_{DS}=0V,V_{GS}=\pm12V$			±100	nA
Zero Gate Voltage, Drain-Source	I _{DSS}	V _{DS} =20V,V _{GS} =0V T _J =25°C			1	μA
Leakage Current	1055	V _{DS} =-20V,V _{GS} =0V T _J =55°C			5	μΑ
		V_{GS} =4.5 V , I_{D} = 5.0 A		30	38	
Drain-source On-Resistance ^{Note2}	R _{DS(ON)}	$V_{GS}=2.5V,I_{D}=4.5A$		42	48	mΩ
		V _{GS} =1.8V,I _D = 3.8A		50	65	
Forward Transconductance	Gfs	V _{DS} = 15V,I _D = 5.0A		30		S
Source-Drain Diode						
Diode Forward Voltage	V _{SD}	I _S =1.7A,V _{GS} =0V		0.9	1.2	V
Continuous Source Current ^{Note1} Note3	Is				6	Α
Dynamic Parameters				•	•	
Total Gate Charge	Q _g (4.5V)	V _{DS} = 10V		11	13	
Gate-Source Charge	Q _{gs}	V _{GS} = 4.5V		1.45		nC
Gate-Drain Charge	Q _{gd}	I _D ≡ 5.0A		2.3		
Input Capacitance	Ciss	V _{DS} = 10V		578		
Output Capacitance	Coss	V _{GS} =0V		116		pF
Reverse Transfer Capacitance	Crss	f=1MHz		96		-
Turn-On Time	t _{d(on)}	V _{DD} = 10V		14.5	25	
	t _r	I _D = 1.0A		42	62	nS
Turne Off Time a	t _{d(off)}	V _{GEN} = 4.5V		46	67	119
Turn-Off Time	tf	R _G =6Ω		34	43	

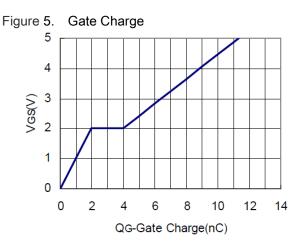
NOTE1: The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C.

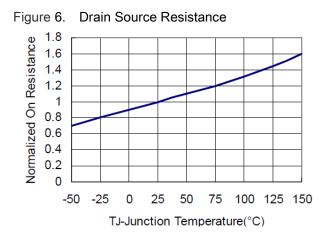

NOTE2: The data tested by pulsed , pulse width \leq 300uS , duty cycle \leq 2%


NOTE3: The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.


REV1.0 -NOV 2011 RELEASED - -4 -




TYPICAL PERFORMANCE CHARACTERISTICS



REV1.0 -NOV 2011 RELEASED - - 5 -

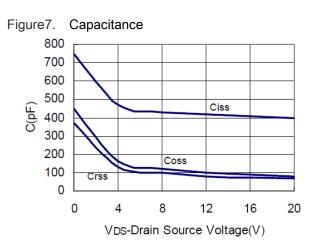
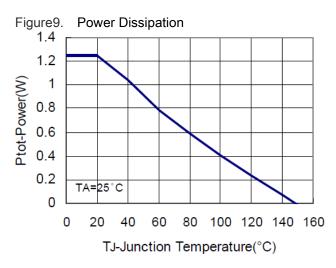
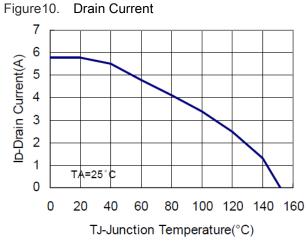


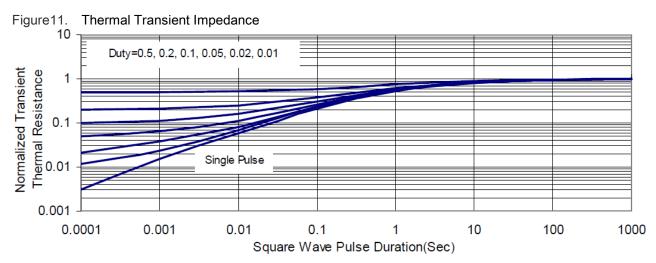
Figure 8. Source Drain Diode Forward

10

(V)

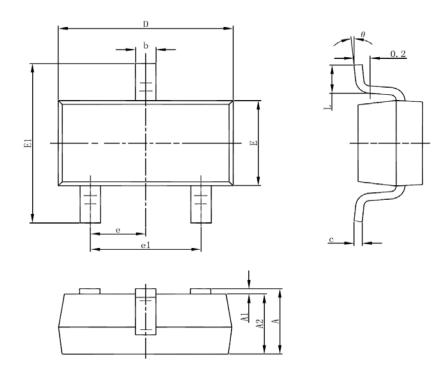

TJ=150°C


TJ=25°C


0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

VSD-Source Drain Voltage(V)



REV1.0 -NOV 2011 RELEASED - -6 -

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

SYMBOL	MIN	MAX		
Α	1.050	1.250		
A1	0.000	0.100		
A2	1.050	1.150		
b	0.300	0.500		
С	0.100	0.200		
D	2.820	3.020		
E	1.500	1.700		
E1	2.650	2.950		
е	0.950(BSC)			
e1	1.800	2.000		
L	0.300	0.600		
θ	0°	8°		

REV1.0 -NOV 2011 RELEASED - -7 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 -NOV 2011 RELEASED - - 8 -