AM3836N

Analog Power

N-Channel 30-V (D-S) MOSFET With Schottky Diode

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe TSOP-6 saves board space
- Fast switching speed
- High performance trench technology

SCHOTTKY PRODUCT SUMMARY										
V _{KA} (V)	Diode	I _F (A)								
30	(1.0								
		DP-6 View 6 Ⅲ K 5 Ⅲ N/C 4 Ⅲ D	G G S N-Channel MOSF	K O A A						

ringh performance trenen teenhology			,				
ABSOLUTE MAXIMUM RATINGS (T _A	$= 2\overline{5^{\circ}C \text{ UNLES}}$	SS ()THER	WISE	NO	TED)	
Parameter						Limit	Units
Drain-Source Voltage (MOSFET)	V _{DS}	5	30				
Reverse Voltage (Schottky)						30	V
Gate-Source Voltage (MOSFET)				V _{GS}	5	±12	
Continuous Drain Current (T.= 150° C) (MO)	SFFT) ^a			In		± 3.5	
verse Voltage (Schottky) V_{KA} 30te-Source Voltage (MOSFET) V_{GS} ± 12 ntinuous Drain Current ($T_J=150^{\circ}C$) (MOSFET)^a $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ I_D ± 3.5 lsed Drain Current (MOSFET)^b I_{DM} ± 16 ntinuous Source Current (MOSFET Diode Conduction)^a I_S 1.25 erage Forward Current (Schottky) I_F 0.5							
Pulsed Drain Current (MOSFET) ^b						±16	A
Continuous Source Current (MOSFET Diode Conduction) ^a						1.25	
Average Forward Current (Schottky)						0.5	
Pulsed Forward Current (Schottky)	Forward Current (Schottky)				[8	
Maximum Bower Dissination (MOSEET) ^a		T	=25°C			1.3	
Maximum Fower Dissipation (MOSPET)		T,	$_{A}=70^{\circ}C$	тр		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W
Maximum Dower Dissinction (Schottly) ^a		T,	_A =25°C		0.8 1.0	vv	
Maximum Power Dissipation (Schottky)		T	₄ =70°C			0.6	
Operating Junction and Storage Temperature	e Range			Т _Ј , Т	stg	-55 to 150	°C
THERMAL RESISTANCE RATIN	NGS						
Parameter			Sym	bol	Μ	aximum	Units
	t <= 10 sec	;	п		100		°C/W
Maximum Junction-to-Ambient ^a	Steady-State	e	$R_{\theta J}$	A		166	°C/W
Notes							

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

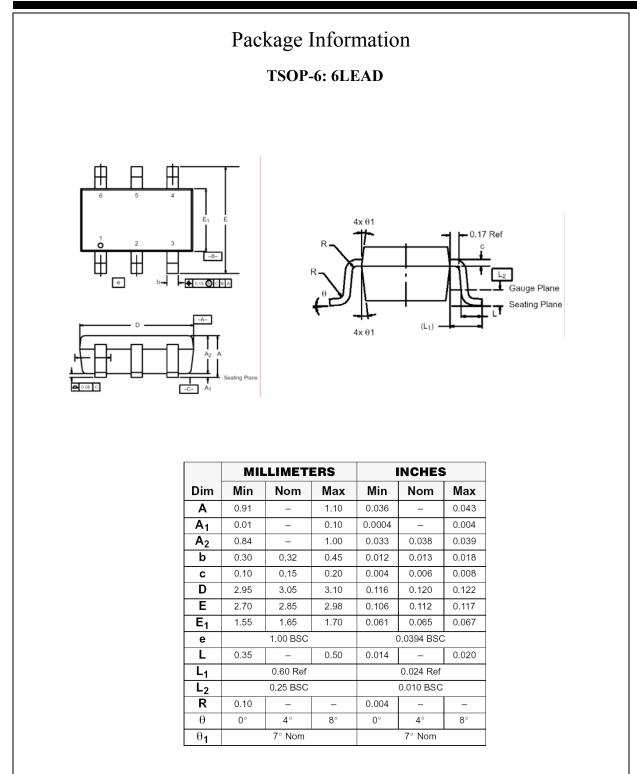
b. Pulse width limited by maximum junction temperature

Analog Power

AM3836N

SPECIFICATIONS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)											
D			T (C)	Limits			Unit				
Parameter	Symbol		Test Conditions		Тур	Max					
Static											
Gate-Threshold Voltage	V _{GS(th)}		$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	0.7			V				
Gate-Body Leakage	I _{GSS}		$V_{DS} = 0 V, V_{GS} = 12 V$			±100	nA				
Zero Gate Voltage Drain Current	I _{DSS}	$\frac{V_{DS} = 24 \text{ V}, \text{ V}_{GS} = 0 \text{ V}}{V_{DS} = 24 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55^{\circ}\text{C}}$				1 25	uA				
On-State Drain Current ^A	I _{D(on)}		$V_{DS} = 5 V, V_{GS} = 4.5 V$	6			А				
Drain-Source On-Resistance ^A	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.5 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 3 \text{ A}$				63 110	mΩ				
Forward Tranconductance ^A	$g_{\rm fs}$		$V_{\rm DS} = 15 \text{ V}, I_{\rm D} = 3.5 \text{ A}$		6.9		S				
Diode Forward Voltage	V _{SD}		$I_{\rm S} = 2.3$ A, $V_{\rm GS} = 0$ V		0.8		V				
Dynamic ^b											
Total Gate Charge	Qg		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$		6.3						
Gate-Source Charge	Q _{gs}	$v_{DS} = 15 v, v_{GS} = 4.5 v,$ $I_D = 3.5 A$			0.9		nC				
Gate-Drain Charge	Q _{gd}		$I_{\rm D} = 5.5$ A		1.9						
Turn-On Delay Time	t _{d(on)}				16						
Rise Time	t _r	V_{DD} = 25 V, R_L = 25 Ω , I_D = 1 A,			5		nS				
Turn-Off Delay Time	t _{d(off)}		$V_{\text{GEN}} = 10 \text{ V}$		23						
Fall-Time	t _f				3						
SCHOTTKY SPECIFICATION	NS (T _A = 2	5°C	CUNLESS OTHERWISE NO	TED)							
Paramotor	C) make		Test Conditions		Limits						
Parameter	Symb	100			Тур	Max	Unit				
Forward Voltage Drop	V _F		I _F = 0.5 A			0.48	V				
Forward Voltage Drop	۷F	ľ	$I = 0.5 \text{ A} = 1.25^{\circ}\text{C}$			0.4	17				

Symbol	Test Conditions		Unit				
Symbol	Test conditions	Min	Тур	Max	Unit		
V_	I _F = 0.5 A			0.48	V		
۷F	I _F = 0.5 A, T _J = 125 ^o C			0.4	V		
I _m	V _r = 30 V			0.1			
	$V_r = 30 V, T_J = 75^{\circ}C$			1	mA		
	$V_r = 30 V, T_J = 125^{\circ}C$			10			
C _T	V _r = 10 V		31		pF		
	V _F	$V_{F} = \frac{V_{F} = 0.5 \text{ A}, \text{T}_{J} = 125^{\circ}\text{C}}{V_{r} = 30 \text{ V}}$ $I_{rm} = \frac{V_{r} = 30 \text{ V}, \text{T}_{J} = 75^{\circ}\text{C}}{V_{r} = 30 \text{ V}, \text{T}_{J} = 125^{\circ}\text{C}}$	$V_{F} = \frac{I_{F} = 0.5 \text{ A}}{I_{F} = 0.5 \text{ A}, T_{J} = 125^{\circ}\text{C}}$ $I_{rm} = \frac{V_{r} = 30 \text{ V}}{V_{r} = 30 \text{ V}, T_{J} = 75^{\circ}\text{C}}$ $V_{r} = 30 \text{ V}, T_{J} = 125^{\circ}\text{C}$	$V_{F} = \frac{I_{F} = 0.5 \text{ A}}{I_{F} = 0.5 \text{ A}, T_{J} = 125^{\circ}\text{C}}$ $I_{m} = \frac{V_{r} = 30 \text{ V}, T_{J} = 75^{\circ}\text{C}}{V_{r} = 30 \text{ V}, T_{J} = 125^{\circ}\text{C}}$	Symbol Test Conditions Min Typ Max V_F $I_F = 0.5 \text{ A}$ 0.48 0.48 $I_F = 0.5 \text{ A}$, $T_J = 125^{\circ}$ C 0.4 0.4 I_m $V_r = 30 \text{ V}$ 0.1 $V_r = 30 \text{ V}$, $T_J = 75^{\circ}$ C 1 $V_r = 30 \text{ V}$, $T_J = 125^{\circ}$ C 10		


Notes

a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.

b. Guaranteed by design, not subject to production testing.

Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.

Publication Order Number: DS-AM3836_A

