1 T OV
(V)
‘ &mm
523
v
<
-l
mm
'Sw
0 5
vV Qo
O £
Q 0
ouv
rl
.Km
20
O = &
o & 3
MmO
= O
838 ¢

Am386™ Microprocessors
for Personal Computers

Data Book

ADVY ANCED MI CRO DEVICES n

© 1992 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchan-
tability or fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the cir-
cuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change
without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences
resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of
undescribed features or parameters.

Trademarks
AMD is a registered trademark and Am386 is a trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMD n

Am386 MICROPROCESSORS FOR
PERSONAL COMPUTERS
DATA BOOK

Am386DX/DXL Microprocessor DataSheet
Am386SX/SXL Microprocessor DataSheet

Table of Contents

n AMD

Advanced Micro Devices’ microprocessors are breaking performance barriers. The
cost effective Am386 microprocessors are ideal for both desktop and battery pow-
ered portable computers. This data book describes the 32-bit Am386 Microprocessor
Family with data sheets on Am386DX/DXL and Am386SX/SXL microprocessors.

Am386 microprocessors are the fastest available with 40 MHz on the Am386DXL
microprocessor, a 21% performance increase over the 33-MHz version; and 25 MHz
on the Am386SXL microprocessor, a 25% performance increase over the 20-MHz
version. For portable systems the Am386DXL/SXL microprocessors’ true static
design allows longer battery life by offering low operating power consumption and a
standby mode.

We also offer 3-V Am386 microprocessors optimized for notebook applications.
Information on these can be found in the AMD® 3-Volt System Logic for Personal
Computers Data Book, publication #17028.

Remember, our partnership helps you gain and keep the competitive edge. We are
not your competition.

IR

Robert G. McConnell
Vice President
Personal Computer Products Division

Introduction

FINAL

Am386™DX/DXL

High-Performance, Low-Power, 32-Bit Microprocessor

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS
H Ideal for portable PCs
—True static design for long battery life
(Am386DXL microprocessor)

—Typical standby lcc <20 pA at DC (0 MHz)
(Am386DXL microprocessor)

—Typical operating lcc=210 mA at 33 MHz

—Lower power consumption than Intel i386DX or
Intel i386SX

—Small footprint 132-pin PQFP package

—Wide range of chip sets and BIOS available to
support standby mode capabilities

—Performance on demand (0 to 40 MHz)

B Ideal for desktop PCs
—40-, 33-, 25-, and 20-MHz operating speeds
—Lower heat dissipation facilitates fan reduction or

elimination for cost savings and noise reduction

—Pin-for-pin replacement for Intel i386DX

B Compatible with 386DX systems and software

B Supports 387DX-compatible math
coprocessors

B AMD advanced 0.8 micron CMOS technology

GENERAL DESCRIPTION

The Am386DX/DXL microprocessor is a high-speed,
true static implementation of the Intel i386DX micropro-
cessor. ltis ideal for both desktop and battery-powered
portable personal computers. For desktop PCs, the
Am386DXL microprocessor offers a 21% increase in
the maximum operating speed from 33 to 40 MHz. Also,
this device offers lower heat dissipation, allowing sys-
tem designers to remove or reduce the size and cost of
the system cooling fan.

For portables, the Am386DXL microprocessor’s true
static design offers longer battery life with low operating
power consumption and standby mode. At 33 MHz, this

device has 40% lower operating lcc than the Intel
i386DX. Standby mode allows the Am386DXL micro-
processor to be clocked down to 0 MHz (DC) and retain
full register contents. In standby mode, typical current
draw is less than 20 pA, nearly a 1000x reduction in
power consumption versus the Intel i386DX or Intel
i386SX.

Additionally, the Am386DXL microprocessor is avail-
able in a small footprint 132-pin plastic quad flat pack
(PQFP) package. This surface-mount package is 40%
smaller than PGA, allowing smaller, lower-cost board
designs without the need for a socket.

Typical lcc
250 +
200+ O Intel i386DX @ 5.0 V
A Am386DX/DXL CPU@ 5.0V
lc (MA) 150+ O Am386DXLV CPU @3.3V

100 il

50+

0 } } } - }
0o 2 16 20 25 33

Frequency (MHz)
Note: Inputs at Ve or Vss.

Typical Power Consumption

Publication #: 15021 Rev.D Amendment: /0
Issue Date: October 1992

a AMD

BLOCK DIAGRAM
Segmentation Unit Paging Unit Bus Control
HOLD, INTR,
- / 3-Input <:—_~> Request NMI, ERROR,
Eftoeivo Addross Bus _/ - > Adder Adder is 71 | |Pricritizer [** BUSY, RESET,
" HLDA, FLT
2
/ ; 32 e
Effocive Addiesm Bus] > Descriptor Page 8
7 Registers Cache £
32 ©
<
[+
L
Limit and Contdrol _g
::> Attribute :'1> an KLr—— o
PLA Attribute
g PLA :l‘> Address BE3-BEG
@ Driver A31-A2
g
5 =
Protection I 2
Test Unit B E - -
o = —
2 3 - MO, D/T,
8 = Pipeline/ W/R. [OCK
A Internal Control Bus k] %)| Bus Size [4-p KD—é B_S‘1_’
A N [Control ADS, BS16,
8 s NA, READY
5 3
MUX/
Barrel
X Pre- Trans- €% D31-D0O
ir:juger, N Dec%de L Instruction :'> fetcher/ <;|:P32> ceivers
er V] and —1 Decoder Limit
Status Sequencing Checker
X Flags
Multiply/
Divide
Control ?-Decotlied Code | 1 g—Bgte
ROM nstruction | stream ode
Register — <: Queue Queue
File
ALY C | Instruction 32 Bit Instruction
t
ﬁ Control ontro Predecode Prefetch ,
ALU Dedicated ALU Bus]
7
32
15021B-001

2 Am386 Microprocessors for Personal Computers

AMD a

FUNCTIONAL DESCRIPTION

True Static Operation (Am386DXL CPU)

The Am386DXL microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am386DXL device eliminates the minimum operating
frequency restriction. It may be clocked from its maxi-
mum speed of 40 MHz all the way down to 0 MHz (DC).
System designers can use this feature to design true
32-bit battery-powered portable PCs with long battery
life.

Standby Mode (Am386DXL CPU)

This true static design allows for a standby mode. At any
of its operating speeds (40 MHz to DC), the Am386DXL
microprocessor will retain its state (i.e., the contents of
all of its registers). By shutting off the clock completely,
the device enters standby mode. Since power con-
sumption is a function of clock frequency, operating
power consumption is reduced as the frequency is low-
ered. In standby mode, typical current draw is reduced
to less than 20 pA at DC.

Not only does this feature save battery life, but it also
simplifies the design of power-conscious notebook
computers in the following ways:

1. Eliminates the need for software in BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock since the system does not need to know
the processor state.

Lower Operating lcc

True static design also allows lower operating lcc when
operating at any speed. See the following graph for typi-
cal current at operating speeds.

Performance On Demand

The Am386DXL microprocessor retains its state at any
speed from 0 MHz (DC) to its maximum operating speed
(20, 25, 33, or 40 MHz). With this feature, system de-
signers may vary the operating speed of the system to
extend the battery life in portable systems.

For example, the system could operate at low speeds
duringinactivity or polling operations. However, uponin-
terrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the systemcanbe returnedto alow (or 0 MHz) operating
speed without losing its state. This design maximizes
lite while achieving optimal performance.

Am386DX/DXL Microprocessor Data Sheet 3

n AMD

CONNECTION DIAGRAMS
132-Lead Ceramic Pin Grid Array (PGA) Package —Top Side View

14

13

12

1

10

Note: NC = Not connected; connection of any NC pin may cause a malfunction or incompatability with future

A C D E F G H J K L M N P
Ve Vss BST6HOLDADS Vss Voc D2 D3 D4 D6 HLDA D9 Vs
O O OO OO OO O O OO0 OO0 O
BES BEZ2 BET NA NC NCREADY D! Vss D5 D8 Ve D11 D13
O O OO OO OO O O OO0 OO0 O

MAG NC Vo Vee BEO CLK2 Ve DO Vss D7 Ve D10 D12 D14
O O OO OO OO0 O O O0OO0OO0OOo
DIC Vs Vss D15 D16 D18
O O O O O O
Vee W/R LOCK Vss D17 D19
o O O O O O
Vss BUSY RESET D20 D21 D22
O O O O O O
ERROR NMI PEREQ Vss D23 Vee
O O O
Vee INTR NC Vee Vee D24
O O O O O O
Vss NC NC D28 D25 Vss
O O O O O O
Vee Vss Voo D31 D27 D26
O O O O O O
NC NC A2 Vss Vee D29
O O O O O O
A3 A4 A6 A9 A12 Vss Voo A19 Vss A25 A28 Ve Vss D30
O O OO0 OO OO O O O 0 O O
Vss A5 A7 A10 A13 Vss Voe A18 Vss A22 A24 A29 A31 Ve
O O OO0 OO OO O 0O OO0 0O
Veec Vss A8 A11 A14 A15 A16 A17 A20 A21 A23 A26 A27 A30
\O O OO0 OO OO O O0OO0OO0OO0OO0
A B (97 D E F G H J K L M N P

shippings of the Am386DX/DXL microprocessor.

1

10

Am386 Microprocessors for Personal Computers

a
a
=
< - o~ ™ < 0 © ~) o e - N 2] b
(=] o 2] © @ < Q q (=] 0 < ™ 1]
ol 20203038080208020805050505040
~ Q Q -~ N~ © o -~
z| 8030 0 3080 8020808050 5050E50230
© [<2] <} I — o] I o 1] o Q <
z =| JO030 £0 20 R0 80 200500 5050 £020
w [s2] < =] Q
) - N
@ x| 8030 g0 508030
[+ o 2 3 3] [s2]
| > 80 20 =0 20 2080
o
mv T mOmO mo 2 a0 z08a0
3} £ B
o Q Q [} (=] Q
g ol zO £0 £0 = 2020 £0
—_ o
~ < 7o) N
-0 vl zO 20 0 3020$0
S) ©
£ = 020 o 20 208
c W wl 20z0 0 _%O No_wo
g % 20202 L0503
e a| zOz0 20 2000
m M g 0 _ M
- o| 20%0 20 20 £0 20 20 £0 $0FO 0 0[O0
e = a
[o = >~ 2 o
<o =| 2020 3020£02050308050 020020
o E T @
Q 3 Q 9 Q (o} 6] (0] (s2] Q
z 8 <\ 20 £0 20 20 £0 20 20E0 20 20 80800 20
° 8 N i
T
O T - ~ ™ < 0 © ~ ® o o - o ™ <
w @« — -~ - -~ -~
z 9
2
o8
O v

Am386DX/DXL Microprocessor Data Sheet

shippings of the Am386DX/DXL microprocessor.

Note: NC = Not connected; connection of any NC pin may cause a malfunction or incompatability with future

o\

AMD

CONNECTION DIAGRAMS (continued)
PGA Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.
A2 C4 Do H12 ADS E14 A4 A1 A2
A3 A3 D1 H13 BEO E12 B4 A5 A6
A4 B3 D2 H14 BET Cc13 B6 A7 A9
A5 B2 D3 J14 BE2 B13 B12 A10 B1
A6 C3 D4 K14 BE3 A13 Ccé A4 B5
A7 Cc2 D5 K13 BS16 C14 Cc7 C5 B11
A8 C1 D6 L14 BUSY B9 E13 c12 B14
A9 D3 D7 K12 CLK2 F12 F13 D12 C11
A10 D2 D8 L13 D/C A1 G2 F2
Al1 D1 D9 N14 ERROR A8 G3 F3
A12 E3 D10 M12 HLDA M14 G12 F14
A13 E2 D11 N13 HOLD D14 G14 J2
A14 E1 D12 N12 INTR B7 L12 J3
A15 F1 D13 P13 LOCK c10 M3 J12
A16 G1 D14 P12 M/io A12 M7 J13
A17 H1 D15 M11 NA D13 M13 M4
A18 H2 D16 N11 NMI B8 N4 M8
A19 H3 D17 N10 PEREQ c8 N7 M10
A20 J1 D18 P11 READY G13 P2 N3
A21 K1 D19 P10 RESET Cc9 P8 P6
A22 K2 D20 M9 W/R B10 P14
A23 L1 D21 N9
A24 L2 D22 P9
A25 K3 D23 N8
A26 M1 D24 P7
A27 N1 D25 N6
A28 L3 D26 P5
A29 M2 D27 N5
A30 P1 D28 M6
A31 N2 D29 P4
D30 P3
D31 M5

Am386 Microprocessors for Personal Computers

AMD a

CONNECTION DIAGRAMS (continued)
PGA Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name | No. Name | No. Name | No. Name | No. Name
A1 Vee B9 BUSY D3 A9 H1 A17 L13 D8 N7 Vee
A2 Vss B10 W/R D12 Vee H2 A18 L14 D6 N8 D23
A3 A3 B11 Vss D13 NA H3 A19 M1 A26 N9 D21
A4 NC B12 NC D14 HOLD H12 Do M2 A29 N10 D17
A5 Vee B13 BE2 E1 Al4 H13 D1 M3 Vee N11 D16
A6 Vss B14 Vs E2 A13 H14 D2 M4 Vss N12 D12
A7 Vee c1 A8 E3 A12 J1 A20 M5 D31 N13 D11
A8 ERROR | C2 A7 E12 BEO J2 Vss M6 D28 N14 D9
A9 Vss C3 A6 E13 NC J3 Vss M7 Vee P1 A30
A10 Vee C4 A2 E14 ADS J12 Vss M8 Vss P2 Vee
A1 D/C C5 Vee F1 A15 J13 Vss M9 D20 P3 D30
A12 Mo cé NC F2 Vss Ji4 D3 M10 Vs P4 D29
A13 BE3 c7 NC F3 Vss K1 A21 Mi1 D15 P5 D26
Al4 Vee c8 PEREQ | F12 CLK2 K2 A22 M12 D10 P6 Vss
B1 Vss Cc9 RESET | F13 NC K3 A25 M13 Vee P7 D24
B2 A5 Cio [OCK | F14 Vss Ki2 D7 M14 HLDA P8 Vee
B3 A4 C11 Vss G1 A16 K13 D5 N1 A27 P9 D22
B4 NC C12 Ve G2 Voo K14 D4 N2 A31 P10 D19
B5 Vss Cc13 BET G3 Vee L1 A23 N3 Vss P11 D18
B6 NC C14 BST6 G12 Voo L2 A24 N4 Veo P12 D14
B7 INTR D1 A1 G13 READY| L3 A28 N5 D27 P13 D13
B8 NMI D2 A10 G14 Ve L12 Ve N6 D25 P14 Vs

Am386DX/DXL Microprocessor Data Sheet

a AMD

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package — Top Side View

s PP P22 838 N3 8388 s8R 3338358 8

>OoO000>000>>0000>00>00>>000>

HInnnnnnninnnnnnnmnmmnnm

02X LLIANTL2RE2RIPN-23858
Vss] 1@
Vo [2
D13 [3
D12 [4
D11 [5
D10] 6
Des [7
HLDA [] 8
D8 [o
Ves [10
Vss [11
D7 4 12
De [13
Ds [14
Da [15
Voo [16
D3 [17
D2 [18
D1] 19
Do] 20
Vss T 21
Vee [22
Vss [23
CLK2 [] 24
Vss:25
READY [26
ADS [27
HOLD [28
BS1e [] 29
NA [30
BEO [] 31
BET [32
BEz [33

388538337923 2L522353B33IB85388

1 s gagnnm

e B TR TR R R

1 %m& E -

Notes: Pin 1 is marked for orientation.

105 |1 Vs

NC [61

104 1 A31

NC [62

103 [A30

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future

shippings of the Am386DX/DXL microprocessor.

NC L[63
Vss] 64

102 1 A29

101 1 A28

Ves [65

100 (1 A27

Vss =] 66

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
7
70
69
68
67

A19
A18
A17
Veo
A16
VSS
A15
Al14
Vss
A13
A12
A1
A10
A9
A8
VCC

A6
A5
A4
A3
A2

Am386 Microprocessors for Personal Computers

AMD n

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package — Pin Side View

41 1 DC

ERROR
FLT

55 1 Vss

42 1 LOCK
43 [J WR

45 1 RESET
46 [1 BUSY

47 1

50 [PEREQ

36 1 NC
37 23 NC
38 [BE3
39 [NC
40 [J Mio
44 [Vss
48 [Vss
49 1 Vo
51 1 Vss
52 [NMI
53 [INTR
56 1 Voo
57 1 Vss
58 [Ve
59 1 NC
60 =1 NC
61 —1 NC
62 1 NC
63 —1 NC

8 4
> =
i
S8

9
8
7
6
5
4
3
2
1

Ves 1132
D14 1131
D15 C]130
D16 []129
D17 C]128
Ve 4127
D18 []126
D19 []125
D20 1124
Voo 4123
Ves 122
D21 3121
D22 1120
D23 [—]119
D24 []118
Voo 4117
D2s C]116
D26 1115
Ves 114
D27 []118
D2s 1112
Ves 111
Voo 1110
D29 [—]109
D30 []108
D31 107
Vee []106
Vss 1105
A31 [J104
A30 []103
A29 []102
A28 1101
A27 £]100

Notes: Pin 1 is marked for orientation.
NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future
shippings of the Am386DX/DXL microprocessor.

64] Vs

65 |—1 Vss

66 | Vss

A23
A24
A25
A26
Voo

Am386DX/DXL Microprocessor Data Sheet

ﬂ AMD

CONNECTION DIAGRAMS (continued)
PQFP Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.
A2 67 Do 20 ADS 27 36 2 1
A3 68 D1 19 BEO 31 37 16 10
A4 69 D2 18 BET 32 39 22 11
A5 70 D3 17 BE2 33 59 34 21
A6 71 D4 15 BE3 38 60 49 23
A7 72 D5 14 BS16 29 61 56 25
A8 74 Dé 13 BUSY 46 62 58 35
A9 75 D7 12 CLK2 24 63 73 44
A10 76 D8 9 D/C 41 85 48
A1 77 D9 7 ERROR 47 99 51
A12 78 D10 6 FLT 54 106 55
A13 79 D11 5 HLDA 8 110 57
A4 81 D12 4 HOLD 28 117 64
A15 82 D13 3 INTR 53 123 65
A16 84 D14 131 LOCK 42 127 66
A17 86 D15 130 Mo 40 80
A18 87 D16 129 NA 30 83
A19 88 D17 128 NMI 52 90
A20 89 D18 126 PEREQ 50 91
A21 93 D19 125 READY 26 92
A22 94 D20 124 RESET 45 105
A23 95 D21 121 W/R 43 111
A24 96 D22 120 114
A25 97 D23 119 122
A26 98 D24 118 132
A27 100 D25 116
A28 101 D26 115
A29 102 D27 113
A30 103 D28 112
A31 104 D29 109
D30 108
D31 107
10 Am386 Microprocessors for Personal Computers

CONNECTION DIAGRAMS (continued)
PQFP Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name | No. Name | No. Name | No. Name | No. Name
1 Vss 23 Vss 45 RESET | 67 A2 89 A20 111 Vss
2 Vee 24 CLK2 46 BUSY 68 A3 90 Vss 112 D28
3 D13 25 Vss 47 ERROR| 69 A4 91 Vss 113 D27
4 D12 26 READY | 48 Vss 70 A5 92 Vss 114 Vss
5 D11 27 ADS 49 Vee 71 A6 93 A21 115 D26
6 D10 28 HOLD 50 PEREQ| 72 A7 94 A22 116 D25
7 D9 29 BS16 51 Vss 73 Voo 95 A23 117 Vee
8 HLDA 30 NA 52 NMI 74 A8 9 A24 118 D24
9 D8 31 BEO 53 INTR 75 A9 97 A25 119 D23
10 Vss 32 BET 54 FLT 76 A10 98 A26 120 D22
1 Vss 33 BE2 55 Vss 77 A1 99 Vee 121 D21
12 D7 34 Vee 56 Vee 78 A12 100 A27 122 Vss
13 D6 35 Vss 57 Vss 79 A13 101 A28 123 Vee
14 D5 36 NC 58 Vee 80 Vss 102 A29 124 D20
15 D4 37 NC 59 NC 81 A14 102 A30 125 D19
16 Vee 38 BE3 60 NC 82 A15 104 A31 126 D18
17 D3 39 NC 61 NC 83 Vss 105 Vss 127 Vee
18 D2 40 Y/} 62 NC 84 A16 106 Vee 128 D17
19 D1 41 D/C 63 NC 85 Vee 107 D31 129 D16
20 Do 42 LOCK 64 Vss 86 A17 108 D30 130 D15
21 Vss 43 WR 65 Vss 87 A18 109 D29 131 D14
22 Vee 44 Vss 66 Vss 88 A19 110 Vee 132 Vss

Am386DX/DXL Microprocessor Data Sheet

1

n AMD

LOGIC SYMBOL
2X Clock —{CLK2 D31-D0 <__37_>
< T30_| A31-A2
Addrsls]g FLT l¢e——
< 4 BE3-BEO
RESET [¢——
NMI [¢——
—P|BsTe INTR j&———
Bus | ——— ADS
Cycle —
Control » NA
——»| READY
PEREQ [¢——
+—Wwr BUSY ¢——
Bus | «—— D6 ERROR [¢———
Cycle
Definition | €| W10
4——[OCK
HOLD HLDA

I

Bus Arbitration
Control

Data Bus

Float

Interrupt

Control

Math
Coprocessor
Control

15021B-003

12 Am386 Microprocessors for Personal Computers

AMD a

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

A 80386DXL 33

T— OPTIONAL PROCESSING (PQFP Only)

None = Trimmed and Formed PQFP in High Temp Trays
/F = Ringed PQFP in Horizontal Tubes

TEMPERATURE RANGE

Blank = Commercial (Tcase = 0°C to +85°C for PGA)
(Tcase = 0°C to +100°C for PQFP)

SPEED OPTION

-40=40 MHz
-33=33 MHz
-25=25 MHz
-20=20 MHz

DEVICE NUMBER/DESCRIPTION

80386DX/DXL
Am386DX/DXL High-Performance, Low-Power, 32-Bit Microprocessor

PACKAGE TYPE

A = 132-Lead Ceramic Pin Grid Array (CGX 132)
NG = 132-Lead Plastic Quad Flat Pack (PQB 132)

Valid Combinations

Valid Combinations
Valid Combinations lists configurations planned to
be supported in volume for this device. All speeds
may not be available in all package combinations.

Consult the local AMD sales office to confirm
availability of specific valid combinations and to

40
AB0386DX/DXL -33
-25
-20

NG80386DX 40, —40/F

33, -33/F

NG80386DX/DXL oo our

check on newly released combinations.

Am386DX/DXL Microprocessor Data Sheet 13

n AMD

PIN DESCRIPTION

A31-A2

Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS
Address Status (Active Low; Output)
Indicates that a valid bus cycle definition and address

are being driven at the Am386DX/DXL microprocessor
pins.

BE3-BEO

Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take part in a
bus cycle.

BS16

Bus Size 16 (Active Low; Input)

Allows direct connection of 32-bit and 16-bit data buses.

BUSY
Busy (Active Low; input)
Signals a busy condition from a processor extension.

CLK2

Clock (Input)

Provides the fundamental timing for the Am386DX/DXL
microprocessor.

D31-DO

Data Bus (Inputs/Outputs)

Inputs data during memory, 1/0, and interrupt acknow-
ledge read cycles and outputs data during memory and
1/0 write cycles.

D/C

Data/Control (Output)

A bus cycie definition pin that distinguishes data cycles,
either memory or /O, from control cycles which are:
interrupt acknowledge, halt, and instruction fetching.
ERROR

Error (Active Low; Input)

Signals an error condition from a processor extension.

FLT
Float (Active Low; Input)

An input signal which forces all bidirectional and output
signals, including HLDA, to the three-state condition.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

HLDA

Bus Hold Acknowledge (Active High; Output)
Indicates that the Am386DX/DXL microprocessor has
surrendered control of its local bus to another bus
master.

HOLD

Bus Hold Request (Active High; Input)

Allows another bus master to request control of the local
bus.

INTR

Interrupt Request (Active High; Input)

A maskable input that signals the Am386DX/DXL micro-
processor to suspend execution of the current program
and execute an interrupt acknowledge function.

LocK

Bus Lock (Active Low; Output)

A bus cycle definition pin that indicates that other sys-
tem bus masters are denied access to the system bus
while it is active.

Mo

Memory 1/0 (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA

Next Address (Active Low; Input)

Used to request address pipelining.

NC

No Connect

Should aiways remain unconnected. Connection of a
NC pin may cause the processor to malfunction or be
incompatible with future steppings of the Am386DX/
DXL microprocessor.

NMI

Non-Maskable Interrupt Request

(Active High; Input)

A non-maskable input that signals the Am386DX/DXL
microprocessor to suspend execution of the current pro-
gram and execute an interrupt acknowledge function.
PEREQ

Processor Extension Request (Active High; Input)
Indicates that the processor extension has data to be
transferred by the Am386DX/DXL microprocessor.
READY

Bus Ready (Active Low; Input)

Terminates the bus cycle.

RESET

Reset (Active High; Input)

Suspends any operation in progress and places the
Am386DX/DXL microprocessor in a known reset state.
Vee

System Power (Input)

Provides the +5-V nominal DC supply input.

Vss

System Ground (Input)

Provides 0-V connection from which all inputs and out-
puts are measured.

WR

Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

14 Am386 Microprocessors for Personal Computers

AMD a

BASE ARCHITECTURE

Introduction

The Am386DX/DXL microprocessor consists of a
central processing unit, a memory management unit,
and a bus interface.

The central processing unit consists of the execution
unit and instruction unit. The execution unit contains
the eight 32-bit general purpose registers that are used
for both address calculation, data operations, and a
64-bit barrel shifter used to speed shift, rotate, multiply,
and divide operations. The multiply and divide logic
uses a 1-bit per cycle algorithm. The multiply algorithm
stops the iteration when the most significant bits of
the multiplier are all zero. This allows typical 32-bit
multiplies to be executed in under 1 ms. The instruction
unit decodes the instruction op-codes and stores them
in the decoded instruction queue for immediate use by
the execution unit.

The Memory Management Unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability and efficient
sharing. The paging mechanism operates beneath and
is transparent to the segmentation process to allow
management of the physical address space. Each
segment is divided into one or more 4-Kb pages. To
implement a virtual memory system, the Am386 DX/DXL
microprocessor supports full restartability for all page
and segment faults.

Memory is organized into one or more variable length
segments, each up to 4 Gb in size. A given region of the
linear address space, a segment, can have attributes
associated with it. These attributes include its location,
size, type (i.e., stack, code, or data), and protection
characteristics. Each task on an Am386DX/DXL micro-
processor can have a maximum of 16,381 segments of
up to 4 Gb each, thus providing 64 tb (trillion bytes) or
virtual memory to each task.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the
operating system from each other. The hardware
enforced protection allows the design of system with a
high degree of integrity.

The Am386DX/DXL microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro-
tected Virtual Address Mode (Protected Mode). In Real
Mode, the Am386DX/DXL device operates as a very
fast 8086 but with 32-bit extensions, if desired. Real
Mode is required primarily to setup the processor for
Protected Mode operation. Protected Mode provides

address to the sophisticated memory management,
paging, and privilege capabilities of the processor.
Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386DX/DXL microproces-
sor operating system by the use of paging and the I/O
Permission Bitmap.

Finally, to facilitate high-performance system hardware
designs, the Am386DX/DXL microprocessor bus inter-
face offers address pipelining, dynamic data bus sizing,
and direct Byte Enable signals for each byte of the
data bus. These hardware features are described fully
beginning in the Functional Data section.

Register Overview
The Am386DX/DXL microprocessor has 32 register re-
sources in the following categories.

e General Purpose Registers

e Segment Registers

¢ Instruction Pointer and Flags

e Control Registers

e System Address Registers

e Debug Registers

* Test Registers

The registers are a superset of the 8086, 80186, and
80286 registers, so all 16-bit 80186 and 80286

registers are contained within the 32-bit Am386DX/DXL
microprocessor.

Figure 1 shows all the Am386DX/DXL microprocessor
base architecture registers that include the general ad-
dress and data registers, the instruction pointer, and the
flags register. The contents of these registers are task-
specific, so these registers are automatically loaded
with a new context upon a task switch operation.

The base architecture also includes six directly accessi-
ble segments, each up to 4 Gb in size. The segments
are indicated by the selector values placed in
Am386DX/DXL CPU segment registers of Figure 1.
Various selector values can be loaded as a program
executes, if desired.

The selectors are also task specific, so the segment reg-
isters are automatically loaded with new context upon a
task switch operation.

The other types of registers Control, System Address,
Debug, and Test are primarily used by system software.

Am386DX/DXL Microprocessor Data Sheet 15

n AMD

General Data and Address Registers

31 16 15 0
AX EAX
BX EBX
CX ECX
DX EDX
S| ESI
DI EDI
BP EBP
SP ESP
Segment Selector Registers
15 : 0
CS Code
gs Stack
DS
ES Data
FS
GS
Instruction Pointer and Flags Registers
31 16 15 0
IP EIP
FLAGS EFLAGS
15021B-004

Figure 1. Base Architecture Registers

Register Descriptions
General-Purpose Registers

The eight general-pumpose registers of 32 bits hold data
or address quantities. The general registers, Figure 2,
support data operands of 1, 8, 16, 32, and 64 bits and bit
fields of 1 to 32 bits. They support address operands of
16 and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be ac-
cessed separately. This is done by using the 16-bit
names of the registers AX, BX, CX, DX, SI, DI, BP, and
SP. When accessed as a 16-bit operand, the upper
16 bits of the register are neither used nor changed.

Finally, 8-bit operations can individually access the
lower byte (bits 7-0) and the higher byte (bits 15-8) of
general purpose registers AX, BX, CX, and DX. The
lower bytes are named AL, BL, CL, and DL, respec-
tively. The higherbytes are named AH, BH, CH, and DH,
respectively. The individual byte accessibility offers
additional flexibility for data operations, but is not used
for effective address calculation.

31 1615 87 0
AH A]X AL EAX
BH B[X BL EBX
CH C|X CL ECX
DH D{X DL EDX
S| ESI
DI EDI
BP EBP
SP ESP

31 16 15 0
EIP

IP
15021B-005

Figure 2. General Registers
and Instruction Pointer

Instruction Pointer

The instruction pointer, Figure 2, is a 32-bit register
named EIP. EIP holds the offset of the next instruction
to be executed. The offset is always relative to the base
of the code segment (CS). The lower 16 bits (bits 15-0)
of EIP contain the 16-bit instruction pointer named IP,
which is used by 16-bit addressing.

Flags Register

The Flags Register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 3, control certain operations and indicate status
of the Am386DX/DXL microprocessor. The lower 16 bits
(bits 15-0) of EFLAGS contain the 16-bit flag register
named FLAGS, which is most useful when executing
8086 and 80286 code.

Note in the following descriptions, set means set to 1
and reset means reset to 0.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Am386DX/DXL
microprocessor is in Protected Mode, the
Am386DX/DXL microprocessor will switch to Vir-
tual 8086 operation, handling segment loads as
the 8086 does, but generating Exception 13 faults
onprivileged op-codes. The VM bit can be set only
in Protected Mode by the IRET instruction (if cur-
rent privilege level = 0) and by task switches at any
privilege level. The VM bit is unaffected by POPF.
PUSHF always pushes a 0 in this bit, even if exe-
cuting in Virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved dur-
ing task switches will contain a 1 in this bit if the in-
terrupted code was executing as a Virtual 8086
task.

16 Am386 Microprocessors for Personal Computers

AMD a

RF

NT

(Resume Flag, bit 16)

The RF flag is used in conjunction with the debug
register breakpoints. It is checked at instruction
boundaries before breakpoint processing. When
RF is set, it causes any debug fault to be ignored
on the next instruction. RF is then automatically
reset at the successful completion of every in-
struction (no faults are signaled) except the IRET
instruction and the POPF instruction. (JMP,
CALL, and INT instructions causing a task switch.)
These instructions set RF to the value specified by
the memory image. For example, at the end of the
breakpoint service routine, the IRET instruction
can pop an EFLAGS image having the RF bit set
and resume the program’s execution at the break-
point address without generating another break-
point fault on the same location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set to
indicate that the execution of this task is nested
within another task. If set, it indicates that the cur-
rent nested task’s Task State Segment (TSS) has
a valid back link to the previous task’s TSS. This
bit is set or reset by control transfers to other
tasks. The value of NT in EFLAGS is tested by the
IRET instruction to determine whether to do an
inter-task return or an intra-task return. A POPF
or an IRET instruction will affect the setting of this
bit according to the image popped at any privilege
level.

IOPL (Input/Output Privilege Level, bits 12-13)

OF

DF

This two-bit field applies to Protected Mode. IOPL
indicates the numerically maximum CPL (current
privilege level) value permitted to execute I/O
instructions without generating an Exception 13
fault or consulting the I/0 Permission Bitmap. It
also indicates the maximum CPL value allowing
alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register.
POPF and IRET instruction can alter the I1OPL
field when executed at CPL=0. Task switches
can always alter the IOPL field when the new flag
image is loaded from the incoming task’s TSS.

(Overflow Flag, bit 11)

OD is set if the operation resulted in a signed over-
flow. Signed overflow occurs when the operation
resulted in carry/borrow into the sign bit (high-
order bit) of the result but did not result in a carry/
borrow out of the high-order bit or vice-versa. For
8-, 16-, and 32-bit operations, OF is set according
to overflow at bits 7, 15, and 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the sg

TF

SF

ZF

AF

PF

CF

instructions. Postincrement occurs if DF is reset.
Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of exter-
nalinterrupts signaled onthe INTR pin. When IF is
reset, externalinterrupts signaled onthe INTR are
not recognized. IOPL indicates the maximum CPL
value allowing alteration of the IF bit when new
values are popped into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of Exception 1 trap
when single-stepping through code. When TF is
set, the Am386DX/DXL microprocessor gener-
ates an Exception 1 trap after the next instruction
is executed. When TF is reset, Exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debug register DR3-DRO.

(Sign Flag, bit 7)

SF is set if the high-order bit of the result is set; itis
reset otherwise. For 8-, 16-, and 32-bit oper-
ations, SF reflects the state of bits 7, 15, and 31,
respectively.

(Zero Flag, bit 6)

ZF is setiif all bits of the result are 0. Otherwise itis
reset.

(Aucxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addition
and subtraction of packed BCD quantities. AF is
set if the operation resulted in a carry out of bit
3 (addition) or a borrow into bit 3 (subtraction).
Otherwise, AF is reset. AF is affected by carry out
of, or borrow into, bit 3 only; regardless of overall
operand length: 8, 16, or 32 bits.

(Parity flags, bit 2)

PF is set if the low-order 8 bits of the operation
contain an even number of 1s (even parity). PF is
reset if the low-order 8 bits have odd parity. PFis a
function of only the low-order 8 bits, regardless of
operand size.

(Carry Flag, bit 0)

CF is set if the operation resulted in a carry out
of (addition) or a borrow into (subtraction) the
high-order bit. Otherwise, CF is reset. For 8-, 16-,
or 32-bit operations, CF is set according to carry/
borrow at bits 7, 15, or 31, respectively.

Am386DX/DXL Microprocessor Data Sheet 17

Flags
R
~ N
332222222222111 1111111
109876543210987 6543210987465 43210
VIR NJIOP|O|D| I |T|S]|Z A P C
EFLAGS Reserved for Future Use MlElolTIL IEIEIEIFIRIFlolFlolEl1]F
Virtual Mode ——T T | T— Carry Flag
Resume Flag Parity Flag
Nested Task Flag Aucxiliary Carry
I/O Privilege Level Zero Flag
Overflow Sign Flag
Direction Flag : Trap Flag
Interrupt Enable
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
15021B-006
Figure 3. Flags Registers
Segment
Registers Descriptor Registers (Loaded Automatically)
Other
. Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —_
Selector SS— — —
Selector DS- —_ ==
Selector ES- — ==
Selector FS- —_ - =
Selector GS- —_ ==
15021B-007

Figure 4. Segment Registers and Associated Descriptor Registers

Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 4. In
Protected Mode, each segment may range in size from
one byte up to the entire linear and physical space of the
machine, 4 Gb (2%2bytes). If a maximum sized segment
is used (limit = FFFFFFFFH), it should be Dword aligned
(i.e., the least two significant bits of the segment base
should be zero). This alignment will avoid a segment
limit violation (Exception 13) caused by the wrap
around. In Real Address Mode, the maximum segment
size is fixed at 64 Kb (2'° bytes).

The six segments addressable at any given moment are
defined by the segment registers: CS, SS, DS, ES, FS,
and GS. The selector in SS indicates the current stack

segment; the selectors in DS, ES, FS, and GS indicate
the current data segments.

Segment Descriptor Registers

The segment descriptor registers are not programmer
visible, yet it is very useful to understand their content.
Inside the Am386DX/DXL microprocessor, a descriptor
register (programmer invisible) is associated with each
programmer-visible segment register, as shown by
Figure 4. Each descriptor register holds a 32-bit seg-
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment register,
the associated descriptor register is automatically up-
dated with the correct information. In Real Address
Mode, only the base address is updated directly (by

18

Am386 Microprocessors for Personal Computers

AMD u

shifting the selector value four bits to the left), since the R (Reserved, bit 4)
segment maximum limit and attributes are fixed in Real io bt i ;
Mode. In Protected Mode, the base address, the limit, S RS a e e oo
and the attributes are all updated per the contents of the this bit.
segment descriptor indexed by the selector. . .
TS (Task Switched, bit 3)
Whenever a memory reference occurs, the segment de- . i .
scriptor register associated with the segment being TS is automatically set whenever a task switch
used is automatically involved with the memory refer- operationis performed. If TS is set, a coprocessor
ence. The 32-bit segment base address becomes a ;E\SC‘Iapb? Otp-COdEXWI" :’ta‘r"]s‘; a_lc_>hoprtorcesrs]orgllot
component of the linear address calculation, the 32-bit vailable trap (Exception 7). The trap handler
limit is used for the limit-check operation, and the attrib- typically saves a 387D)-(math coprocessor con-
. ! text belonging to a previous task, loads a 387DX
utes are checked against the type of memory reference math coprocessor state belonging to the current
requested. task, and clears the TS bit before returning to the
Control Registers faulting coprocessor op-code.
The Am386DX/DXL microprocessor has three control EM (Emulate Coprocessor, bit 2)
registers of 32 bits: CRO, CR2, and CR3 to hold machine The Emulate coprocessor bit is set to cause all
state of a global nature (not specific to an individual coprocessor op-codes to generate a Coprocessor
task). These registers, along with System Address Reg- Not Available fault (Exception 7). Itis reset to allow
isters described in the next section, hold machine state coprocessor op-codes to be executed on an ac-
that affects all tasks in the system. To access the Con- tual 387DX math coprocessor (this is the default
trol Registers, load and store instructions are defined. case after reset). Note that thg WAIT op-code is
CRO: Machine Control Register (Includes 80286 not affected by the EM bit setting.
Machine Status Word) MP (Monitor Coprocessor, bit 1)
CRO, shown in Figure 5, contains six defined bits for The MP bit is used in conjunction with the TS bit to
control and status purposes. The low-order 16 bits of determine if the WAIT op-code will generate a
CRO are also known as the Machine Status Word Coprocessor Not Available fault (Exception 7)
(MSW) for compatibility with 80286 Protected Mode. when TS=1. When both MP=1 and TS=1, the
LMSW and SMSW instructions are taken as special ali- WAIT op-code generates a trap. Otherwise,
ases of the load and store CRO operations, where only the WAIT op-code does not generate a trap. Note
the low-order 16 bits of CRO are involved. For compati- that TS is automatically set whenever a task
bility with 80286 operating systems, the Am386DX/DXL switch operation is performed.
microprocessor LMSW instructions work in an identical PE (Protection Enable, bit 0)
fashion to the LMSW instruction on t.he 80286 (i.e., !t The PE bit is set to enable the Protected Mode. If
only operates on the low-order 16 bits of CRO and it PE is reset, the processor operates again in Real
ignores the new bits in CRO) New Am386DX/DXL mi- Mode. PE n’,]ay be set by IOading MSW or CRO. PE
croprocessor operating systems should use the MOV can be reset only by a load into CRO. Resetting
CRO, Reg instruction. the PE bit is typically part of a longer instruction
The defined CRO bits are described below. sequence needed for proper transition from Pro-
tected Mode to Real Mode. Note that for strict
PG (Paging Enable, bit 31) 80286 compatibility, PE cannot be reset by the
The PG bit is set to enable the on-chip paging unit. LMSW instruction.
It is reset to disable the on-chip paging unit.
31 24123 16|15 817 0
Blolofo|ofo]ofo|o|ofo]ofo]|ofo|ofo|o|olo]ofo]ofoo|o|o|R|L|E|M|E| cRo

Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.

Figure 5. Control Register 0

15021B-008

Am386DX/DXL Microprocessor Data Sheet 19

n AMD

CR1: Reserved
CR1 is reserved for future processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 6, holds the 32-bit linear address
that caused the last page fault detected. The error code
pushed onto the page fault handler’s stack when it is in-
voked provides additional status information on this
page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 6, contains the physical base
address of the page directory table. The Am386DX/DXL
microprocessor page directory table is always page-
aligned (4-Kb aligned). Therefore, the lowest 12 bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS that changes the value in
CRB3, or an explicit load into CR3 with any value, will in-
validate all cached page table entries in the paging unit
cache. Note that if the value in CR3 does not change
during the task switch, the cached page table entries are
not flushed.

System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU and
Am386DX/DXL microprocessor protection model.

These tables or segments are:
GDT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are stored
in special registers, the System Address and System
Segment Registers illustrated in Figure 7. These
registers are named GDTR, IDTR, LDTR, and TR, re-
spectively. The Protected Mode Architecture section
describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address and
16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is en-
abled) and 16-bit limit values.

LDTRand TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values stored
in the system segment registers. Note that a segment
descriptor register (programmer-invisible) is associated
with each system segment register.

31 24123

16{15

8|7 0

Page Fault Linear Address Register

CR2

Page Directory Base Register I OI 0 | 0 | OI OIOI OI OJi) I OIOI o| CR3
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
. . 15021B-009
Figure 6. Control Registers 2 and 3
System Address Registers
47 32-Bit Linear Base Address 1615 Limit 0
GDTR
IDTR
System Segment .) .
Registers Descriptor Registers (Automatically Loaded)
1' 5 ‘0 32-Bit Linear Base Address 32-Bit Segment Limit Attributes
TR Selector
LDTR Selector
15021B-010

Figure 7. System Address and System Segment Registers

20 Am386 Microprocessors for Personal Computers

AMD a

Debug and Test Registers

Debug Registers: The six programmer accessible de-
bug registers provide on-chip support for debugging.
Debug Registers DR3-DR0O specify the four linear
breakpoints. The Debug Control Register DR7 is used
to set the breakpoints, and the Debug Status Register
DR6 displays the current state of the breakpoints. The
use of the debug registers is described inthe Debugging
Support section.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressable Memo-
ries) in the Translation Look-Aside Buffer portion of the
Am386DX/DXL microprocessor. TR6 is the command
test register, and TR7 is the data register that contains
the data of the Translation Look-Aside buffer test. Their
use is discussed in the Testability section. Figure 8
shows the Debug and Test registers.

Debug Registers

31 0
Linear Breakpoint Address 0 DRo
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Reserved for Future use. Do not define. DR4
Reserved for Future use. Do not define. DR5
Breakpoint Status DR6
Breakpoint Control DR7

31 Test Registers (For Page Cache) o
Test Control TR6
Test Status TR7

15021B-011

Figure 8. Debug and Test Registers

Register Accessibility

There are a few differences regarding the accessibility
of the registers in Real and Protected Mode. Table 1
summarizes these differences. See the Protected Mode
Architecture section for further details.

Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note certain
Am386DX/DXL microprocessor register bits are Re-
served for Future Use. When reserved bits are called
out, treat them as fully undefined. This is essential for
software compatibility with future processors! Follow the
guidelines below:

1. Do not depend on the state of any undefined bits
when testing the values of defined register bits.
Mask them out when testing.

2. Do not depend on the state of any undefined bits
when storing them to memory or another register.

3. Do not depend on the ability to retain information
written into any undefined bits.

4. When loading registers, always load the undefined
bits as zeros.

5. However, registers that have been previously stored
may be reloaded without masking.

Depending upon the values of undefined register bits
will make your software dependent upon the unspeci-
fied Am386DX/DXL microprocessor handling of these
bits. Depending on undefined values risks making soft-
ware incompatible with future processors that define us-
ages for the Am386DX/DXL CPU undefined bits. Avoid
any software dependence upon the state of undefined
Am386DX/DXL CPU register bits.

Table 1. Register Usage

Use In Use In Use In
Real Mode Protected Mode Virtual 8086 Mode
Register Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Registers Yes Yes Yes Yes 10PL 10PL
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=0 No No

Notes: PL = 0: The registers can be accessed only when the current privilege level is zero.
IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 8086 Mode.

Am386DX/DXL Microprocessor Data Sheet 21

n AMD

Instruction Set
Instruction Set Overview

The instruction set is divided into nine categories of
operations.

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control

These Am386DX/DXL microprocessor instructions are
listed in Table 2.

All Am386DX/DXL microprocessor instructions operate
on either 0, 1, 2, or 3 operands where an operand re-
sides in a register in the instruction itself or in memory.
Most zero operand instructions (e.g., CLI, STI) take only
one byte. One operand instructions generally are two
bytes long. The average instruction is 3.2-bytes long.
Since the Am386DX/DXL device has a 16-byte instruc-
tion queue, an average of 5 instructions will be
prefetched. The use of two operands permits the follow-
ing types of common instructions.

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8-, 16-, or 32-bits long. As a
general rule, when executing code written for the
Am386DX/DXL microprocessor (32-bit code), operands
are 8 or 32 bits; when executing existing 80286 or 8086
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to instructions that override the default
length of the operands (i.e., use 32-bit operands for
16-bit code or 16-bit operands for 32-bit code).

Addressing Modes
Addressing Modes Overview

The Am386DX/DXL microprocessor provides a total of
11 addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow the
efficient execution of high-level languages such as C
and FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

Register and Inmediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands:

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction as part of the op-code.

32-Bit Memory Addressing Modes

The remaining nine modes provide a mechanism for
specifying the effective address of an operand. The lin-
ear address consists of two components: the segment
base address and an effective address. The effective
address is calculated by using combinations of the fol-
lowing four address elements.

Displacement: An 8- or 32-bit immediate value follow-
ing the instruction.

Base: The contents of any generai-purpose register.
The Base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general-purpose register ex-
ceptfor ESP. The Index registers are used to access the
elements of an array, or a string of characters.

Scale: The index register’s value can be multiplied by a
scale factor of either 1, 2, 4, or 8. Scaled index mode is
especially useful for accessing arrays or structures.

Combinations of these four components make up the
nine additional addressing modes. There is no perform-
ance penalty for using any of these addressing combi-
nations, since the effective address calculation is
pipelined with the execution of other instructions.

The one exception is the simultaneous use of Base and
Index components that requires one additional clock.

As shown in Figure 9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA =Base Reg + (Index Reg - Scaling) + Displacement

Direct Mode: The operand’s offset is contained as part
of the instruction as an 8-, 16-, or 32-bit displacement.

Example: INC Word PTR [500]

Register Indirect Mode: A Base register contains the
address of the operand.

Example: MOV [ECX], EDX

Based Mode: A Base register’s contents is added to a
Displacement to form the operands offset.

Example: MOV ECX, [EAX + 24]

22 Am386 Microprocessors for Personal Computers

AMD

pr |

Table 2. Am386DX/DXL Microprocessor Instructions

Table 2a. Data Transfer

Table 2b. Arithmetic Instructions

General Purpose Addition
Mov Move operand ADD Add operands
PUSH | Push operand onto stack ADC Add with carry
POP Pop operand off stack INC Increment operand by 1
PUSHA | Push all registers on stack AAA ASCII adjust for addition
POPA | Pop all registers off stack DAA Decimal adjust for addition
XCHG | Exchange operand register Subtraction
XLAT | Translate sSuB Subtract operands
Conversion SBB Subtract with borrow
MOVZX | Move byte or Word, Dword with zero extension DEC Decrement operand by 1
MOVSX | Move byte or Word, Dword, sign extended NEG Negate operand
CBW Convert byte to Word, or Word to Dword CMP | Compare operands
CWD Convert Word to Dword DAS Decimal adjust for subtraction
CWDE | Convert Word to Dword extended AAS ASCII adjust for subtraction
cDQ Convert Dword to Qword Multiplication
Input/Output MUL Multiply Double/Single Precision
IN Input operand from 1/O space IMUL Integer multiply
ouT Output operand to I/O space AAM ASCII adjust after multiply
Address Object Division
LEA Load effective address DIV Divide unsigned
LDS Load pointer into D segment register DIV Integer divide
LES Load pointer into E segment register AAD ASCI! adjust before division
LFS Load pointer into F segment register
LGS Load pointer into G segment register Table 2c. String Instructions
LSS Load pointer into S (Stack) segment register MOVS | Move byte or Word, Dword string
Flag Manipulation INS Input string from 1/O space
LAHF Load A register from Flags OUTS | Output string to /O space
SAHF Store A register in Flags CMPS | Compare byte or Word, Dword string
PUSHF | Push flags onto stack SCAS | Scan Byte or Word, Dword string
POPE Pop flags off stack LODS | Load byte or Word, Dword string
PUSHFD | Push EFLAGS onto stack STOS | Store byte or Word, Dword string
POPFD | Pop EFLAGS off stack REP | Repeat
cLe Clear Carry Flag EEEE/ Repeat while equal/zero
CLD Clear Direction Flag
RENE/
CcMmC Complement Carry Flag REPNZ | Repeat while not equal/not zero
STC Set Carry Flag
STD Set Direction Flag

Am386DX/DXL Microprocessor Data Sheet

23

a AMD

Table 2. Am386DX/DXL Microprocessor Instructions (continued)

Table 2d. Logical Instructions

Table 2f. Program Control Instructions

- (continued)
Logicals
o7 NoT " Unconditional Transfers
zND “AND" operand CALL Call procedure/task
.operan £ RET Return from procedure
OR “Inclusive OR” operands
- JMP Jump
XOR “Exclusive OR” operands
TEST “Test” operands lteration Controls
Shifts LOOP Loop
SHL/SHR | Shift logical left or right LOOPE/
SAL/SAR | Shit arithmetic left or right LOOPZ | Loop if equal/zero
SHLD/ LOOPNE/
SHRD Double shift left or right LOOPNZ | Loop if not equal/not zero
Rotates JCXZ JUMP if register CX=0
ROL/ROR | Rotate left/right Interrupts
RCL/RCR | Rotate through carry left/right INT Interrupt
Table 2e. Bit Manipulation Instructions INTO Interrupt if overflow
- - I IRET Return from interrupt/task
- Single Bit Instructions CLI Clear interrupt enable
BT Bit Test STI Set interrupt enable
BTS Bit Test and Set
BTR Bit Test and Reset Table 2g. High Level Language Instructions
BTC Bit Test and Complement BOUND | Check array bounds
BSF Bit Scan Forward ENTER | Setup parameter block for entering procedure
BSR Bit Scan Reverse LEAVE Leave procedure
Table 2f. Program Control Instructions Table 2h. Protection Model
Conditional Transfers :lGDI;T ztore global de:crlptor tabli |
tore int t iptor t:
SETCC Set byte equal to condition code - errup. SSolploliEne
- STR Store task register
JA/JNBE Jump if above/not below nor equal -
- SLDT Store local descriptor table
JAE/NB | Jump if above or equal/not below -
- LGDT Load global descriptor table
JB/JNAE Jump if below/not above nor equal . -
- LIDT Load interrupt descriptor table
JBE/UNA | Jump if below or equal/not above -
- LTR Load task register
JC Jump if carry -
- LLDT Load local descriptor table
JENZ Jump if equalizero ARPL Adjust requested privilege level
JG/INLE Jump if greater/not less nor equal j ! - prviee
- LAR Load access rights
JGE/NL Jump if greater or equal/not less —
- LSL Load segment limit
JLAUNGE Jump if less/not greater nor equal VERR/
JLEANG | Jump if less or equal/not greater VERW Verify segment for reading or writing
JINC Jump if not carry LMSW Load machine status word (lower 16 bits
JNE/NZ | Jump if not equal/not zero of CRO)
JNO Jump if not overflow SMSW Store machine status word
JNPAPO_ | Jump if not parity/parity odd Table 2i. Processor Control Instructions
JNS Jump if not sign
JO “Jump if overflow HLT HaIT ,
JP/JPE Jump if parity/parity even WAIT Wait until BUSY negated
JS Jump if sign EscC Escape
LOCK Lock Bus
24 Am386 Microprocessors for Personal Computers

AMD n

Index Mode: An Index register’s contents is added to a
Displacement to form the operands offset.

Example: ADD EAX, TABLE [ESI]
Scaled Index Mode: An Index register’s contents is mul-
tiplied by a scaling factor that is added to a Displace-
ment to form the operands offset.

Example: IMUL EBX, TABLE [ESl 4], 7

Based Index Mode: The contents of a Base register is
added to the contents of an Index register to form the
effective address of an operand.

Example: MOV EAX, [ESI] [EBX]
Based Scaled Index Mode: The contents of an Index
register is multiplied by a Scaling factor and the result is
added to the contents of a Base register to obtain the
operands offset.

Example: MOV ECX, [EDX « 8] [EAX]

Based Index Mode with Displacement: The contents of
an Index Register and a Base register’s contents and a
Displacement are all summed together to form the
operand offset.

Example: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The con-
tents of an Index register are multiplied by a Scaling
factor; the result is added to the contents of a Base reg-
ister and a Displacement to form the operand’s offset.

Example: MOV EAX, LOCALTABLE[EDI ¢ 4] [EBP +80]

Segment Registers
SS

l Base Register I

GS
FS
ES
DS Selector
CS

—(

Access Rights SS |
Access Rights GS J
Access Rights FS 1
Access Rights ES [
Access Rights DS |
Access Rights CS
Limit

Base Address

A\ 4

Index Register I

Scale
1,2,4,0r8

Displacement
(In Instruction)

Effective Seqmgnt
Address Limit
Linear
Descriptor Registers Address

Target Address

LM
1 Selected

. Segment

Segment Base Address

15021B-012

Figure 9. Addressing Mode Calculations

Am386DX/DXL Microprocessor Data Sheet 25

n AMD

Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 80286
and the 8086, the Am386DX/DXL microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the in-
structions it is executing by examining the D bitinthe CS
segment descriptor. If the D bit is 0 then all operand
lengths and effective addresses are assumed to be 16
bits long. If the D bit is 1 then the default length for oper-
ands and addresses is 32 bits. In Real Mode, the default
size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386DX/DXL microprocessor is able
to execute either 16- or 32-bit instructions. This is speci-
fied via the use of override prefixes. Two prefixes, the
Operand Size Prefix and the Address Length Prefix,
override the value of the D bit on an individual instruction
basis.

Example: The processor is executing in Real Mode and the
programmer needs to access the EAX registers. The assem-
bler code for this might be MOV EAX, 32-bit MEMORYOP. An
assembler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0 and the programmer wishes to use
Scaled Index addressing mode to access an array. The
Address Length Prefix allows the use of MOV DX,
TABLE[ESle2]. The assembler uses an Address Length
Prefix, since with D = 0, the default addressing mode is 16 bits.
Example: The D bit is 1 and the program wants to store a
16-bit quantity. The Operand Length Prefix is used to specify
only a 16-bit value: MOV MEM16, DX.

The Operand Length and Address Length prefixes can
be applied separately or in combination to any instruc-
tion. The Address Length Prefix does not allow ad-
dresses over 64 Kb to be accessed in Real Mode. A
memory address exceeding FFFFH will result in a Gen-
eral Protection Fault. An Address Length Prefix only al-
lows the use of the additional Am386DX/DXL micropro-
cessor addressing modes.

When executing 32-bit code, the Am386DX/DXL micro-
processor uses either 8- or 32-bit displacements, and
any register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8 or 16 bits, and the base and index register
conform to the 80286 model. Table 3 illustrates the
differences.

Data Types

The Am386DX/DXL microprocessor supports all data
types commonly used in high-level languages.

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits that spans a
maximum of four bytes.

Bit String: A set of contiguous bits on the Am386DX/
DXL microprocessor bit strings can be up to 4 Gb long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit

quantity. All operations assume a 2’s complement
representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.
Unsigned Long Integer (Double Word): An unsigned
32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.
Offset: A 16- or 32-bit offset only quantity that indirectly
references another memory location.

Pointer: A full pointer which consists of a 16-bit segment
selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCIl alphanumeric
or control character.

String: A contiguous sequence of bytes, words, or
Dwords. A string may contain between 1 byte and 4 Gb.
BCD: A byte (unpacked) representation of decimai
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0—9 storing one digit in each nibble.

When the Am386DX/DXL microprocessor is coupled
with a 387DX math coprocessor then the following com-
mon floating point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. Floating point numbers are supported
by a 387DX compatible math coprocessor.

Figure 10 illustrates the data types supported by the
Am386DX/DXL microprocessor and a 387DX compat-
ible math coprocessor.

Table 3. Base and Index Registers for 16- and 32-Bit Addresses

32-Bit Addressing

16-Bit Addressing
Base Register BX, BP
Index Register S|, DI
Scale Factor None
Displacement 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

26 Am386 Microprocessors for Personal Computers

AMD n

0
Il

0
Signed T l TTT Unsigned | I
Byte Byte
SignBit JL— |
Magnitude Magnitude i
1514 M 87 o 15 + 0 0
Signed FTTT[TTT]TTTTT] Unsigned [T TT [TTT[TTT[TT1
Word Word
Sign Bit 1, LMSB | L |
Magnitude Magnitude
31 +3 +2 16 15 +1 0 0
Signed
Sgned FTTT[TTT[TTT[TTT[TTT[TTT[TTT[TTT
Word
Sign Bit Jl LMsB |
Magnitude
31 +3 +2 16 15 +1 0 °
Unsigned
signed [T T[T T T [TTT[TT T[T TT[TTT[TTT]TT]
Word
L]
Magnitude
63 +7 +6 4847 +5 +4 32 31 +3 +2 16 15 +1 0 0
Signed
Quad
Word
Sign Bit 4, LMSB |
Magnitude
7 +N 0 7 + 07 0 0
Binary [TTT[TT1 TTTTT[TTT[TITT
Coded CTL]
Decimal
(BCD) BCD Digit N BCD Digit 1 BCD Digit 0
7 +N 0 7 + 07 0 0
PP RERRRAREAARAA
°0e
ASCll
ASCII Character N ASCII Character 1 ASCII Character 0
7 +N 0 7 + 07 0 0
Frrprnl RERRRRRRARRAL
Packed eee
BCD
— —
Most Significant Digit Least Significant Digit
s N 0 s H o715 O 0 }
|
By,@III|III.“|II|IIIIII|III ‘
String

Figure 10. Supported Data Types

15021B-013

Am386DX/DXL Microprocessor Data Sheet

27

n AMD

Long
48-Bit
Pointer

32-Bit
Bit Field

*Supported by 387DX-compatible math coprocessor.

Figure 10. Supported Data Types (continued)

+2 Gbits —2 Gbits
210
Bit
String
Bit0
39 +3 +2 +1 0 0
Short
St T T[T T[T T TIT[TTTTIT[TTT]TT]
Pointer
L 1
Offset
47 +5 +4 +3 +2 +1 0 0
Crrp e e ey e T T T rTrprTd
L
Selector Offset
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 o
Floating
Point*
Sign Bit J | |
Exponent Magnitude
+5 +4 +3 +2 +1 0
crrp e e e e T T e rrrprTd
le Bit Field »l
= 1 to 32 Bits o
15021B-013

28

Am386 Microprocessors for Personal Computers

AMD a

Memory Organization
Introduction

Memory on the Am386DX/DXL microprocessor is di-
vided up into 8-bit quantities (Bytes), 16-bit quantities
(Words), and 32-bit quantities (Dword). Words are
stored in two consecutive bytes in memory with the low-
order byte at the lowest address, the high-order byte at
the highest address. Dwords are stored in four consecu-
tive bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest address.
The address of a word or Dword is the byte address of
the low-order byte.

Inadditionto these basic datatypes, the Am386DX/DXL
microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up into
one or more variable length segments, which can be
swapped to disk or shared between programs. Memory
can also be organized into one or more 4-Kb pages.
Finally, both segmentation and paging can be com-
bined, gaining the advantages of both systems. The
Am386DX/DXL microprocessor supports both pages
and segments in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary. Segmentation is useful for organizing
memory in logical modules, and as such is a tool for the
application programmer, while pages are useful for the
system programmer for managing the physical memory
of a system.

Address Spaces

The Am386DX/DXL microprocessor has three distinct
address spaces: logical, linear, and physical. A logical

address (also known as a virtual address) consists of a
selector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all of
the addressing components (Base, Index, Displace-
ment) discussed in Section Memory Address Modes
into an effective address. Since each task on Am386DX/
DXL CPU has a maximum of 16K (2'*—1) selectors, and
offsets can be 4 Gb (2%2 bits), this gives a total of 24¢ bits
or 64 tb of logical address space per task. The program-
mer sees this virtual address space.

The segmentation unit translates the logical address
space into a 32-bit linear address space. If the paging
unit is not enabled then the 32-bit linear address corre-
sponds to the physical address. The paging unit trans-
lates the linear address space into the physical address
space. The physical address is what appears on the
address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs the
translation of the logical address into the linear address.
In Real Mode, the segmentation unit shifts the selector
left four bits and adds the result to the offset to form
the linear address. While in Protected Mode, every se-
lector has a linear base address associated with it. The
linear base address is stored in one of two operating
systemtables (i.e., the Local Descriptor Table or Global
Descriptor Table). The selector’s linear base address is
added to the offset to form the final linear address.

Figure 11 shows the relationship between the various
address spaces.

Effective Address Calculation

Index
Base Displacement
Scale 31 0
1,2,4,8
—péq— BE3-BEO
-A2
A3t Physical
30 Effective Address Memory
15 2 0 ,l
R Logical or Segmentation 32 | Paging Unit (32
Selector P Virtual Address <9 Unit . 7] (Optional Use) [T]
ALY Linear Physical
7
- Descriptor Index Address Address
Segment Register
15021B-014

Figure 11. Address Translation

Am386DX/DXL Microprocessor Data Sheet 29

n AMD

Segment Register Usage

The main data structure used to organize memory is the
segment. On the Am386DX/DXL microprocessor, seg-
ments are variable sized blocks of linear addresses that
have certain attributes associated with them. There are
two main types of segments: code and data. The seg-
ments are of variable size and can be as small as 1 byte
or as large as 4 Gb (2% bytes).

In order to provide compact instruction encoding and in-
crease processor performance, instructions do not need
to explicitly specify which segment register is used. A
default segment register is automatically chosen ac-
cording to the rules of Table 4 (Segment Register Selec-
tion Rules). In general, data references use the selector
contained in the DS register; Stack references use the
SSregister; and Instruction fetches use the CS register.
The contents of the Instruction Pointer provides the off-
set. Special segment override prefixes allow the explicit
use of agiven segment register, and override the implicit
rules listed in Table 4. The override prefixes also allow
the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all 6 seg-
ments could have the base address set to zero and
create a system with a 4-Gb linear address space. This
creates a system where the virtual address space is the
same as the linear address space. Further details of
segmentation are discussed in Section Protected Mode
Architecture.

/O Space

The Am386DX/DXL microprocessor has two distinct
physical address spaces: Memory and I/O. Generally,
peripherals are placed in 1/0 space although the
Am386DX/DXL CPU also supports memory-mapped
peripherals. The I/O space consists of 64 Kb and can be
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K
32-bit ports, or any combination of ports that add up to
less than 64 Kb. The 64Kb I/O address space refers to
physical memory rather than linear address since /0O in-
structions do not go through the segmentation or paging
hardware. The M/IO pin acts as an additional address
line, thus allowing the system designer to easily deter-
mine which address space the processor is accessing.

The /O ports are accessed via the IN and OUT /O in-
structions, with the port address supplied as animmedi-
ate 8-bit constant in the instruction or in the DX register.
All 8- and 16-bit port addresses are zero extended on
the upper address lines. The /O instructions cause the
M/IO pin to be driven Low.

1/0 port addresses 00F8H through 00FFH are reserved.

Interrupts

Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handie external events, to report errors

or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used to

Table 4. Segment Register Selection Rules

Type of Memory Reference Implied (Default) Segment Use Segment Override Prefixes Possible
Code Fetch Ccs None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA instructions
Source of POP, POPA, POPF, SS None
IRET, RET Instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(Dlis Base Register)

Other Data References with

Effective Address Using Base

Register of:
[EAX] DS CS, SS, ES, FS, GS
[EBX] DS CS, SS, ES, FS, GS
[ECX] DS CS, SS, ES, FS, GS
[EDX] Ds CS, SS, ES, FS, GS
[ESI] Ds CS, SS, ES, FS, GS
[EDI] DS CS, SS, ES, FS, GS
[EBP] SS CS, SS, ES, FS, GS
[ESP] SS CS, SS, ES, FS, GS

Am386 Microprocessors for Personal Computers

AMD a

handle asynchronous external events while excep-
tions handle instruction faults. Although a program can
generate a software interrupt via an INT n instruction,
the processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable or
non-maskable. Interrupts are serviced after the execu-
tion of the current instruction. After the interrupt handler
is finished servicing the interrupt, execution proceeds
with the instruction immediately after the interrupted in-
struction. The differences between the interrupts are
discussed in the Maskable Interrupt and Non-Maskable
Interrupt sections.

Exceptions are classified as faults, traps, or aborts de-
pending on the way they are reported, and whether or
not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
A fault occurs in a virtual memory system when the
processor references a page or a segment that is not
present. The operating system fetches the page or seg-
ment from disk, and then the Am386DX/DXL micropro-
cessor restarts the instruction. Traps are exceptions
that are reported immediately after the execution of the
instruction that caused the problem. User defined inter-
rupts are examples of traps. Aborts are exceptions that

do not permit the precise location of the instruction caus-
ing the exception to be determined. Aborts are used to
report severe errors, such as a hardware error or illegal
values in system tables.

Thus, when an interrupt service routine has been com-
pleted, execution proceeds from the instruction immedi-
ately following the interrupted instruction. On the other
hand, the return address from an exception fault routine
will always point at the instruction causing the exception
and include any leading instruction prefixes. Table 5
summarizes the possible interrupts for the Am386DX/
DXL microprocessor and shows where the return ad-
dress points.

The Am386DX/DXL microprocessor has the ability to
handle up to 256 different interrupts/exceptions. In order
to service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service routine.
In Real Mode (see Section Real Mode Introduction),
the vectors are 4 byte quantities, a Code Segment
plus a 16-bit offset; in Protected Mode, the interrupt
vectors are 8 byte quantities that are put in an Inter-
rupt Descriptor Table (see Section Introduction). Of
the 256 possible interrupts, 32 are Reserved for Future
Use, the remaining 224 are free to be used by the
system designer.

Table 5. Interrupt Vector Assignments

Return Address
Points to
Interrupt Faulting
Function Number | Instructions Which Can Cause Exceptions Instruction Type
Divide Error 0 DIV, IDIV Yes FAULT
Debug Exception 1 Any instruction Yes TRAP*
NMI Interrupt 2 INT 2 or NMI No NMI
One Byte Interrupt 3 INT No TRAP
Interrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-Code 6 Any illegal instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fault 8 Any instruction that can generate an Exception ABORT
Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 11 Segment register instructions Yes FAULT
Stack Fault 12 Stack references Yes FAULT
General Protection Fault 13 Any memory reference Yes FAULT
Page Fault 14 Any memory access or code fetch Yes FAULT
Reserved for Future Use 15
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-31
Two Byte Interrupt 0-255 | INTn No TRAP
*Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.
Am386DX/DXL Microprocessor Data Sheet 31

n AMD

Interrupt Processing
When an interrupt occurs the following actions happen.

o First, the current program address and the Flags
are saved on the stack to allow resumption of the
interrupted program.

e Next, an 8-bit vector is supplied to the Am386DX/
DXL microprocessor that identifies the appropriate
entry in the interrupt table. The table contains the
starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed.

o Finally, when an IRET instruction is executed the old
processor state is restored and program execution
resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386DX/

DXL microprocessor in several different ways: excep-

tions supply the interrupt vector internally; software INT

instructions contain or imply the vector; maskable hard-
ware interrupts supply the 8-bit vector via the interrupt
acknowledge bus sequence. Non-Maskable hardware

interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way the
Am386DX/DXL microprocessor responds to asynchro-
nous external hardware events. A hardware interrupt
occurs when the INTR is pulled High and the Interrupt
Flag bit (IF) is enabled. The processor only responds to
interrupts between instructions (REPeat String instruc-
tions have an interrupt window between memory
moves, which allows interrupts during long string
moves). When an interrupt occurs, the processor reads
an 8-bit vector supplied by the hardware that identifies
the source of the interrupt (one of 224 user defined inter-
rupts). The exact nature of the interrupt sequence is dis-
cussed in Section Functional Data.

The IF bitinthe EFLAGS register is reset when aninter-
rupt is being serviced. This effectively disables servicing
additional interrupts during an interrupt service routine.
However, the IF bit may be set explicitly by the interrupt
handler to allow the nesting of interrupts. When an IRET
instruction is executed the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing
very high priority interrupts. A common example of
the use of a non-maskable interrupt (NMI) would be to
activate a power failure routine. When the NMI input
is pulled High it causes an interrupt with an internally
supplied vector value of 2. Unlike a normal hardware
interrupt, no interrupt acknowledgment sequence is per-
formed for NMI.

While executing the NMI servicing procedure, the
Am386DX/DXL microprocessor will not service further
NMi requests until an interrupt return (IRET) instruction
is executed or the processor is reset. If NMI occurs while
currently servicing an NMI, its presence will be saved for

servicing after executing the first IRET instruction. The
IF bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

Software Interrupts

Athird type of interrupt/exception forthe Am386DX/DXL
microprocessor is the software interrupt. An INT n in-
struction causes the processor to execute the interrupt
service routine pointed to by the nth vector in the inter-
rupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3 or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in the program as a debugging tool.

A final type of software interrupt is the single step inter-
rupt. It is discussed in the Debugging Support section.

Interrupt and Exception Priorities

Interrupts are externally-generated events. Mask-
able Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at instruc-
tion boundaries. When NMI and maskable INTR are
both recognized at the same instruction boundary, the
Am386DX/DXL microprocessor invokes the NMI serv-
ice routine first. If after the NMI service routine has been
invoked, maskable interrupts are still enabled, then the
Am386DX/DXL CPU invokes the appropriate interrupt
service routine.

Table 6a. Am386DX/DXL Microprocessor Priority
for Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2. _INTR

Exceptions are internally-generated events. Exceptions
are detected by the Am386DX/DXL microprocessor if in
the course of executing an instruction, the Am386DX/
DXL CPU detects a problematic condition. The
Am386DX/DXL microprocessor then immediately in-
vokes the appropriate exception service routine. The
state ofthe Am386DX/DXL CPU is suchthat the instruc-
tion causing the exception can be restarted. If the ex-
ception service routine has taken care of the problem-
atic condition, the instruction will execute without caus-
ing the same exception.

It is possible for a single instruction to generate several
exceptions (for example, transferring a single operand
could generate two page faults if the operand location
spans two not present pages). However, only one ex-
ception is generated upon each attempt to execute the
instruction. Each exception service routine should cor-
rect its corresponding exception, and restart the instruc-
tion. Inthis manner, exceptions are serviced until the in-
struction executes successfully.

As the Am386DX/DXL microprocessor executes in-
structions, it follows a consistent cycle in checking for
exceptions, as shownin Table 6b. This cycle is repeated

32 Am386 Microprocessors for Personal Computers

AMD n

as each instruction is executed and occurs in paraliel
with instruction decoding and execution.

Instruction Restart

The Am386DX/DXL microprocessor fully supports re-
starting all instructions after faults. If an exception is
detected in the instruction to be executed (Exception
Categories 4 through 10 in Table 6b), the Am386DX/
DXL device invokes the appropriate exception service
routine. The Am386DX/DXL microprocessoris in a state
that permits restart of the instruction, for all cases but
those in Table 6c. Note that all such cases are easily
avoided by proper design of the operating system.

Table 6b. Sequence of Exception Checking

Consider the case of the Am386DX/DXL microprocessor
having just completed an instruction. It then performs the
following checks before reaching the point where the next
instruction is completed:

1. Check for Exception 1 Traps from the instruction just
completed (single-step via Trap Flag or Data Breakpoints
set in the Debug Registers).

2. Check for Exception 1 Faults in the next instruction
(Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

Check for external NMI and INTR.

Check for Segmentation Faults that prevented fetching
the entire next instruction (Exceptions 11 and 13).

5. Check for Paging Faults that prevented fetching the
entire next instruction (Exception 14).

6. Check for Faults decoding the next instruction [Exception
6 if illegal op-code; Exception 6 if in Real Mode or in
Virtual 8086 Mode and attempting to execute an
instruction for Protected Mode only (see Section
Protection and I/O Permission Bitmap); or Exception 13 if
instruction is longer than 15 bytes, or privilege violation in
Protected Mode (i.e., not at IOPL or at CPL =0)].

7. If WAIT op-code, check if TS =1 and MP = 1 (Exception 7
if both are 1).

8. If ESCAPE op-code for numeric coprocessor, check if
EM=1or TS=1 (Exception 7 if either are 1).

9. If WAIT op-code or ESCAPE op-code for numeric
coprocessor, check ERROR input signal (Exception 16 if
ERROR input is asserted).

10. Check in the following order for each memory reference
required by the instruction.

a. Check for Segmentation Faults that prevent trans-
ferring the entire memory quantity
(Exceptions 11, 12, 13).

b. Check for Page Faults that prevent transferring
the entire memory quantity (Exception 14).

Note that the order stated supports the concept of the paging mecha-
nism being underneath the segmentation mechanism. Therefore, for
any given code or data reference in memory, segmentation excep-
tions are generated before paging exceptions are generated.

Table 6c. Conditions Preventing
Instruction Restart

1. Aninstruction causes a task switch to a task whose Task
State Segment (TSS) is partially not present. (An entire
not present TSS is restartable.) Partially present TSS'’s
can be avoided either by keeping the TSS’s of such tasks
present in memory or by aligning TSS segments to reside
entirely within a single 4K page (for TSS segments of
4 Kb or less).

2. A coprocessor operand wraps around the top of a 64-Kb
segment or a 4-Gb segment and spans three pages; and
the page holding the middle portion of the operand is not
present. This condition can be avoided by starting any
segments containing coprocessor operands at a page
boundary if the segments are approximately 64—200 Kb
or larger (i.e., large enough for wraparound of the
coprocessor operand to possibly occur).

Note that these conditions are avoided by using the operating system
designs mentioned in this table.

Double Fault

A Double Fault (Exception 8) results when the proces-
sor attempts to invoke an exception service routine for
the segment exceptions (10, 11, 12, or 13), but in the
process of doing so, detects an exception other than a
Page Fault (Exception 14).

A Double Fault (Exception 8) will also be generated
when the processor attempts to invoke the Page Fault
(Exception 14) service routine, and detects an excep-
tion other than a second Page Fault. In any functional
system, the entire Page Fault service routine must re-
main present in memory.

Double Page faults however do not raise the Double
Fault exception. If a second Page Fault occurs while the
processor is attempting to enter the service routine for
the first time, then the processor will invoke the Page
Fault (Exception 14) handler a second time rather than
the Double Fault (Exception 8) handler. A subsequent
fault, though, will lead to shutdown.

When a Double Fault occurs, the Am386DX/DXL micro-
processor invokes the exception service routine for
Exception 8.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 7. The Am386DX/DXL
microprocessor will then start executing instructions
near the top of physical memory, at location
FFFFFFFOH. Whenthe first Inter-Segment Jump or Call
is executed, address lines A31—A20 will drop Low for
CS-relative memory cycles, and the Am386DX/DXL
microprocessor will only execute instructions in the
lower 1 Mb of physical memory. This allows the system
designer to use a ROM at the top of physical memory
to initialize the system and take care of Resets.

Am386DX/DXL Microprocessor Data Sheet 33

n AMD

RESET forces the Am386DX/DXL microprocessor to
terminate all execution and local bus activity. No instruc-
tion execution or bus activity will occur as long as Reset
is active. Between 350- and 450-CLK2 periods after
Reset becomes inactive, the Am386DX/DXL device
will start executing instructions at the top of physical
memory.

Table 7. Register Values after Reset

Flag Word UUUU0002H Note 1

Machine Status Word (CR0) UUUUUUUOH Note 2

Instruction Pointer 0000FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX Register Component and Note 5
Stepping ID

All Other Registers Undefined Note 4

Notes:

1. EFLAGS Register. The upper 14 bits of the EFLAGS register are
undefined, VM (Bit 17) and RF (Bit 16) and 0 (Bit 15) are all other
defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in the CRO
are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and PE
Bit0).

3. The code Segment Register (CS) will have its Base Address set
to FFFFO000H and Limit set to OFFFFH.

4. Allundefined bits are Reserved for Future Use and should not be
used.

5. DXregister always holds component and stepping identifier (see
Section Component and Revision Identifiers). EAX register holds
self-test signature if self-test was requested (see Section Self-
Test Signature).

Testability
Self-Test

The Am386DX/DXL microprocessor has the capability
to perform a self-test. The self-test checks the function
of alithe Control ROM and most of the non-random logic
of the part. Approximately one-half of the Am386DX/
DXL microprocessor can be tested during self-test.

Self-Test is initiated on the Am386DX/DXL micropro-
cessor when the RESET pin transitions from High to
Low, andthe BUSY pinis Low. The self-test takes about
2" clocks or approximately 26 ms with a 20-MHz
Am386DX/DXL device. At the completion of self-test,
the processor performs reset and begins normal opera-
tion. The part has successfully passed self-test if the
contents of the EAX register are zero (0). If the results of
EAXare not zero then the self-test has detected aflaw in
the part.

TLB Testing

The Am386DX/DXL microprocessor provides a mecha-
nism for testing the Translation Look-Aside Buffer (TLB)

if desired. This particular mechanism is unique to the
Am386DX/DXL CPU and may not be continued in the
same way in future processors. When testing the TLB,
paging must be turned off (PG = 0 in CRO0) to enable the
TLB testing hardware and avoid interference with the
test data being written to the TLB.

There are two TLB testing operations:

1. Write entries into the TLB; and,

2. Perform TLB lookups. Two test registers, shown in
Figure 12, are provided for the purpose of testing.
TR6 is the test command register and TR7 is the test
data register. The fields within these registers are
defined below.

C: This is the command bit. For awrite into TR6 to cause

an immediate write into the TLB entry, write a 0 to this

bit. For a write into TR6 to cause an immediate TLB
lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB . On a
TLB write, a TLB entry is allocated to this linear address
and the rest of that TLB entry is set per the value of TR7
and the value just written into TR6. On a TLB lookup, the
TLB is interrogated per this value and if one and only
one TLB entry matches, the rest of the fields of TR6 and
TR7 are set from the matching TLB entry.

Physical Address: This is the data field of the TLB. On
a write to the TLB, the TLB entry allocated to the linear
address in TR6 is set to this value. On a TLB lookup, the
data field (physical address) from the TLB is read out to
here.

PL: On a TLB write, PL = 1 causes the REP field of TR7
to select which of four associative blocks of the TLB is to
be written, but PL = 0 allows the internal pointer in the
paging unit to select which TLB block is written. On a
TLB lookup, the PL bit indicated whether the lookup was
a hit (PL gets set to 1) or a miss (PL gets reset to 0).
V: The valid bit for this TLB entry. All valid bits can also
be cleared by writing to CR3.

D, D: The dirty bit for/from the TLB entry.
U, U: The user bit for/from the TLB entry.
W, W: The writable bit for/from the TLB entry.

For D, U, and W, both the attribute and its complement
are provided as tag bits to permit the option of a don’t
care on TLB lookups. The meaning of these pairs of bits
is given in the following table.

X - | Effect During Value of Bit
X TLB Lookup X after TLB Write
0 0 Miss All Bit X becomes undefined
0 1 Match if X=0 | Bit X becomes 0
1 0 Match if X=1 | Bit X becomes 1
1 1 Match Al Bit X becomes undefined

34 Am386 Microprocessors for Personal Computers

AMD n

For writing a TLB entry:
1. Write TR7 for the desired physical address, PL, and
REP values; and,

2. Write TR6 with the appropriate linear address, etc.,
(be sure to write C =0 for write command).

For looking up (reading) a TLB entry:

1. Write TR6 with the appropriate linear address (be
sure to write C =1 for lookup command); and,

2. Read TR7 and TR6. if the PL bit in TR7 indicates a
hit, then the other values reveal the TLB contents. If
PL indicates a miss, then the othervalues in TR7 and
TR6 are indeterminate.

Debugging Support

The Am386DX/DXL microprocessor provides several
features that simplify the debugging process.

The three categories of on-chip debugging aids are:

1. The code execution breakpoint op-code (0CCH);

2. The single-step capability provided by the TF bit in
the flag register; and,

3. The code and data breakpoint capability provided by
the Debug Registers DR3-DRO0, DR6, and DR7.

Breakpoint Instruction

A single-byte op-code breakpoint instruction is avail-
able for use by software debuggers. The breakpoint op-
code is 0CCh and generates an Exception 3 trap when
executed. Intypical use, a debugger program can plant
the breakpoint instruction at all desired code execution
breakpoints. The single-byte breakpoint op-code is an
alias for the two-byte general software interrupt instruc-
tion, INT n, where n = 3. The only difference between
INT 3 (0CCh) and INT n is that INT 3 is never IOPL-
sensitive; but, INT n is IOPL-sensitive in Protected
Mode and Virtual 8086 Mode.

31

1211 0

Linear Address

V|D|D|U|U|W|W|o|o|o]jo]C| TRe

Physical Address

ofofofofofo|o|P|REP|0f0]| TR7

Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.

15021B-015

Figure 12. Test Registers

Am386DX/DXL Microprocessor Data Sheet 35

a AMD

Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAGS register
is found to be set at the end of an instruction, a single-
step exception occurs. The single-step exceptionis auto
vectored to Exception 1. Precisely, Exception 1 occurs
as a trap after the instruction following the instruction
that set TF. Intypical practice, a debugger sets the TF bit
of a flag register image on the debugger’s stack. It then
typically transfers control to the user program and loads
the flagimage with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one in-
struction of the user program.

Since the Exception 1 occurs as a trap (that is, it occurs
after the instruction has already executed), the CS:EIP
pushed onto the debugger’s stack points to the next
unexecuted instruction of the program being debugged.
An Exception 1 handler, merely by ending with an IRET
instruction, can therefore efficiently support single-
stepping through a user program.

Debug Registers

The Debug Registers are an advanced debugging fea-
ture of the Am386DX/DXL microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by on-
chip registers, an instruction execution breakpoint can
be placed in ROM code or in code shared by several
tasks, neither of which can be supported by the INT 3
breakpoint op-code.

The Am386DX/DXL microprocessor contains six Debug
Registers, providing the ability to specify up to four dis-
tinct breakpoint addresses, breakpoint control options,
and read breakpoint status. Initially after reset, break-
points will occur unless the debug registers are pro-
grammed. Breakpoints set up in the Debug Registers
are auto-vectored to Exception 1.

Linear Address Breakpoint Registers (DR3-DR0)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DR3-DR0, shown in Fig-
ure 13. The breakpoint addresses specified are 32-bit
linear addresses. Am386DX/DXL microprocessor hard-
ware continuously compares the linear breakpoint

addresses in DR3-DRO with the linear addresses gen-
erated by executing software (a linear address is the re-
sult of computing the effective address and adding the
32-bit segment base address). Note that if paging is not
enabled the linear address equals the physical address.
If paging is enabled, the linear address is translated to a
physical 32-bit address by the on-chip paging unit. Re-
gardless of whether paging is enabled or not, however,
the breakpoint registers hold linear addresses.

Debug Control Register (DR7)

A Debug Control Register, DR7, shown in Figure 13,
allows several debug control functions, such as ena-
bling the breakpoints and setting up other control
options for the breakpoints. The fields within the Debug
Control Register, DR7, are as follows.

LENi (Breakpoint Length Specification Bits)

A 2-bit LEN field exists for each of the four breakpoints.
LEN specifies the length of the associated breakpoint
field. The choices for data breakpoints are: 1 byte,
2 bytes, and 4 bytes. Instruction execution break-
points must have a length of 1 (LENi = 00). Encoding of
the LENi field is as follows.

Usage of Least
Significant Bits in

LENi Breakpoint Breakpoint Address
Encoding Field Width Register i, (i=0-3)

00 1 byte All 32-bits used to specify
a single-byte breakpoint
field.

01 2 bytes A31-A1 used to specify
a two-byte, word-aligned
breakpoint field. A0 in
Breakpoint Address
Register is not used.

10 Undefined—

do not use

this encoding

1 4 bytes A31-A2 used to specify
a four-byte, Dword-aligned
breakpoint field. A0 and

A1 in Breakpoint Address

Register are not used.

36 Am386 Microprocessors for Personal Computers

AMD a

31 16 15 0
Breakpoint 0 Linear Address DRoO
Breakpoint 1 Linear Address DR1
Breakpoint 2 Linear Address DR2
Breakpoint 3 Linear Address DR3
Reserved for Future Use. Do not define. DR4
Reserved for Future Use. Do not define. DR5

B|B|B B|{B|B|B
0 Tls|p olo|jofjoj0OjO|O]|O]|O 3l2l71]o DR6

LEN |R|W| LEN|R|W|LEN [R|W|LEN |R|W G G|L|G|L|G|L|G|L|G|L
33322211100OOODOOOEEGRZBZZ11OODH7

31 16 15 0

Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
Figure 13. Debug Registers 15021B-016

The LEN:i field controls the size of breakpoint field i by RWi (Memory Access Qualifier Bits)
controlling whether all low-order linear address bits
in the breakpoint address register are used to detect
the breakpoint event. Therefore, all breakpoint fields
are aligned; 2-byte breakpoint fields begin on Word

A 2-bit RW field exists for each of the four breakpoints.
The 2-bit RW field specifies the type of usage that must
occur in order to activate the associated breakpoint.

boundaries and 4-byte breakpoint fields begin on Dword RW Usage
boundaries. Encoding Causing Breakpoint
The following is an example of various size breakpoint 00 Instruction execution only
fields. Assume the breakpoint linear address in DR2 is 01 Data writes only
00000005H. In that situation, the following illustration) . .
" X s e 0 Undef
indicates the region of the breakpoint field for lengths of ! ndefined—do nm_ use this encoding
1,2, or 4 bytes. 11 Data reads and writes only
DR2=00000005H; LEN2=008 RW encoding 00 is used to set up an instruction execu-
St 0 tion breakpoint. RW encodings 01 or 11 are used to set
up write-only or read/write data breakpoints.
00000008H
Note that instruction execution breakpoints are taken
bkpt fid2 00000004H as faults (i.e., before the instruction executes), but
00000000H data breakpoints are taken as traps (i.e., after the data
transfer takes place).
DR2 =00000005H; LEN2=01B Using LENi and RWi to Set Data Breakpoint i
31 0 A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints, RWi
00000008H can = 01 (write only) or 11 (write/read). LEN can = 00,
4 bkptfld2 —» | 00000004H 01, or 11.
00000000H If a data access falls entirely or partly within the data
breakpoint field, the data breakpoint condition has oc-
curred, and if the breakpoint is enabled, an Exception 1
DR2=00000005H; LEN2=11B trap will occur.
31 0
Using LENi and RWi to Set Instruction Execution
00000008H Breakpoint i
An instruction execution breakpoint can be set up
4 Dbkptfid2 & 00000004H by writing address of the beginning of the instruction
| | | 00000000H (including prefixes if any) into DRi (i=0-3). RWi

Am386DX/DXL Microprocessor Data Sheet 37

n AMD

must=00 and LEN must=00 for instruction execution
breakpoints.

If the instruction beginning at the breakpoint address is
about to be executed, the instruction execution break-
point condition has occurred, and if the breakpoint is
enabled, an Exception 1 fault will occur before the in-
struction is executed.

Note that an instruction execution breakpoint address
must be equal to the beginning byte address of an in-
struction (including prefixes) in order for the instruction
execution breakpoint to occur.

GD (Global Debug Register Access Detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The GD
bit, when set, provides extra protection against any De-
bug Register access even in Real Mode or at privilege
level 0 in Protected Mode. This additional protectionfea-
ture is provided to guarantee that a software debugger
(or ICE-386) can have full control over the Debug Regis-
ter resources when required. The GD bit, when set,
causes an Exception 1 fault if an instruction attempts to
read or write any Debug Register. The GD bit is then
automatically cleared when the Exception 1 handler is
invoked, allowing the Exception 1 handler free accessto
the debug registers. :

GE and LE (Exact Data Breakpoint Match, Global
and Local)

If either GE or LE is set, any data breakpoint trap will be
reported exactly after completion of the instruction that
caused the operand transfer. Exact reporting is pro-
vided by forcing the Am386DX/DXL microprocessor
execution unit to wait for completion of data oper-
and transfers before beginning execution of the next
instruction.

If exact data breakpoint match is not selected, data
breakpoints may not be reported until several instruc-
tions later or may notbe reported at all. When enabling a
data breakpoint, it is therefore recommended to enable
the exact data breakpoint match.

When the Am386DX/DXL microprocessor performs a
task switch, the LE bit is cleared. Thus, the LE bit sup-
ports fast task switching out of tasks that have enabled
the exact data breakpoint match for their task-local
breakpoints. The LE bit is cleared by the processor dur-
ing a task switch to avoid having exact data breakpoint
match enabled in the new task. Note that exact data
breakpoint match must be re-enabled under software
control.

The Am386DX/DXL microprocessor GE bit is unaf-
fected during a task switch. The GE bit supports exact
data breakpoint match that is to remain enabled during
all tasks executing in the system.

Note that instruction execution breakpoints are always
reported exactly, whether or not exact data breakpoint
match is selected.

Gi and Li (Breakpoint Enable, Global and Local)

If either Gior Liis set, then the associated breakpoint (as
defined by the linear address in DRi, the length in LENi
and the usage criteria in RWi) is enabled. If either Gi or
Liis set and the Am386DX/DXL microprocessor detects
the breakpoint condition, then the Exception 1 handler
is invoked.

When the Am386DX/DXL microprocessor performs a
task switch to a new Task State Segment (TSS), all Li
bits are cleared. Thus, the Li bits support fast task
switching out of tasks that use some task-local break-
point registers. The Li bits are cleared by the processor
during a task switch to avoid spurious exceptions in the
new task. Note that the breakpoints mustbe enabled un-
der software control.

All Am386DX/DXL microprocessor Gi bits are unaf-
fected during a task switch. The Gi bits support break-
points that are active in alltasks executing in the system.

Debug Status Register (DR6)

A Debug Status Register, DR6, shown in Figure 13,
allows the Exception 1 handier to easily determine why
it was invoked. Note the Exception 1 handler can be
invoked as a result of one of several events.

1. DRO Breakpoint fault/trap.

. DR1 Breakpoint fault/trap.

. DR2 Breakpoint fault/trap.

. DR3 Breakpoint fault/trap.

. Single-step (TF) trap.

. Task switch trap.

. gauﬂ due to attempted debug register access when
D=1.

The Debug Status Register contains single-bit flags for
each of the possible events invoking Exception 1. Note
below that some of these events are faults (exception
taken before the instruction is executed), while other
events are traps (exception taken after the debug
events occurred).

No oh ON

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user program
to avoid future confusion in identifying the source of
Exception 1.

The fields within the Debug Status Register, DR6 are as
follows.

Bi (Debug Fault/Trap Due to Breakpoint 0-3)

Four breakpoint indicator flags, B3-B0, correspond
one-to-one with the breakpoint registers in DR3—-DR0. A

38 Am386 Microprocessors for Personal Computers

AMD a

flag Biis set when the condition described by DRi, LENi,
and RWi occurs.

If Gi or Li is set, and if the breakpoint is detected, the
processor will invoke the Exception 1 handler. The ex-
ception is handled as a fault if an instruction execution
breakpoint occurred or as a trap if a data breakpoint
occurred.

Important Note: A flag, Bi, is set whenever the hard-
ware detects a match condition on enabled breakpoint .
Whenever a match is detected on at least one enabled
breakpoint i, the hardware immediately sets all Bi bits
corresponding to breakpoint conditions matching at that
instant, whether enabled or not. Therefore, the Excep-
tion 1 handler may see that multiple Bi bits are set, but
only set Bi bits corresponding to enabled breakpoints (Li
or Gi set) are true indications of why the Exception 1
handler was invoked.

BD (Debug Fault Due to Attempted Register Access
When GD Bit Set)

This bit is set if the Exception 1 handler was invoked due
to an instruction attempting to read or write to the debug
registers when GD bit was set. If such an event occurs,
then the GD bit is automatically cleared when the Ex-
ception 1 handler is invoked, allowing handler access to
the debug registers.

BS (Debug Trap Due to Single-Step)

This bitis set if the Exception 1 handler was invoked due
to the TF bit in the flag register being set (for single-
stepping). See Section Single-Step Trap.

(See Figure 29.) Note the task switch into the new task
occurs normally, but before the first instruction of the
task is executed, the Exception 1 handler is invoked.
With respect to the task switch operation, the operation
is considered to be a trap.

Use of Resume Flag (RF) In Flag Register

The Resume Flag (RF) in the flag word can suppress an
instruction execution breakpoint when the Exception 1
handler returns to a user program at a user address that
is also an instruction execution breakpoint. See Section
Flags Register.

REAL MODE ARCHITECTURE
Real Mode Introduction

When the processor is reset or powered up, it is initial-
ized in Real Mode. Real Mode has the same base archi-
tecture as the 8086, but allows access to the 32-bit
register set of the Am386DX/DXL microprocessor. The
addressing mechanism, memory size, and interrupt
handling are all identical to the Real Mode onthe 80286.

All of the Am386DX/DXL microprocessor instructions
are available in Real Mode (except those instructions
listed in Protection and I/O Permission Bitmap). The de-
fault operand size in Real Mode is 16 bits, just like the
8086. Inorder to use the 32-bit registers and addressing
modes, override prefixes must be used. In addition, the
segment size on the Am386DX/DXL CPU in Real Mode
is 64 Kb so 32-bit effective addresses must have a value
less than 0000FFFFH. The primary purpose of Real
Mode is to set up the processor for Protected Mode

BT (Debug Trap Due to Task Switch) Operation.
This bit is set if the Exception 1 handler was invoked
due to a task switch occurring to a task having an
Am386DX/DXL microprocessor TSS with the T-bit set.
15 0 Max Limit
Fixed At 64K In
r Offset Real Mode
19 0
Segment Selector 0000
Memory Operand T
Selected
64K Segment
Segment Base
15021B-017

Figure 14. Real Address Mode Addressing

Am386DX/DXL Microprocessor Data Sheet 39

n AMD

LOCK Operation

The LOCK prefix on the Am386DX/DXL microproces-
sor, even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Am386DX/DXL CPU in Protected Mode and Virtual
8086 Mode. Paging makes it impossible to guarantee
that repeated string instructions can be LOCKed. The
Am386DX/DXL CPU cannot require that all pages hold-
ing the string be physically present in memory. Hence, a
Page Fault (Exception 14) might have to be taken during
the repeated string instruction. Therefore the LOCK
prefix cannot be supported during repeated string
instructions.

These are the only instruction forms where the LOCK
prefix is legal on the Am386DX/DXL microprocessor.

Operands
Opcode (Dest, Source)
BIT TEST and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB, AND, SUB, XOR| Mem, Reg/immed
NOT, NEG, INC, DEC Mem

An Exception 6 will be generated if a LOCK prefix is
placed before any instruction form or op-code not listed
above. The LOCK prefix allows indivisible read/modify/
write operations on memory operands using the instruc-
tions above. For example, even the ADD Reg, Mem is
not LOCKable, because the Mem operand is not the
destination (and therefore no memory read/modify/
operation is being performed).

Since, onthe Am386DX/DXL microprocessor, repeated
string instructions are not LOCKable, it is not possible
to LOCK the bus for a long period of time. Therefore, the
LOCK prefix is not IOPL-sensitive on the Am386DX/
DXL device. The LOCK prefix can be used at any privi-
lege level, but only on the instruction forms listed above.

Memory Addressing

In Real Mode, the maximum memory size is limited to
1 Mb. Thus, only address lines A19-A2 are active.

Exception, the High address lines A31-A20 are
High during CS-relative memory cycles until an inter-
segment jump or call is executed (see Section Reset
and Initialization).

Since paging is not allowed in Real Mode, the linear ad-
dresses are the same as physical addresses. Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register that is
shifted left by 4 bits to an effective address. This addition
results in a physical address from 00000000H to
0010FFEFH. This is compatible with 80286 Real Mode.
Since segment registers are shifted left by 4 bits, this im-
plies that Real Mode segments always start on 16-byte
boundaries.

All segments in Real Mode are exactly 64-Kb long and
may be read, written, or executed. The Am386DX/DXL
microprocessor will generate an Exception 13 if a data
operand or instruction fetch occurs past the end of a
segment (i.e., if an operand has an offset greater than
FFFFH; for example, a word with a low byte at FFFFH
and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if a
particular segment does not use all 64 Kb, another seg-
ment ¢ an be overlayed on top of the unused portion of
the previous segment. This allows the programmer to
minimize the amount of physical memory needed for a
program.

Reserved Locations

There are two fixed areas in memory that are reservedin
Real address mode: system initialization area and the
interrupt table area. Locations 00000H through 003FFH
are reserved for interrupt vectors. Each one of the 256
possible interrupts has a 4-byte jump vector reserved
for it. Locations FFFFFFFOH through FFFFFFFFH are
reserved for system initialization.

Interrupts

Many of the exceptions shown in Table 5 and discussed
in Section Interrupts are not applicable to Real Mode op-
eration; in particular, Exceptions 10, 11, and 14 will not
happen in Real Mode. Other exceptions have slightly
different meanings in Real Mode. Table 8 identifies
these exceptions.

Table 8. Other Exceptions in Real Mode

Interrupt
Function Number Related Instructions Return Address Location
Interrupt table limit too small 8 INT Vector is not within table limit. Before Instruction
S, DS, ES, FS, GS gVord rdnefr? ot rgl?lg?:ﬁe
CS, DS, ES, FS, eyond offset= N .
Segment overrun exception 13 An attempt to execute Before Instruction
past the end of CS segment.
SS Segment overrun exception 12 Eé@%ﬁ?gigg{‘:%FFFH. Before Instruction

40 Am386 Microprocessors for Personal Computers

AMD n

Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, FLT, INTR with interrupts en-
abled (IF =1), or RESET will force the Am386DX/DXL
microprocessor out of halt. If interrupted, the saved
CS:IP will point to the next instruction after the HLT.

Shutdown willoccur when a severe erroris detected that
prevents further processing. In Real Mode, shutdown
can occur under two conditions:

e Aninterrupt or an exception occur (Exception 8 or
13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e., there is not an
interrupt handler for the interrupt);

e ACALL, INT, or PUSH instruction attempts to wrap
aroundthe stack segmentwhen SPis noteven (e.g.,
pushing a value on the stack when SP = 0001
resulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shutdown if
the Interrupt Descriptor Table limit is large enough to
contain the NMI interrupt vector (at least 0017H) and the
stack has enough room to contain the vector and flag in-
formation (i.e., SP is greater than 0005H). Otherwise
shutdown can only be exited via the RESET input.

PROTECTED MODE ARCHITECTURE
Introduction :

The complete capabilities of the Am386DX/DXL micro-
processor are uniocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to 4 Gb (2% bytes) and allows the running of vir-
tual memory programs of almost unlimited size (64 tb or
2 pytes). In addition, Protected Mode allows the
Am386DX/DXL CPU to run all of the existing 8086 and
80286 software, while providing a sophisticated mem-
ory management and a hardware-assisted protection
mechanism. Protected Mode allows the use of addi-
tional instructions especially optimized for supporting
multitasking operating systems. The base architecture
of the Am386DX/DXL CPU remains the same; the regis-
ters, instructions, and addressing modes described in

the previous sections are retained. The main differ-
ences between Protected Mode and Real Mode from a
programmer’s view is the increased address space and
a different addressing mechanism.

Addressing Mechanism

Like Real Mode, Protected Mode uses two components
to form the logical address: a 16-bit selector is used to
determine the linear base address of a segment; the
base address is added to a 32-bit effective address to
form a 32-bit linear address. The linear address is then
either used as the 32-bit physical address or if paging is
enabled the paging mechanism maps the 32-bit linear
address into a 32-bit physical address.

The difference between the two modes lies in calculat-
ing the base address. In Protected Mode, the selectoris
used to specify an index into an operating system de-
fined table (see Figure 15). The table contains the 32-bit
base address of a given segment. The physical address
is formed by adding the base address obtained from the
table to the offset.

Paging provides an additional memory management
mechanism that operates only in Protected Mode. Pag-
ing provides a means of managing the very large seg-
ments of the Am386DX/DXL microprocessor. As such,
paging operates beneath segmentation. The paging
mechanism translates the protected linear address that
comes from the segmentation unit into a physical ad-
dress. Figure 16 shows the complete Am386DX/DXL
device addressing mechanism with paging enabled.

Segmentation
Segmentation introduction

Segmentation is one method of memory management
and provides the basis for protection. Segments are
used to encapsulate regions of memory that have com-
mon attributes. For example, all of the code of a given
program could be contained in a segment or an operat-
ing system table may reside in a segment. All informa-
tion about a segment is stored in an 8-byte data struc-
ture called a descriptor. All of the descriptors ina system
are contained in tables recognized by hardware.

Am386DX/DXL Microprocessor Data Sheet 41

n AMD

48/32 Bit Pointer

4 Kb

4 Kb

Segment Limit
Selector Offset
47/31 31/15 0
Memory Operand
Selected
Segment
Access Rights
Limit
—3P Base Address
Segment
Descriptor SegArgzrr\; sBsa:se
15021B-018
Figure 15. Protected Mode Addressing
48 Bit Pointer
Segment Offset Physical Address
15 o 31 0 I4 Kb
14 Kb
Paging 4Kb
Access Rights Mechanism Physical
imi Address .
Lt P Memory Operand ngsel:cal
_-> Base Address Fr;g'uee e
Segment 32 Linear Addrocs
Descriptor Address Kb

Figure 16. Paging and Segmentation

15021B-019

42

Am386 Microprocessors for Personal Computers

AMD n

Terminology

The following terms are used throughout the discussion
of descriptors, privilege levels, and protection:

PL: Privilege Level—One of the four hierarchical privi-
lege levels. Level 0 is the most privileged level and level
3 is the least privileged. More privileged levels are nu-
merically smaller than less privileged levels.

RPL: Requester Privilege Level—The privilege level of
the original supplier of the selector. RPL is determined
by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least privi-
leged level at which a task may access that descriptor
(and the segment associated with that descriptor). De-
scriptor Privilege Level is determined by bits 6-5 in the
Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed. CPL
can also be determined by examining the lowest 2 bits of
the CS register, except for conforming code segments.

EPL: Effective Privilege Level—The effective privilege
level is the least privileged of the RPL and DPL. Since
small privilege level values indicate greater privilege,
EPL is the numerical maximum of RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

Descriptor Tables
Descriptor Tables Introduction

The descriptor tables define all of the segments which
are used in an Am386DX/DXL microprocessor system.

There are three types of tables on the Am386DX/DXL
microprocessor that hold descriptors: the Global De-
scriptor Table, Local Descriptor Table, and the Interrupt
Descriptor Table. All of the tables are variable length
memory arrays. They canrange in size between 8 bytes
and 64 Kb. Each table can hold up to 8192 eight byte
descriptors. The upper 13 bits of a selector are used as
an index into the descriptor table. The tables have
registers associated with them that hoid the 32-bit
linear base address, and the 16-bit limit of each tabie.

Each of the tables has a register associated with it: the
GDTR,LDTR, andthe IDTR (see Figure 17). The LGDT,
LLDT, and LIDT instructions load the base and limit of
the Global, Local, and Interrupt Descriptor Tables, re-
spectively, into the appropriate register. The SGDT,
SLDT, and SIDT instructions store the base and limit
values. These tables are manipulated by the operating
system. Therefore, the load descriptor table instructions
are privileged instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains descriptors
that are possibly available to all of the tasks in a system.
The GDT can contain any type of segment descriptor
except for descriptors that are used for servicing inter-
rupts (i.e., interrupt and trap descriptors). Every
Am386DX/DXL microprocessor contains a GDT. Gen-
erally, the GDT contains code and data segments used
by the operating systems and task state segments and
descriptors for the LDTs in a system.

Thefirst slot of the Global Descriptor Table corresponds
to the null selector and is not used. The null selector
defines a null pointer value.

15 0

LDTR LDT DESCR
Selector

15 0

IDT Limit

IDTR IDT Base
Linear Address

31 0 .

15

GDT Limit

GDTR GDT Base
Linear Address

31 0

Program Invisible
Automatically Loaded
From LDT Descriptor

15 o !
1

LDT Limit '

1

1

LDT Base ,
Linear Address '
31 0 '
1

1

1

]

1

1

1

15021B-020

Figure 17. Descriptor Table Registers

Am386DX/DXL Microprocessor Data Sheet 43

n AMD
Local Descriptor Table

LDTs contain descriptors that are associated with a
given task. Generally, operating systems are designed
so that each task has a separate LDT. The LDT may
contain only code, data, stack, task gate, and call gate
descriptors. LDTs provide a mechanism for isolating a
giventask’s code and data segments fromthe rest of the
operating system, while the GDT contains descriptors
for segments that are common to all tasks. A segment
cannot be accessed by a task if its segment descriptor
does not exist in either the current LDT orthe GDT. This
provides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers that contain a
base address and limit, the visible portion of the LDT
register contains only a 16-bit selector. This selector re-
fers to a Local Descriptor Table descriptor in the GDT.

Interrupt Descriptor Table

The third table needed for Am386DX/DXL microproces-
sor systems is the Interrupt Descriptor Table (see Figure
18). The IDT contains the descriptors that point to the lo-
cation of up to 256 interrupt service routines. The IDT
may contain only task gates, interrupt gates, and trap
gates. The IDT should be at least 256 bytes in size in

order to hold the descriptors for the 32, Reserved for
Future Use, interrupts. Every interrupt used by a system
must have an entry inthe IDT. The IDT entries are refer-
enced via INT instructions, external interrupt vectors,
and exceptions. (See Interrupts.)

Descriptors
Descriptor Attribute Bits

The object to which the segment selector points is called
a descriptor. Descriptors are 8-byte quantities that con-
tain attributes about a given region of linear address
space (i.e., a segment). These attributes include the
32-bit base linear address of the segment, the 20-bit
length and granularity of the segment, the protection
level, read, write or execute privileges, the default size
of the operands (16 bit or 32 bit), and the type of seg-
ment. All of the attribute information about a segment is
contained in 12 bits in the segment descriptor. Figure 19
shows the general format of a descriptor. All segments
on the Am386DX/DXL microprocessor have three at-
tribute fields in common: the P bit, the DPL bit, and the S
bit. The Present P bit is 1 if the segment is loaded in
physical memory; if P = 0 then any attempt to access this
segment causes a not present exception (Exception
11). The Descriptor Privilege Level (DPL) is a 2-bit field
that specifies the protection levels 0—3 associated with a

segment.
= Memory S
(R
Gate For
Interrupt #n
Gate For
Interrupt #n—1
Interrupt
— < > Descriptor
. Table
. (IDT)
.
CPU
Gate For
Interrupt #1
15 0
- Gate For
IDT Limit Increasing
L Interrupt #0 Xgénory
resses
IDT Base
31 = =

Figure 18. Interrupt Descriptor Table Register Use

15021B-021

Am386 Microprocessors for Personal Computers

AMD n

Byte
31 0 Address
Segment Base 15-0 Segment Limit 15-0 0
- DPL Type
— Limit Base

Base 31-24 G|D|0|AVL 19946 P I S | | A 5516 +4
Base Base Address of the segment
Limit The length of the segment
P Present Bit: 1=Present, 0=Not Present
DPL Descriptor Privilege Levels 0-3
S Segment Descriptor: 0= System Descriptor, 1=Code or Data Segment Descriptor
Type Type of Segment
A Accessed Bit
G Granularity Bit: 1 =Segment length is page granular, 0=Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only): 1 =32-bit segment, 0 =16-bit segment

Bit must be zero (0) for compatibility with future processors

0
AVL Available field for user or OS

Note: In a maximum-size segment (i.e., segment with G = 1 and segment limit 19-0 = FFFFFH), the lowest 12 bits of
the segment base should be zero (i.e., segment base 11-000 =000H).

15021B-022

Figure 19. General Format of Segment Descriptors

The Am386DX/DXL microprocessor has two main cate-
gories of segments: system segments and non-system
segments (for code and data). The segment S bit in the
segment descriptor determines if a given segment is a
system segment or a code or data segment. If the S bitis
1, thenthe segment s either a code or data segment; if it
is 0, then the segment is a system segment.

Am386DX/DXL Microprocessor Code and Data
Descriptors (S = 1)

Figure 20 shows the general format of a code and data
descriptor and Table 9 illustrates how the bits in the
Access Rights Byte are interpreted.

Code and data segments have several descriptor fields
in common. The accessed A bit is set whenever the
processor accesses a descriptor. The A bit is used
by operating systems to keep usage statistics on a
given segment. The G bit, or granularity bit, specifies if
a segment length is byte-granular or page-granular.
Am386DX/DXL microprocessor segments can be 1 Mb
long with byte granularity (G=0) or 4 Gb with page
granularity (G=1), (i.e., 22° pages—each page is 4 Kb
in length). The granularity is totally unrelated to paging.
An Am386DX/DXL CPU system can consist of seg-
ments with byte granularity and page granulamy,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or data
segment. A code segment (E=1, S=1) may be exe-
cute-only or execute/read as determined by the Read
R bit. Code segments are execute only if R =0 and exe-
cute/read if R =1. Code segments may never be written
into.

Note: Code segments may be modified via aliases. Aliases
are writeable data segments that occupy the same range of
linear address space as the code segment.

The D bit indicates the default length for operands and
effective addresses. If D = 1, then 32-bit operands
and 32-bit addressing modes are assumed. If D = 0,
then 16-bit operands and 16-bit addressing modes are
assumed. Therefore all existing 80286 code segments
will execute on the Am386DX/DXL microprocessor
assuming the D bit is set 0.

Another attribute of code segments is determined by the
conforming C bit. Conforming segments, C = 1, can be
executed and shared by programs at different privilege
levels (see Section Protection).

Am386DX/DXL Microprocessor Data Sheet 45

n AMD

31 0
Segment Base 15-0 Segment Limit 15-0 0
imi Access Rights Base
Base 31-24 G| DB [ofAvL| Hmi Byte 5316 | +4

D/B 1 = Default Instructions Attributes are 32 bits
0= Default Instructions Attributes are 16 bits
AVL Available field for user or OS
G Granularity Bit: 1 = Segment length is page granular, 0= Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Note: in a maximum-size segment (i.e., a segment with G =1 and segment limit 19-0 = FFFFFH), the lowest 12 bits of
the segment base should be zero (i.e., segment base 11-000 =000H).

15021B-023
Figure 20. Code and Data Segment Descriptors

Table 9. Access Rights Byte Definition for Code and Data Descriptions

Bit
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists, base and limit are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Levels (DPL)
4 Segment Descriptor (S) S=1 Code or Data (includes stacks) segment descriptor.
S=0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E=0 Descriptor type is data segment. If Data
2 Expansion Direction (ED) ED=0 Expand up segment, offsets must be < limit. S
ED=1 Expand down segment, offsets must be > limit. egment
1 Writeable (W) W=0 Data segment may not be written into. (S=1,
W=1 Data segment may be written into. E=0)
3 Executable (E) E=1 Descriptor type is code segment.
2 Conforming (C) C=1 Code segment may only be executed when If Code
CPL>DPL and CPL remains unchanged. Segment
1 Readable (R) R=0 Code segment may not be read. (S=1,
R=1 Code segment may be read. E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

Segments identified as data segments (E=0, S=1) are
used for two types of Am386DX/DXL microprocessor
segments: stack and data segments. The expansion
direction (ED) bit specifies if a segment expands down-
ward (stack) or upward (data). If a segment is a stack
segment, all offsets must be greater than the segment
limit. On a data segment all offsets must be less than or
equalto the limit. In other words, stack segments start at
the base linear address plus the maximum segment limit
and grow down to the base linear address plus the limit.
On the other hand, data segments start at the base
linear address and expand to the base linear address
plus limit.

The write (W) bit controls the ability to write into a seg-
ment. Data segments are read-only if W=0. The stack
segment must have W=1.

The B bit controls the size of the stack pointerregister. If
B =1,then PUSHes, POPs, and CALLs alluse the 32-bit
ESP register for stack references and assume an upper
limit of FFFFFFFFH. If B=0, stack instructions all use
the 16-bit SP register and assume an upper limit of
FFFFH.

System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 21 shows
the general format of system segment descriptors, and

46 Am386 Microprocessors for Personal Computers

AMD a

the various types of system segments. The Am386DX/
DXL microprocessor system descriptors contain a
32-bit base linear address and a 20-bit segment limit.
80286 system descriptors have a 24-bit base address
and a 16-bit segment limit. 80286 system descriptors
are identified by the upper 16 bits being all zeros.

LDT Descriptors (S=0, Type=2)

LDT descriptors (S=0, TYPE =2) contain information
about Local Descriptor Tables. LDTs contain a table of
segment descriptors, unique to a particular task. Since
the instruction to load the LDTR is only available at privi-
lege level 0, the DPL field is ignored. LDT descriptors
are only allowed in the Global Descriptor Table (GDT).

TSS Descriptors (S = 0, Type = 1, 3, 9, B)

A Task State Segment (TSS) descriptor contains infor-
mation about the location, size, and privilege level of a
TSS. ATSSinturnis a special fixed format segment that
contains all the state information for atask and a linkage
field to permit nesting tasks. The Type field is used to in-
dicate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The Type
field also indicates if the segment contains a 80286 or an
Am386DX/DXL microprocessor TSS. The Task Regis-
ter (TR) contains the selector that points to the current
TSS.

Gate Descriptors (S = 0, Type = 4-7, C, F)

Gates are used to control access to entry points within
the target code segment. The various types of gate de-
scriptors are call gates, task gates, interrupt gates, and
trap gates. Gates provide a level of indirection between
the source and destination of the control transfer. This
indirection allows the processor to automatically per-
form protection checks. It also allows system designers
to control entry points to the operating system. Call
gates are used to change privilege levels (see Section
Protection), task gates are used to perform a task

switch, and interrupt and trap gates are used to specify
interrupt service routines.

Figure 22 shows the format of the four types of gate de-
scriptors. Call gates are primarily used to transfer pro-
gram control to a more privileged level. The call gate de-
scriptor consists of three fields: the access byte; a long
pointer (selector and offset) that points to the start of a
routine; and a word count that specifies how many pa-
rameters are to be copied from the caller’s stack to the
stack of the called routine. The word count field is only
used by call gates when there is a change in the privi-
lege level, other types of gates ignore the word count
field.

Interrupt and trap gates use the destination selector and
destination offset fields of the gate descriptor as a point-
er to the start of the interrupt or trap handler routines.
The difference between interrupt gates and trap gates is
that the interrupt gate disables interrupts (resets the IF
bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates may
only refer to a task state segment (see Section Task
Switching); therefore, only the destination selector por-
tion of atask gate descriptor is used, and the destination
offset is ignored.

Exception 13 is generated when a destination selector
does not refer to a correct descriptor type, i.e., a code
segment for an interrupt, trap or call gate, a TSS for a
task gate.

The access byte format is the same for all gate descrip-
tors. P=1 indicates that the gate contents are valid.
P =0indicates the contents are not valid and causes Ex-
ception 11 if referenced. DPL is the descriptor privilege
level and specifies when this descriptor may be used by
a task (see Section Protection). The S field, bit 4 of the
access rights byte, must be 0 to indicate a system con-
trol descriptor. The type field specifies the descriptor
type as indicated in Figure 22.

31 16 0
Segment Base 15-0 Segment Limit 15~0 0
_ Limit DPL Type Base
Base 31-24 G|ojo|o 19-16 P I 0 | l | 23 16 +4
Type Definition Type Definition
Invalid Invalid
Available 80286 TSS Available Am386DX/DXL CPU TSS
LDT Undefined (Reserved)
Busy 80286 TSS Busy Am386DX/DXL CPU TSS

80286 Call Gate

Task Gate (for 80286 or Am386DX/DXL CPU Task)
80286 Interrupt Gate

80286 Trap Gate

NooahsAWN—-O

Am386DX/DXL CPU Call Gate
Undefined (Reserved)
Am386DX/DXL CPU Interrupt Gate
Am386DX/DXL CPU Trap Gate

MMOOWT>» oo

Note: In a maximum-size segment (i.e., segment with G = 1 and segment limit 19-0 = FFFFFH), the lowest 12 bits
of the segment base should be zero (i.e., segment base 11-000 =000H).

15021B-024

Figure 21. System Segments Descriptors

Am386DX/DXL Microprocessor Data Sheet 47

n AMD

31 24 16 15 8 5 0
Selector Offset 15-0 0
DPL Word
Offset 31-16 P 0 Type o|o|o| Count +4
[1] 40

Gate Descriptors Fields

Name Value
Type 4
5
6
7
C
E
F
P 0
1

Description

80286 Call Gate

Task Gate (for 80286 or Am386DX/DXL CPU Task)
80286 Interrupt Gate

80286 Trap Gate

Am386DX/DXL CPU Call Gate

Am386DX/DXL CPU Interrupt Gate

Am386DX/DXL CPU Trap Gate

Descriptor contents are not valid

Descriptor contents are valid

DPL—Least privileged level at which a task may access the gate. WORD COUNT 0-31—The number of parameters to copy
from caller’s stack to the called procedure’s stack. The parameters are 32-bit quantities for Am386DX/DXL CPU gates, and

16-bit quantities for 80286 gates.

DESTINATION 16-Bit
SELECTOR Selector
DESTINATION Offset
OFFSET 16-bit 80286

32-bit Am386DX/DXL CPU

Selector to the target code segment
or
Selector to the target state segment for task gate

Entry point within the target code segment

15021B-025

Figure 22. Gate Descriptor Formats

Difference Between Am386DX/DXL Microproces-
sor and 80286 Descriptors

In order to provide operating system compatibility be-
tween the 80286 and Am386DX/DXL microprocessor,
the Am386DX/DXL CPU supports all of the 80286 seg-
ment descriptors. Figure 23 shows the general format of
an 80286 system segment descriptor. The only differ-
ences between 80286 and Am386DX/DXL device de-
scriptor formats are that the values of the type fields and
the limit and base address fields have been expanded
for the Am386DX/DXL device. The 80286 system seg-
ment descriptors contained a 24-bit base address and
16-bit limit, while the Am386DX/DXL microprocessor
system segment descriptors have a 32-bit base ad-
dress, a 20-bit limit field, and a granularity bit.

By supporting 80286 system segments, the Am386DX/
DXL microprocessor is able to execute 80286 appli-
cation programs on an Am386DX/DXL CPU operating
system. This is possible because the processor
automatically understands which descriptors are
80286-style descriptors and which are Am386DX/DXL
microprocessor-style descriptors. In particular, if the
upper word of a descriptor is zero, then that descriptor
is an 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Am386DX/DXL microprocessor descrip-
tors is the interpretation of the word count field of call
gates and the B bit. The word count field specifies the
number of 16-bit quantities to copy for 80286 call gates
and 32-bit quantities for Am386DX/DXL device call
gates. The B bit controls the size of PUSHes when using
a call gate; if B = 0, then PUSHes are 16 bits, if B = 1,
then PUSHes are 32 bits.

Selector Fields

A selector in Protected Mode has three fields: Local or
Global Descriptor Table Indicator (T1), Descriptor Entry
Index (Index), and Requestor (the selector’s) Privilege
Level (RPL) as shown in Figure 24. The Tl bits select
one of two memory-based tables of descriptors (the
Global Descriptor Table or the Local Descriptor Table).
The Index selects one of 8K descriptors in the appropri-
ate descriptor table. The RPL bits allow high speed test-
ing of the selector’s privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register
has a segment descriptor cache register associated
with it. Whenever a segment register's contents are

48 Am386 Microprocessors for Personal Computers

AMD u

changed, the 8-byte descriptor associated with that not visible to the programmer. Since descriptor caches
selector is automatically loaded (cached) on the chip. only change when a segment register is changed,
Once loaded, all references to that segment use the programs that modify the descriptor tables must reload
cached descriptor information instead of reaccessing the appropriate segment registers after changing a

the descriptor. The contents of the descriptor cache are

descriptor’s value.

31 0
Selector Base 15-0 Segment Limit 15-0 0
Reserved for Future Use DPL Type
Setto 0 P | S |] | Base | +4
Base Base Address of the Segment
Limit The length of the Segment
P Present Bit: 1 =Present, 0=Not Present
DPL Descriptor Privilege Levels 0-3
S System Descriptor: 0=System, 1=User
Type Type of Segment
15021B-026
Figure 23. 80286 Code and Data Segment Descriptors
Selector
15 4321 0
Segment TI| RPL
Register | 0 | 0------ 0 HEEE
= ~- ~ 1 Table
index indicator
Ti=1 TI=0
: Descript
escriptor
N / Number N /
6 6
5 5
4
Descriptor 3
2 2
1 1
0 0 Null R
Local Descriptor Table Global Descriptor Table
15021B-027

Figure 24. Example Descriptor Selection

Am386DX/DXL Microprocessor Data Sheet

n AMD

Segment Descriptor Register Settings

The contents of the segment descriptor cache vary de-
pending on the operating mode of the Am386DX/DXL
microprocessor. When operating in Real Address
Mode, the segment base, limit, and other attributes
within the segment cache registers are defined as
shown in Figure 25.

For compatibility with the 8086 architecture, the base is
set to 16 times the current selector value, the limit is
fixed at 0000FFFFH, and the attributes are fixed to

indicate that the segment is present and fully usable. In
Real Address Mode, the internal privilege levelis always
fixed to the highest level, level 0, so I/O and other privi-
leged op-codes may be executed.

When operating in Protected Mode, the segment base,
limit, and other attributes within the segment cache reg-
isters are defined as shown in Figure 26. In Protected
Mode, each of these fields are defined according to the
contents of the segment descriptor indexed by the se-
lector value loaded into the segment register.

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector 32-Bit Limit Other Attributes
Load into Segment Register) (Fixed) (Fixed)

Conforming Privilege

Stack Size

Executable

Writeable

Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Present

BASE LIMIT l vy VY VY
CS | 16X Current CS Selector* 0000FFFFH Y|lo|l Y| BfU]Y|]Y]Y|] -|N
SS | 16X Current SS Selector 0000FFFFH Yjlo|Y Bl U|JY]Y] N| W|-
DS | 16X Current DS Selector 0000FFFFH Yol Y] B U|JY]Y| N[-|-
ES | 16X Current ES Selector 0000FFFFH Yjo|] Y Bl U|JY|]Y|] N|] -| -
FS | 16X Current FS Selector 0000FFFFH Y|lo|l Y| BlU]Y|Y] N|] -| -
GS | 16X Current GS Selector 0000FFFFH Y|lOo] Y Bl U|lY] Y| N|] -] -
Key: Y = Yes D = Expand down

N = No B = Byte granularity

0 = Privilege level 0 P = Page granularity

1 = Privilege level 1 W = Push/pop 16-bit words

2 = Privilege level 2 F = Push/pop 32-bit Dwords

3 = Privilege level 3 — = Does not apply to that segment cache register

U = Expand up

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g., intersegment CALL, or

intersegment JMP, or INT). (See Figure 27 example.)

15021B-028

Figure 25. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

50 Am386 Microprocessors for Personal Computers

AMD a

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector
Load into Segment Register)

32-Bit Limit
(Updated During Selector
Load Into Segment Register)

Other Attributes
(Updated During Selector
Load Into Segment Register)

Conforming Privilege
Stack Size

Executable

Writeable

Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Present

] BASE _ LM l vVVY VvV
CS | Base per Seg Descr Limit per Seg Descr pld| d d|ld|d|N|]Y|] -]d
SS | Base per Seg Descr Limit per Seg Descr pldf| d d|l d|r|w|] N|]dj-
DS | Base per Seg Descr Limit per Seg Descr pld| d dld]|]d]d| Nl -] -
ES | Base per Seg Descr Limit per Seg Descr p|ld]| d d|d]|d|d| N|] -|-
FS | Base per Seg Descr Limit per Seg Descr pld| d d|d]|d|d| N|] -| -
GS | Base per Seg Descr Limit per Seg Descr p|ld| d did|d|d| N[-] -

Key Fixed Yes
Fixed No

Per segment descriptor

ls~oaz<

mowonmowowowou

Does not apply to that segment cache register

Per segment descriptor; descriptor must indicate “present” to avoid Exception 11 (Exception 12 in case of SS)
Per segment descriptor, but descriptor must indicate “readable” to avoid Exception 13 (special case for SS)
Per segment descriptor, but descriptor must indicate “writeable” to avoid Exception 13 (special case for SS)

15021B-029

Figure 26. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the Pro-
tected Mode, the segment base, limit, and other attrib-
utes within the segment cache registers are defined
as shown in Figure 27. For compatibility with the 8086
architecture, the base is set to 16 times the current
selector value, the limit is fixed at 0000FFFFH, and the

attributes are fixed so as to indicate the segment
is present and fully usable. The virtual program exe-
cutes at lowest privilege level, level 3, to allow trapping
of all IOPL-sensitive instructions and level 0 only
instructions.

Am386DX/DXL Microprocessor Data Sheet 51

n AMD

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector

Load into Segment Register)

32-Bit Limit Other Attributes
(Fixed) (Fixed)

Conforming Privilege
Stack Size

Executable

Wiriteable
Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Present
BASE LIMIT l v VvV Vv v
CS | 16X Current CS Selector 0000FFFFH Y|3| Y| B|lU]JY]Y]Y N
SS | 16X Current SS Selector 0000FFFFH Y|3|, Y| BJUJ]Y|]Y]N -
DS | 16X Current DS Selector 0000FFFFH Y| 3|, Y| B]J]UJ]Y]Y]N -
ES | 16X Current ES Selector 0000FFFFH Y| 3| Y| BJU|[Y]Y|N -
FS | 16X Current FS Selector 0000FFFFH Y|3/Y| B]J]U]J]Y|]Y]N -
GS | 16X Current GS Selector 0000FFFFH Y| 3]Y Bl U|]Y| Y] N -
Key: Y = Yes D = Expand down

N = No B = Byte granularity

0= Privilege level 0 P = Page granularity

1 = Privilege level 1 W = Push/pop 16-bit words

2 = Privilege level 2 F = Push/pop 32-bit Dwords

3 = Privilege level 3 — = Does not apply to that segment cache register

U = Expand up

15021B-030

Figure 27. Segment Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

52 Am386 Microprocessors for Personal Computers

AMD n

Protection
Protection Concepts

The Am386DX/DXL microprocessor has four levels of
protection that are optimized to support the needs of a
multitasking operating system to isolate and protect
user programs from each other and the operating sys-
tem. The privilege levels control the use of privileged in-
structions, I/O instructions, and access to segments and
segment descriptors. Unlike traditional microprocessor
based systems where this protection is achieved only
through the use of complex external hardware and soft-
ware, the Am386DX/DXL CPU provides the protection
on a page basis when paging is enabled (see Section
Page Level Protection).

The four-level hierarchical privilege systemis illustrated
in Figure 28. It is an extension of the user/supervisor
privilege mode commonly used by minicomputers and,
in fact, the user/supervisor mode is fully supported by
the Am386DX/DXL microprocessor paging mechanism.
The privilege levels (PL) are numbered 0 through 3.
Level 0 is the most privileged or trusted level.

CPU
Enforced
Software
Interfaces

Applications

Kernel
PL=0
Most
Privileged

High Speed
Operating
System

Interface 15021B-031

Figure 28. Four-Level Hierarchical Protection

Rules of Privilege

The Am386DX/DXL microprocessor controls access to

both data and procedures between levels of a task, ac-

cording to the following rules.

« Datastored in a segment with privilege level pcanbe
accessed only by code executing at a privilege level
at least as privileged as p.

« Acode segment/procedure with privilege level p can
only be called by a task executing at the same or a
lesser privilege level than p.

Privilege Levels
Task Privilege

Atany pointintime, atask onthe Am386DX/DXL micro-
processor always executes at one of the four privilege
levels. The Current Privilege Level (CPL) specifies the
task’s privilege level. Atask’s CPL may only be changed
by control transfers through gate descriptors to a code
segment with a different privilege level (see Section
Privilege Level Transfers). Thus, an application pro-
gram running at PL=3 may call an operating system
routine at PL = 1 (via a gate) that would cause the task’s
CPL to be set to 1 until operating system routine is
finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL
field. The RPL is the two least significant bits of the se-
lector. The selector's RPL is only used to establish a
less trusted privilege level than the current privilege
level for the use of a segment. This level is called the
task’s effective privilege level (EPL). The EPL is defined
as being the least privileged (i.e., numerically larger)
level of a task’s CPL and a selector's RPL. Thus, if se-
lector's RPL =0, thenthe CPL always specifies the privi-
lege level for making an access using the selector. On
the other hand if RPL = 3, then a selector can only ac-
cess segments at level 3 regardless of the task’s CPL.
The RPL is most commonly used to verify that pointers
passed to an operating system procedure do not access
data that is of higher privilege than the procedure that
originated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL) in-
struction is provided to force the RPL bits to the
originator's CPL.

/O Privilege and I/O Permission Bitmap

The I/O privilege level (IOPL, a 2-bitfield inthe EFLAGS
register) defines the least privileged level at which
1/0 instructions can be unconditionally performed. I/O
instructions can be unconditionally performed when
CPL< IOPL. (The /O instructions are IN, OUT, INS,
OUTS, REP INS, and REP OUTS.) When CPL > IOPL,
and the current task is associated with a 286 TSS, at-
tempted /O instructions cause an Exception 13 fault.
When CPL > IOPL, and the current task is associated
with an Am386DX/DXL CPU TSS, the I/O Permission
Bitmap (part of an Am386DX/DXL microprocessor TSS)
is consulted on whether I/O to the port is allowed, or an
Exception 13 fault is to be generated instead. For dia-
grams of the 1/0 Permission Bitmap, refer to Figures
29a and 29b. For further information on how the I/0 Per-
mission Bitmap is used in Protected Mode or in Virtual
8086 Mode, refer to Section Protection and /O Permis-
sion Bitmap.

Am386DX/DXL Microprocessor Data Sheet 53

n AMD

31 16 15 0 Bis
0000000000000000 | BackLink | o) *®
ESPO 4
0000000000000000 | SS0 g | Stacks
ESP1 c jCPL
0000000000000000 | SSt N
ESP2 14
0000000000000000 | ss2 18
CR3 1c 9
EIP 20
EFLAGS 24
EAX 28
ECX 2C
EDX 30
EBX 34
ESP 38 Current
EBP 3c [Task
Note: ESI 40
BIT_MAP_OFFSET EDI 44
must be < DFFFH 0000000000000000 ES 48
0000000000000000 cs ac
0000000000000000 ss 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 GS 5C
0000000000000000 LDT 60
BIT_MAP_OFFSET(15-0) 0000000000000000 | T |n 64 J
Available N .}DEBUG
N, System Status, etc. ~ TReFP
in Am386DX/DXL CPU TSS
31 24 | 23 16| 15 8|7 0w
63 56 | 55 48 | 47 40| 39 32 | BIT_MAP_OFFSET
95 88 |87 80 | 79 72| 71 64
96 |OFFSET+C
———— - OFFSET +10
fralion ~
. : 1/O Permission Bitma
i 31 DA OT— so407 (One Bit per Byte I/Op OFFSET+ 1FEC
: ﬁ‘relgs:gg : 65439 Port, Bitmap may be OFFSET + 1FFO
[ianeagi : 65471 Truncated using TSS Limit.) OFFSET + 1FF4
Task Register 65503 65472 |OFFSET+1FF8
TR@E‘ 65535 | 65504 |OFFSET +1FFC
15 0 FFH |OFFSET+2000
. TSS Limit=OFFSET +2000H
1 Am386DX/DXL CPU TSS Descriptor (In GDT) 0
R Selector Base 15-0 Segment Limit 15-0
Type =9: Available Base 31-24 olo 1|§'T1“6 p DPL 0 Tyfe 2333_51%
Am386DX/DXL CPU TSS,
Type =B: Busy
Am3SEDXDXL CPUTSS Figure 29a. TSS and TSS Registers 15021B-032a
54 Am386 Microprocessors for Personal Computers

AMD n

313029 28 2726 25 24 2322 21 2019 18 17 16 1514131211109 8 76 54 3 210
31j11 11 011 0|0 000 1111401001 100{000O0O0O01T
63100 1 0001 1)1 1t 0010101 1111 100|111 11001
%1111 11111111 111111 1111111111 11111
12710 0 0 0 00 O 00O 0 OO O OO OJ]O 0O OOOOO|j0OOO OOO0OO

111 11111

X X

I/0 Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

15021B-032b

Figure 29b. Sample I/0 Permission Bit Map

The 1/O privilege level (IOPL) also affects whether
several other instructions can be executed or cause an
Exception 13 fault instead. These instructions are called
|OPL-sensitive instructions and they are CLI and STI.
(Note that the LOCK prefix is not IOPL-sensitive on the
Am386DX/DXL microprocessor.)

The IOPL also affects whether the IF bit (interrupts en-
able flag) can be changed by loading a value into the
EFLAGS register. When CPL<IOPL, the IF bit can be
changed by loading a new value into the EFLAGS regis-
ter. When CPL > IOPL, the IF bit cannot be changed by a
new value POP’ed into (or otherwise loaded into) the
EFLAGS register; the IF bit merely remains unchanged
and no exception is generated.

Table 10. Pointer Test Instructions

Instruction Operands Function
ARPL

Selector,
Register

Adjust Requested Privilege
Level; adjusts the RPL of the
selector to the numeric maximum
of current selector RPL value and
the RPL value in the register. Set
zero flag if selector RPL was
changed.

VERify for Read: sets the zero
flag if the segment referred to
by the selector can be read.

VERIfy for Write: sets the zero
flag if the segment referred to
by the selector can be written.

VERR Selector

VERW Selector

LSL Register,

Selector

Load Segment Limit: reads the
segment limit into the register if
privilege rules and descriptor
type allow. Set zero flag if
successful.

LAR Register,

Selector

Load Access Rights: reads the
descriptor access rights byte into
the register if privilege rules allow.
Set zero flag if successful.

Privilege Validation

The Am386DX/DXL CPU provides several instructions
to speed pointer testing and help maintain system
integrity by verifying that the selector value refers to an

appropriate segment. Table 10 summarizes the selec-
tor validation procedures available for the Am386DX/
DXL microprocessor.

This pointer verification prevents the common problem
of an application at PL = 3 calling an operating-systems
routine at PL = 0 and passing the operating-systems
routine a bad pointer that corrupts a data structure
belonging to the operating system. If the operating-
systems routine uses the ARPL instruction to ensure
that the RPL of the selector has no greater privilege
than that of the caller, then this problem can be avoided.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments, such as control trans-
fers; and those involving data accesses. Determining
the ability of a task to access a segment involves the
type of segment to be accessed, the instruction used,
the type of descriptor used, and CPL, RPL, and DPL as
described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Am386DX/DXL microprocessor
makes protection validation checks. Selectors loaded in
the DS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data access
rules are specified in Section Rules of Privilege. The
only exception to those rules is readable conforming
code segments which can be accessed at any privilege
level.

Finally, the privilege validation checks are performed.
The CPL is compared to the EPL; if the EPL is more
privileged than the CPL, an Exception 13 (General Pro-
tection fault) is generated.

The rules regarding the stack segment are slightly differ-
ent than those involving data segments. Instructions
that load selectors into SS must refer to data segment
descriptors for writeable data segments. The DPL and
RPL must equal the CPL. All other descriptor types or a
privilege level violation will cause Exception 13. A stack
not present fault causes Exception 12. Note that an
Exception 11 is used for a not-present code or data
segment.

Am386DX/DXL Microprocessor Data Sheet

55

n AMD

Table 11. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT
L Interrupt Instruction, Trap or Interrupt

Interrupt within task may change CPL Except‘i)on, External Interrupt | Gate IDT
Intersegment to a lower privilege level (change task CPL) | RET, IRET* Code Segment GDT/LDT

CALL, JMP Task State Segment | GDT

CALL, JMP Task Gate GDT/ALDT
Task Switch :

IRET**, Interrupt Instruction,

Exception, External Interrupt Task Gate IDT

*NT (Nested Task bit of flag register) = 0

**NT (Nested Task bit of flag register) = 1

Privilege Level Transfers

Intersegment control transfers occur when a selector is
loaded in the CS register. For a typical system most of
these transfers are simply the result of a callor a jump to
anotherroutine. There are five types of control transfers,
which are summarized in Table 11.

Many of these transfers result in a privilege level trans-
fer. Changing privilege levels is done only via control
transfers by using gates, task switches, and interrupt or
trap gates.

Control transfers can only occur if the operation that
loaded the selector references the correct descriptor
type. Any violation of these descriptor usage rules will
cause an Exception 13 (e.g., JMP through a call gate or
IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conforming
code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels that are the same or less privileged
than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL must
be of equal or greater privilege than the gate’s DPL.

— The code segment selected in the gate must be the
same or more privileged than the task’s CPL.

— Return instructions that do not switch tasks can only
return control to a code segment with same or less
privilege.

— Task switches can be performed by a CALL, JMP, or
INT that references either a task gate or task state
segment whose DPL is less privileged or the same
privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privilege
level change. The initial values of SS:ESP for privilege
levels 0, 1, and 2 are retained in the task state segment
(see Section Task Switching). During a JMP or CALL
control transfer, the new stack pointer is loaded in the
SS and ESP registers and the previous stack pointer is
pushed onto the new stack.

When returning to the original privilege level, use of the
lower-privilege stack is restored as part of the RET or
IRET instruction operation. For subroutine calls that
pass parameters on the stack and cross privilege levels,
afixed number of words (as specified in the gate’s word
count field) are copied from the previous stack to the
current stack. The intersegment RET instruction with a
stack adjustment value will correctly restore the previ-
ous stack pointer upon return.

Cali Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all the gates in a system, it can
ensure that all gates only allow entry into a few trusted
procedures (such as those that allocate memory or per-
form 1/O).

56 Am386 Microprocessors for Personal Computers

AMD a

Gate descriptors follow the data access rules of privi-
lege; that is, gates can be accessed by a task if the EPL
is equal to or more privileged than the gate descriptor's
DPL. Gates follow the control transfer rules of privilege
and therefore may only transfer control to a more privi-
leged level.

Call gates are accessed via a CALL instruction and are

syntactically identical to calling a normal subroutine.

When an interlevel Am386DX/DXL microprocessor call

gate is activated, the following actions occur:

1. Load CS:EIP from gate check for validity;

2. SSis pushed zero-extended to 32 bits;

3. ESPis pushed;

4. Copy word count 32-bit parameters from the old
stack to the new stack;

5. Push return address on stack.

The procedure is identical for 80286 Call gates, except
that 16-bit parameters are copied and 16-bit registers
are pushed.

Interrupt gates and Trap gates work in a similar fashion
as the call gates, except there is no copying of parame-
ters. The only difference between Trap and Interrupt
gates is that control transfers through an Interrupt gate,
disable further interrupts (i.e., the IF bit is set to 0), and
Trap gates leave the interrupt status unchanged.

Task Switching

A very important attribute of any multitasking/multi-user
operating system is its ability to rapidly switch between
tasks or processes. The Am386DX/DXL microproces-
sor directly supports this operation by providing a task
switch instruction in hardware. The Am386DX/DXL
CPU task switch operation saves the entire state of the
machine (all of the registers, address space, and a link
to the previous task), loads a new execution state, per-
forms protection checks, and commences execution in
the new task;, in about 17 ms. Like transfer of control via
gates, the task switch operation is invoked by executing
anintersegment JMP or CALL instruction that refersto a
Task State Segment (TSS), or a task gate descriptor in
the GDT orLDT. AnINT ninstruction, exception, trap, or
external interrupt may also invoke the task switch opera-
tion if there is a task gate descriptor in the associated
IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
29a) containing the entire Am386DX/DXL microproces-
sor execution state while a task gate descriptor contains
aTSS selector. The Am386DX/DXL CPU supports both
80286 and Am386DX/DXL CPU style TSSs. Figure 30
shows an 80286 TSS. The limit of an Am386DX/DXL
microprocessor TSS must be greater than 0064H
(002BH for an 80286 TSS) and can be as large as 4 Gb.
In the additional TSS space, the operating system is
free to store additional information, such as the reason
the task is inactive, time the task has spent running, and
open files belonging to the task.

Each task must have a TSS associated with it. The cur-
rent TSS is identified by a special register in the
Am386DX/DXL microprocessor called the Task State
Segment Register (TR). This register contains a selec-
tor referring to the task state segment descriptor that de-
fines the current TSS. A hidden base and limit register
associated with TR are loaded whenever TR is loaded
with a new selector. Returning from a task is accom-
plished by the IRET instruction. When IRET is executed,
control is returned to the task that was interrupted. The
current executing task’s state is saved in the TSS and
the old task state is restored from its TSS.

Several bits in the flag register and machine status word
(CRO0) give information about the state of a task that are
useful to the operating system. The Nested Task (NT)
(bit 14 in EFLAGS) controls the function of the IRET in-
struction. If NT = 0, the IRET instruction performs the
regular return; when NT = 1, IRET performs a task
switch operation back to the previous task. The NT bit is
set or reset in the following fashion.

When a CALL or INT instruction initiates a task switch,
the new TSS will be marked busy and the back link
field of the new TSS set to the old TSS selector. The NT
bit of the new task is set by CALL or INT initiated task
switches. An interrupt that does not cause a task switch
willclear NT. (The NT bit will be restored after execution
of the interrupt handler.) NT may also be set or cleared
by POPF or IRET instructions.

The Am386DX/DXL microprocessor Task State Seg-
ment is marked busy by changing the descriptor type
field from Type 9H to Type BH. An 80286 TSS is
marked busy by changing the descriptor type field from
Type 1 to Type 3. Use of a selector that references a
busy task state segment causes an Exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a task
is a virtual 8086 task. If VM =1, then the tasks will use
the Real Mode addressing mechanism. The virtual 8086
environment is only entered and exited via a task switch
(see Section Virtual Mode).

The coprocessor's state is not automatically saved
when a task switch occurs, because the incoming task
may not use the coprocessor. The Task Switched (TS)
Bit (bit 3 in the CRO0) helps deal with the coprocessor’s
state in a multitasking environment. Whenever the
Am386DX/DXL microprocessor switches tasks, it sets
the TS bit. The Am386DX/DXL CPU detects the firstuse
of a processor extension instruction after a task switch
and causes the processor extension not available Ex-
ception 7. The exception handler for Exception 7 may
then decide whether to save the state of the coproces-
sor. A processor extension not present Exception 7 will
occur when attempting to execute an ESC or WAIT in-
struction if the Task Switched and Monitor coprocessor
extension bits are both set (i.e., TS=1 and MP=1).

Am386DX/DXL Microprocessor Data Sheet 57

u AMD

15 0

Back Link Selector to TSS 0 \

SP for CPL 0 2

SS for CPL 0 4 -

Initial

SP for CPL 1 6 } fSc.traé:;l:asl-
SS for CPL 1 8 | 01,2
SP for CPL 2 A

SS for CPL 2 C)

IP (Entry Point) E)

Flags 10

AX 12

CX 14

DX 16

BX 18 | Gurrent
SP 1AL Sask
BP 1C

Sl 1E

DI 20

ES Selector 22

CS Selector 24

SS Selector 26

DS Selector 28)

Task's LDT Selector 2A

N Available A
~J Y 15021B-033

Figure 30. 80286 TSS

The T bit in the Am386DX/DXL microprocessor TSS in-
dicates that the processor should generate a debug ex-
ception when switching to a task. If T = 1, then upon en-
try to a new task, a debug Exception 1 will be generated.

Initialization and Transition to Protected Mode

Since the Am386DX/DXL microprocessor begins exe-
cuting in Real Mode immediately after RESET, itis nec-
essary to initialize the system tables and registers with
the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256-bytes long,
and GDT must contain descriptors for the initial code
and data segments. Figure 31 shows the tables and
Figure 32 shows the descriptors needed for a simple
Protected Mode Am386DX/DXL microprocessor sys-
tem. It has a single code and single data/stack segment
each 4 Gb long and a single privilege level PL=0.

The actual method of enabling Protected Mode is to load
CRO with PE bit set, via the MOV CR0, R/M instruction.

This puts the Am386DX/DXL microprocessor in Pro-
tected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers with
the initial selector values.

An alternate approach to entering Protected Mode that
is especially appropriate for multitasking operating sys-
tems is to use the built in task-switch to load all of the
registers. In this case, the GDT would contain two TSS
descriptors in addition to the code and data descriptors
needed for the first task. The first JMP instruction in Pro-
tected Mode would jump to the TSS causing a task
switch and loading all of the registers with the values
storedinthe TSS. The TR should be initialized to point to
a valid TSS descriptor since a task switch saves the
state of the current task in a task state segment.

Paging
Paging Concepts

Paging is another type of memory management useful
for virtual memory multitasking operating systems. Un-
like segmentation that modularizes programs and data
into variable length segments, paging divides pro-
grams into multiple uniform size pages. Pages bear no
direct relation to the logical structure of a program.
While segment selectors can be considered the logical
name of a program module or data structure, a page
most likely corresponds to only a portion of a module or
data structure.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of pages
from each active task need be in memory at any one
moment.

Paging Organization
Page Mechanism

The Am386DX/DXL microprocessor uses two levels of
tables to translate the linear address (from the segmen-
tation unit) into a physical address. There are three com-
ponents to the paging mechanismof the Am386DX/DXL
CPU: the page directory, the page tables, and the page
itself (page frame). Allmemory-resident elements of the
Am386DX/DXL CPU paging mechanism are the same
size, namely, 4 Kb. A uniform size for all of the elements
simplifies memory allocation and reallocation schemes,
since there is no problem with memory fragmentation.
Figure 33 shows how the paging mechanism works.

58 Am386 Microprocessors for Personal Computers

AMD a

5 0, 31 0
- FFFFFFFF
Reset Routines
s FFFFFFFO
Initialization
GS Routines
s [ae] }
cs
User Memory
DS |oo10
J
GDTR [0017] Limit 00000118
00000100 Data Descriptor | 9000110
Base Addross Code Descriptor - GDT
) Null Selector
IDTR [0OFF] Limit 00000100
Interrupt 4
00000000 Descriptors (32) IDT
Base Address » 00000000
15021B-034
Figure 31. Simple Protected System
b Data Segment Base 15-0 Segment Limit 15-0
escriptor 0118 (H) FFFF (H)
Base31-24 |G|D Limit Base
olof 19-16 1]ojof1] ojoj1]o| 2316
o) |11) | 1 00 (H)
Code Segment Base 15-0 Segment Limit 15-0
Descriptor 0118 (H) FFFF (H)
Base31-24 |G|D Limit Base
ofo| 19-16 1|lojo[1] 1jo 1] 0] 23-16
ooy 1]) | 1°] 00 (H)
Null | Descriptor
31 24 15 8 0
15021B-035

Figure 32. GDT Descriptors for Simple System

Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It holds
the 32-bit linear address that caused the last Page Fault
detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of the
Page Directory. The lower 12 bits of CR3 are always
zero to ensure that the Page Directory is always page
aligned. Loading it via a MOV CR3, reg instruction
causes the Page Table entry cache to be flushed, as will

a task switch through a TSS that changes the value of
CRO. (See Translation Look-Aside Buffer.)

Page Directory

The Page Directory is 4-Kb long and allows up to 1024
Page Directory entries. Each Page Directory entry con-
tains the address of the next level of tables, the Page Ta-
bles and information about the page table. The contents
of a Page Directory entry are shown in Figure 34. The
upper 10 bits of the linear address (A31-A22) are used
as an index to select the correct Page Directory entry.

Am386DX/DXL Microprocessor Data Sheet 59

u AMD

Two Level Paging Scheme

31 22 12 0
. .l Directory l Table |Offsetl
Linear
Address
12
Z
10 j’ 10// 7 User
Memory
é’;‘SBGDX/DXL 31 0 Address
31 0 31 o \& "
CRoO
y
CR1 +) >
Page Table
CR2
CR3 Root >
Control Registers Directory
15021B-036
Figure 33. Paging Mechanism
31 1211 10 9 8 7 6 5 4 3 2 1 0
Page Table Address 31-12 Reserved | 0| O|[DJAJO]O g V_V P
Figure 34. Page Directory Entry (Points to Page Table) 15021B-037
31 1211 10 9 8 7 6 5 4 3 2 1 0
Page Frame Address 31-12 | Reserved | 0| O [DJA [O[O 5 V_V P
Figure 35. Page Table Entry (Points to Page) 15021B-038

Am386 Microprocessors for Personal Computers

AMD a

Page Tables

Each Page Table is 4 Kb and holds up to 1024 Page
Table entries. Page Table entries contain the starting
address of the page frame and statistical information
about the page (see Figure 35). Address bits A21-A12
are used as an index to select one of the 1024 Page
Table entries. The 20 upper-bit page frame address is
concatenated with the lower 12 bits of the linear address
to formthe physical address. Page tables canbe shared
between tasks and swapped to disks.

Page Directory/Table Entries

The lower 12 bits of the Page Table entries and Page Di-
rectory entries contain statistical information about
pages and page tables respectively. The P (Present) bit
0 indicates if a Page Directory or Page Table entry can
be used in address translation. If P = 1, the entry can be
used for address translation; if P = 0, the entry cannot be
used for translation. Note that the present bit of the page
table entry that points to the page where code is cur-
rently being executed should always be set. Code that
marks its own page not present should not be written. All
of the other bits are available for use by the software. For
example the remaining 31 bits could be used to indicate
where on the disk the page is stored.

The A (Accessed) bit 5 is set by the Am386DX/DXL mi-
croprocessor for both types of entries before a read or
write access occurs to an address covered by the entry.
The D (Dirty) bit 6 is set to 1 before a write to an address
covered by that page table entry occurs. The D bit is un-
defined for Page Directory entries. When the P, A, and
D bits are updated by the Am386DX/DXL CPU, the mi-
croprocessor generates a Read-Modify-Write cycle that
locks the bus and prevents conflicts with other proces-
sors or peripherals. Software that modifies these bits
should use the LOCK prefix to ensure the integrity of the
page tables in multi-master systems.

The three bits marked OS Reserved in Figures 34 and
35 (bits 11-9) are software definable. OSs are free to
use these bits for whatever purpose they wish. An
example use of the OS Reserved bits would be to store
information about page aging. By keeping track of how
long a page has been in memory since being accessed,
an operating system can implement a page replace-
ment algorithm like Least Recently Used.

The (User/Supervisor) U/S bit 2 and the (Read/Write)
R/W bit 1 are used to provide protection attributes for
individual pages.

Page Level Protection (R/W, U/S Bits)

The Am386DX/DXL microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: user, which corresponds to level 3 of the
segmentation based protection, and supervisor, which
encompasses all of the other protection levels (0, 1, 2).

Programs executing at level 0, 1, or 2 bypass the page
protection, although segmentation based protection is
still enforced by the hardware.

The U/S and R/W bits are used to provide User/Supervi-
sor and Read/Write protection for individual pages or for
all pages covered by a Page Table Directory entry. The
U/S and R/W bits in the first level Page Directory Table
apply to all pages described by the page table pointed to
by that directory entry. The U/S and R/W bits in the sec-
ond level Page Table entry apply only to the page de-
scribed by that entry. The U/S and R/W bits for a given
page are obtained by taking the most restrictive of the
U/S and R/W bits from the Page Directory Table entries
and the Page Table entries and using these bits to ad-
dress the page.

Example: If the U/S and R/W bits for the Page Directory
entry were 10 and the U/S and R/W bits for the Page Ta-
ble entry were 01, the access rights for the page would
be 01, the numerically smaller of the two. Table 12
shows the effect of the U/S and R/W bits on accessing
memory.

Table 12. Protection Provided by R/W and U/S

Permitted Permitted Access
uU/s R/W Level 3 Levels 0, 1, or 2
0 0 None Read/Write
0 1 None Read/Write
1 Y Read-Only Read/Write
1 1 Read/Write Read/Write

However, a given segment can be easily made read-
only for level 0, 1, or 2 via the use of segmented protec-
tion mechanisms (see Section Protection).

Translation Look-Aside Buffer

The Am386DX/DXL microprocessor paging hardware
is designed to support demand paged virtual memory
systems. However, performance would degrade sub-
stantially if the processor was required to access two
levels of tables for every memory reference. To solve
this problem, the Am386DX/DXL device keeps a cache
of the most recently accessed pages, this cache is
called the Translation Look-Aside Buffer (TLB). The
TLB is a four-way set associative 32-entry page table
cache. It automatically keeps the most commonly used
Page Table entries in the processor. The 32-entry TLB,
coupled with a 4K page size, results in coverage of
128 Kb of memory addresses. For many common multi-
tasking systems, the TLB will have a hit rate of about
98%. This means that the processor will only have to
access the two-level page structure on 2% of all memory
references. Figure 36 illustrates how the TLB com-
plements the Am386DX/DXL microprocessor’s paging
mechanism.

Am386DX/DXL Microprocessor Data Sheet 61

a AMD

32 Entries Physical
Linear Memory
Address | Translation
— |Look-Aside Hit y
Buffer
A
Miss
31 0
+,
>
Page Page
Directory Table
©98% Hit Rate 15021B-039

Figure 36. Translation Look-Aside Buffer

Paging Operation

The paging hardware operates in the following fashion:
the paging unit hardware receives a 32-bit linear ad-
dress from the segmentation unit. The upper 20 linear
address bits are compared with all 32 entries in the TLB
to determine if there is a match. If there isa match (i.e., a
TLB hit), then the 32-bit physical address is calculated
and will be placed on the address bus.

However, if the Page Table entry is not in the TLB, the
Am386DX/DXL microprocessor will read the appro-
priate Page Directory entry. If P = 1 on the Page Direc-
tory entry indicating that the page table is in memory,
then the Am386DX/DXL device will read the appro-
priate Page Table entry and set the Access bit. If P = 1
on the Page Table entry indicating that the page is in
memory, the Am386DX/DXL device will update the
Access and Dirty bits as needed and fetch the operand.
The upper 20 bits of the linear address, read from the
page table, will be stored inthe TLB for future accesses.
However, if P = 0 for either the Page Directory entry or
the Page Table Entry, then the processor will generate
a Page Fault, an Exception 14.

The processor will also generate an Exception 14, Page
Fault, if the memory reference violated the page protec-
tion attributes (i.e., U/S or R/W; trying to write to aread-
only page). CR2 will hold the linear address that caused
the page fault. If a second page fault occurs while the
processor is attempting to enter the service routine for
the first, then the processor will invoke the Page Fauit
(Exception 14) handler a second time, rather than the
Double Fault (Exception 8) handler. Since Exception 14

is classified as afault, CS:EIP will point to the instruction
causing the page fault. The 16-bit error code pushed as
part of the page fault handler will contain status bits
which indicate the cause of the Page Fault.

The 16-bit error code is used by the operating system to
determine how to handle the Page Fault. Figure 37
shows the format of the page-fault error code and the in-
terpretation of the bits.

Note: Even though the bits in the error code (U/S, R/W,
and P) have similar names as the bits in the Page Direc-
tory/Table entries, the interpretation of the error code
bits is different. Figure 38 indicates what type of access
caused the Page Fault.

15 3 210
uUjw
ujujutujujujujujujujuluju P
S|R
15021B-040

Figure 37. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access causing
the fault occurred when the processor was executing
the User Mode (U/S=1) or in Supervisor mode
(U/S=0).

R/W: The R/W bit indicates whether the access causing
the fault was a Read (R/W = 0) or a Write (R/W=1).
P: The P bit indicates whether a Page Fault was caused
by a not-present page (P = 0) or by a page level protec-
tion violation (P = 1).

U: Undefined.
u/s R/W Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S =0, even if the
program is executing at level 3.

15021B-041
Figure 38. Type of Access Causing Page Fault

Operating System Responsibilities

The Am386DX/DXL microprocessor takes care of the
page address transiation process, relieving the burden
from an operating system in a demand-paged system.
The operating system is responsible for setting up the
initial page tables and handling any page faults. The op-
erating system is also required to invalidate (i.e., flush)
the TLB when any changes are made to any of the Page
Table entries. The operating system must reload CR3 to
cause the TLB to be flushed.

62 Am386 Microprocessors for Personal Computers

AMD a

Setting up the tables is simply a matter of loading CR3
with the address of the Page Directory and allocating
space for the Page Directory and the Page Tables. The
primary responsibility of the operating system is to im-
plement a swapping policy and handle all of the page
faults.

Afinal concern of the operating system is to ensure that
the TLB cache matches the information in the paging ta-
bles. In particular, any time the operating system sets
the P present bit of page table entry to zero, the TLB
must be flushed. Operating systems may want to take
advantage of the factthat CR3 is stored as partof a TSS
to give every task or group of tasks its own set of page
tables.

Virtual 8086 Environment
Executing 8086 Programs

The Am386DX/DXL microprocessor allows the execu-
tion of 8086 application programs in both Real Mode
and in the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system designer
the most flexibility. The Virtual 8086 Mode allows the
execution of 8086 applications, while still allowing
the system designer to take full advantage of the
Am386DX/DXL device protection mechanism. In par-
ticular, the Am386DX/DXL CPU allows the simultane-
ous execution of 8086 operating systems and its appli-
cations, and an Am386DX/DXL CPU operating system
and both 80286 and Am386DX/DXL microprocessor
applications. Thus, in a multiuser Am386DX/DXL CPU
computer, one person could be running a MS-DOS
spreadsheet, another person using MS-DOS, and a
third person could be running multiple UNIX utilities and
applications. Each person inthis scenario would believe
they had the computer completely to themself. Figure 39
illustrates this concept.

Virtual 8086 Mode Addressing Mechanism

One of the major differences between Am386DX/DXL
microprocessor Real and Protected Modes is how the
segment selectors are interpreted. When the processor
is executing in Virtual 8086 Mode, the segment registers
are used in an identical fashion to Real Mode. The
contents of the segment register are shifted left 4 bits
and added to the offset to form the segment base linear
address.

The Am386DX/DXL microprocessor allows the operat-
ing systemto specify which programs use the 8086 style
address mechanism, and which programs use Pro-
tected Mode addressing, on a per task basis. Through
the use of paging, the 1-Mb address space of the Virtual
Mode task can be mapped to anywhere in the 4-Gb lin-
ear address space of the Am386DX/DXL device. Like
Real Mode, Virtual Mode effective addresses (i.e., seg-
ment offsets) that exceed 64 Kb will cause an Exception
13. However, these restrictions should not prove to be

important because most tasks running in Virtual 8086
Mode will simply be existing 8086 application programs.

Paging In Virtual Mode

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks and provides protection
and operating system isolation. Although it is not
strictly necessary to have the paging hardware enabled
to run Virtual Mode tasks, it is needed in order to run
multiple Virtual Mode tasks or to relocate the address
space of a Virtual Mode task to physical address space
greater than 1 Mb.

The paging hardware allows the 20-bit linear address
produced by a Virtual Mode program to be divided into
up to 256 pages. Each one of the pages can be located
anywhere within the maximum 4-Gb physical address
space of the Am386DX/DXL microprocessor. In addi-
tion, since CR3 (the Page Directory Base Register) is
loaded by a task switch, each Virtual Mode task canuse
a different mapping scheme to map pages to different
physical locations. Finally, the paging hardware allows
the sharing of the 8086 operating system code between
multiple 8086 applications. Figure 39 shows how the
Am386DX/DXL device paging hardware enables multi-
ple 8086 programs to run under a virtual memory de-
mand paged system.

Protection and I/O Permission Bitmap

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual 8086
Mode programs are subject to all of the protection
checks defined in Protected Mode. (This is different
from Real Mode which implicitly is executing at privilege
level 0, the level of greatest privilege.) Thus, an attempt
to execute a privileged instruction when in Virtual 8086
Mode will cause an Exception 13 fault.

The following are privileged instructions, which may be
executed only at Privilege Level 0. Therefore, attempt-
ing to execute these instructions in Virtual 8086 Mode
(or anytime CPL > 0) causes an Exception 13 fault.

LIDT; MOV DRn, reg; MOV reg,DRn;
LGDT; MOV TRn, reg; MOV reg, TRn;
LMSW; MOV CRn, reg; MOV reg, CRn;
CLTS;

HLT;

Several instructions, particularly those applying to the
multitasking model and protection model, are available
only in Protected Mode. Therefore, attempting to exe-
cute the following instructions in Real Mode or in Virtual
8086 Mode generates an Exception 6 fault.

LTR; STR;
LLDT; SLDT;
LAR; VERR;
LSL; VERW;
ARPL.

Am386DX/DXL Microprocessor Data Sheet 63

n AMD

/ Page N \
8086 OS
»
Empty
Task 2
Page
Table
Virtual Mode i
(8086 Task 208 Directory
(Page N _/
Page 1 [~—_]|
8086 OS \
Empty
Page Task 1
Directory Page
Root Table
Virtual Mode Page Directory
8086 Task Task 1)

Physical Memory
02000000(H)

Available

00000000(H)

Task 1
Memory

Task 2
Memory

8086 OS
Memory

Am386DX/DXL CPU OS
Memory

15021B-042

Figure 39. Virtual 8086 Environment Memory Management

The instructions that are IOPL-sensitive in Protected
Mode are:

IN; STI;

ouT; CLI;

INS;

oUTS;

REP INS;

REP OUTS.

In Virtual 8086 Mode, a slightly different set of instruc-
tions are made IOPL-sensitive. The following instruc-
tions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF; CLI;
POPF; IRET.

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision al-
lows the IF flag (interrupt enable flag) to be virtualized to
the Virtual 8086 Mode program. The INT n software

interrupt instruction is also IOPL-sensitive in Virtual
8086 Mode. Note, however, that the INT 3 (op-code
0CCHY), INTO, and BOUND instructions are not IOPL-
sensitive in Virtual 8086 Mode (they are not IOPL sensi-
tive in Protected Mode either).

Note that the I/O instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in Vir-
tual 8086 Mode. Rather, the I/O instructions become
automatically sensitive to the /O Permission Bitmap

- contained inthe Am386DX/DXL CPU TSS. The I/O Per-

mission Bitmap, automatically used by the Am386DX/
DXL microprocessor in Virtual 8086 Mode, is illustrated
by Figures 29a and 29b.

The 1/0O Permission Bitmap can be viewed as a
0-64K bit string, that begins in memory at offset
Bit_Map_Offset in the current TSS. Bit_Map_Offset
mustbe < DFFFH so the entire bit map and the byte FFH
that follows the bit map are all at offset < FFFFH fromthe
TSS base. The 16-bit pointer Bit_Map_Offset (15-0) is
found in the word beginning at offset 66H (102 decimal)
from the TSS base, as shown in Figure 29a.

64 Am386 Microprocessors for Personal Computers

AMD a

Each bit in the I/O Permission Bitmap corresponds to a
single byte-side 1/0 port, as illustrated in Figure 29a. If a
bit is 0, 1/0 to the corresponding byte-wide port can oc-
cur without generating an exception. Otherwise the /O
instruction causes an Exception 13 fault. Since every
byte-wide I/O port must be protectable, all bits corre-
sponding to a Word-wide or Dword-wide port must be 0
for the Word-wide or Dword-wide |/O to be permitted. If
all the referenced bits are 0, the 1/O will be allowed. If
any referenced bits are 1, the attempted 1/0 will cause
an Exception 13 fault.

Due to the use of a pointer to the base of the I/O Permis-
sion Bitmap, the bitmap may be located anywhere within
the TSS or may be ignored completely by pointing the
Bit_Map_Offset (15-0) beyond the limit of the TSS
segment. in the same manner, only a small portion of
the 64K 1/O space need have an associated map bit by
adjusting the TSS limit to truncate the bitmap. This
eliminates the commitment of 8K of memory when a
complete bitmap is not required, while allowing the fully
general case if desired.

Example of Bitmap for I/O Ports 0-255: Setting the TSS
limit to {Bit_Map_Offset + 31 +1**} [**see note below]
wili allow a 32-byte bitmap for the I/0 ports 0-255, plus a
terminator byte of all 1s [**see note below]. This allows
the 1/0 bitmap to control I/O Permission to /O ports
0-255 while causing an Exception 13 fault on attempted
1/0 to any 1/O port 256 through 65,565.

**Important Implementation Note: Beyond the last byte of
1/0 mapping, information in the IO Permission Bitmap must
be a byte containing all 1s. The byte of all 1s must be within the
limit of the Am386DX/DXL CPU TSS segment (see Figure
29a).

Interrupt Handling

In order to fully support the emulation of an 8086 ma-
chine, interrupts in Virtual 8086 Mode are handled in a
unique fashion. When running in Virtual Mode, all inter-
rupts and exceptions involve a privilege change back
to the host Am386DX/DXL CPU operating system. The
Am386DX/DXL microprocessor operating system de-
termines if the interrupt comes from a Protected Mode
application or from a Virtual Mode program by examin-
ingthe VM bitinthe EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and execu-
tion passes to the interrupt routine at level 0, the VM bit
is cleared. However, the VM bit is still setinthe EFLAGS
image on the stack.

The Am386DX/DXL microprocessor operating system
in turn handles the exception or interrupt and then re-
turns control to the 8086 program. The Am386DX/DXL
CPU operating system may choose to let the 8086 oper-
ating system handle the interrupt or it may emulate the
function of the interrupt handler. For example, many
8086 operating system calls are accessed by PUSHing
parameters on the stack, and then executing an INT n
instruction. If the IOPL is set to 0 then all INT n in-
structions will be intercepted by the Am386DX/DXL

microprocessor operating system. The Am386DX/DXL
CPU operating system could emulate the 8086 operat-
ing system’s call. Figure 40 shows how the Am386DX/
DXL microprocessor operating system could intercept
an 8086 operating system’s call to Open a File.

The Am386DX/DXL microprocessor operating system
can provide a Virtual 8086 Environment that is totally
transparent to the application software via intercepting
and then emulating 8086 operating system’s calls, and
intercepting IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 Mode is entered by executing an IRET in-
struction (at CPL =0), or Task Switch (at any CPL) to an
Am386DX/DXL microprocessor task whose Am386DX/
DXL microprocessor TSS has an EFLAGS image con-
taining a 1 in the VM bit position while the processor is
executing in Protected Mode. That is, one way to enter
Virtual 8086 Mode is to switch to a task with an
Am386DX/DXL device TSS that has a 1 in the VM bit in
the EFLAGS image. The other way is to execute a 32-bit
IRET instruction at privilege level 0, where the stack has
a 1inthe VM bit in the EFLAGS image. POPF does not
affect the VM bit even if the processor is in Protected
Mode or level 0, and so cannot be used to enter Virtual
8086 Mode. PUSHF always pushes a 0 in the VM bit,
even if the processor is in Virtual 8086 Mode, so that a
program cannot tell if it is executing in Real Mode or in
Virtual 8086 Mode.

The VM bit can be set by executing an IRET instruction
only at privilege level 0 or by any instruction or interrupt
that causes a task switch in Protected Mode (with VM =
1inthe new FLAGS image), and can be cleared only by
aninterrupt or exceptionin Virtual 8086 Mode. IRET and
POPF instructions executed in Real Mode or Virtual
8086 Mode will not change the value in the VM bit.

The transition out of Virtual 8086 Mode to Am386DX/
DXL microprocessor Protected Mode occurs only on re-
ceipt of aninterrupt or exception (such as due to a sensi-
tive instruction). In Virtual 8086 Mode, all interrupts and
exceptions vector through the Protected Mode IDT,
and enter an interrupt handler in Am386DX/DXL CPU
Protected Mode. That is, as part of interrupt processing,
the VM bit is cleared.

Because the matching IRET must occur from level 0, if
an Interrupt or Trap gate is used to field an interrupt or
exception out of Virtual 8086 Mode, the gate must per-
form an interlevel interrupt only to level 0. Interrupt or
Trap gates through conforming segments or through
segments with DPL > 0, will raise a GP fault with the CS
selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 Mode must be
described by a TSS with the new Am386DX/DXL micro-
processor format (Type 9 or 11 descriptor).

Am386DX/DXL Microprocessor Data Sheet 65

4 _amp

8086 Application
Program

GP Fault

Am386DX/DXL CPU
Application Program

8086
Operating

Virtual 8086
Mode Monitor

System #3

Iz

Am386DX/DXL CPU
OS File Open
Routines

Privilege
Level 3
(Lowest)

Privilege
Level 0
(Highest)

8086 Application
Program

8086 Application makes “Open File Call” — causes General Protection Fault (Arrow #1)
Virtual 8086 Monitor intercepts call. Calls Am386DX/DXL CPU OS (Arrow #2)
Am386DX/DXL CPU OS “Opens File” returns control to 8086 OS (Arrow #3)

8086 OS returns control to application (Arrow #4)
Transparent to Application

15021B-043

Figure 40. Virtual 8086 Environment Interrupt and Call Handling

A task switch out of Virtual 8086 Mode will operate
exactly the same as any other task switch out of a task
with an Am386DX/DXL CPU TSS. All of the program-
mer visible state, including the FLAGS register with the
VM bit setto 1, is stored in the TSS. The segment regis-
ters in the TSS will contain 8086 segment base values
rather than selectors.

Atask switch into atask described by an Am386DX/DXL
microprocessor TSS will have an additional check to
determine if the incoming task should be resumed in
Virtual 8086 Mode. Tasks described by 80286 format
TSSs cannot be resumed in Virtual 8086 Mode, so no
check is required there (the FLAGS image in 80286
format TSS has only the low-order 16 FLAGS bits). Be-
fore loading the segment register images from an
Am386DX/DXL CPU TSS, the FLAGS image is loaded
so that the segment registers are loaded from the TSS
image as 8086 segment base values. The task is now
ready to resume in Virtual 8086 Execution Mode.

Transitions Through Trap and interrupt Gates,
and IRET

A task switch is one way to enter or exit Virtual 8086
Mode. The other method is to exist through a Trap or In-
terrupt gate, as part of handling an interrupt, and to enter
as part of executing an IRET instruction. The transition
out must use an Am386DX/DXL microprocessor Trap
gate (Type 14) or Interrupt gate (Type 15) that must
point to a non-conforming level 0 segment (DPL = 0) in
order to permit the trap handler to IRET back to the
Virtual 8086 program. The gate must point to a non-
conforming level 0 segment to perform a level switch to
level 0 so that the matching IRET can change the VM
bit. Am386DX/DXL device gates must be used, since
80286 gates save only the lower 16 bits of the FLAGS
register, so that the VM bit will not be saved on transi-
tions through the 80286 gates. Also, the 16-bit IRET
(presumably) used to terminate the 80286 interrupt han-
dler will pop only the lower 16 bits from FLAGS, and will

66

Am386 Microprocessors for Personal Computers

AMD n

not affect the VM bit. The action taken for an Am386DX/
DXL microprocessor Trap or Interrupt gate if aninterrupt
occurs while the task is executing in Virtual 8086 Mode
is given by the following sequence.

1. Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt gate, turn off IF bit, also.

2. Interrupt and Trap gates must perform a level switch
from 3 (where the VM86 program executes) to level 0
(so IRET can return). This process involves a stack
switch to the stack given in the TSS for privilege
level 0. Save the Virtual 8086 Mode SS and ESP
registers to push in a later step. The segment
register load of SS will be done as a Protected Mode
segment load since the VM bit was turned off above.

3. Pushthe 8086 segment register vaiues onto the new
stack, in the order: GS, FS, DS, ES. These are
pushed as 32-bit quantities with undefined values in
the upper 16 bits. Then load these 4 registers with
null selectors (0).

4. Push the old 8086 stack pointer onto the new stack
by pushing the SS register (as 32-bit, high bits
undefined), then pushing the 32-bit ESP register
saved above.

5. Push the 32-bit FLAGS register saved in step 1.

6. Push the old 8086 instruction pointer onto the new
stack by pushing the CSregister (as 32-bits, highbits
undefined), then pushing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate and begin execution of the interrupt routine in
Protected Am386DX/DXL Microprocessor Mode.

The transition out of Virtual 8086 Mode performs a level
change and stack switch, in addition to changing back to
Protected Mode. In addition, all of the 8086 segment
register images are stored on the stack (behind the
SS:ESP image), and then loaded with null (0) selectors
before entering the interrupt handler. This will permit the
handier to safely save and restore the DS, ES, FS, and
GS registers as 80286 selectors. This is needed so that
interrupt handlers that “don’t care” about the mode ofthe
interrupted program can use the same prolog and epilog
code for state saving (i.e., push all registers in prolog,
pop all in epilog) regardless of whether or not a native
mode or Virtual 8086 Mode program was interrupted.
Restoring null selectors to these registers before exe-
cuting the IRET will not cause a trap in the interrupt han-
dler. Interrupt routines that expect values inthe segment
registers or return values in segment registers will have
to obtain/return values from the 8086 register images
pushed onto the new stack. They will need to know the
mode of the interrupted program in order to know
where to find/return segment registers, and also to
know how to interpret segment register vaiues.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Am386DX/DXL
microprocessor IRET instruction (operand size = 32)
can be used and must be executed at level 0 to change
the VM bitto 1.

1. Ifthe NT bit inthe FLAGS register is on, an inter-task
returnis performed. The current state is stored inthe
current TSS, and the link field in the current TSS is
used to locate the TSS for the interrupted task which
is to be resumed.

Otherwise, continue with the following sequence.

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value active
in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is popped
first, then a 32-bit word is popped that contains the
CS value in the lower 16 bits. If VM = 0, this CS
load is done as a Protected Mode segment load. If
VM = 1, this will be done as an 8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was popped in step 1.

5. If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:ESP +8],
SS[ESP +12], SS[ESP+16], and SS:ESP +20],
respectively, where the new value of ESP stored in
step 4 is used. Since VM =1, these are done as 8086
segment register loads.

Else if VM = 0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine. Null
out invalid selectors to trap if an attempt is made to
access through them.

6. If (RPL(CS) > CPL), pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32-bits containing SS in the lower 16 bits.
IfVM =0, SSisloaded as a Protected Mode segment
register load. If VM = 1, an 8086 segment register
load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) determines
whether the processor resumes the interrupted
routine in Protected Mode of Virtual 8086 Mode.

Am386DX/DXL Microprocessor Data Sheet 67

n AMD

FUNCTIONAL DATA
Introduction

The Am386DX/DXL microprocessor features a straight
forward functional interface to the external hardware.
The Am386DX/DXL CPU has separate parallel buses
fordata and address. The data bus is 32 bits in width and
is bidirectional. The address bus outputs 32-bit address
values in the most directly usable form for the high-
speed local bus: 4 individual Byte Enable signals and
the 30 upper-order bits as a binary value. The data and
address buses are interpreted and controlled with their
associated control signals.

A dynamic data bus sizing feature allows the processor
to handle a mix of 32- and 16-bit external buses on a
cycle-by-cycle basis (see Data Bus Sizing). If 16-bit bus
size is selected, the Am386DX/DXL microprocessor
automatically makes any adjustment needed, even
performing another 16-bit bus cycle to complete the
transferifthat is necessary. Any 8-bit peripheral devices
may be connected to 32- or 16-bit buses with no loss of
performance. A new address pipelining option is pro-
vided and applies to 32- and 16-bit buses for substan-
tially improved memory utilization, especially for the
most heavily used memory resources.

The address pipelining option, when selected, typically
allows a given memory interface to operate with one
less wait state than would otherwise be required (see
Address Pipelining). The pipelined bus is also well
suited to interleaved memory designs. When address
pipelining is requested by the external hardware, the
Am386DX/DXL microprocessor will output the address
and bus cycle definition of the next bus cycle (if itis inter-
nally available) even while waiting for the current cycle
to be acknowledged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cycles.

~ For maximum design flexibility, the address pipelining
option is selectable on a cycle-by-cycle basis.

The processor’s bus cycle is the basic mechanism for
information transfer, either from system to processor or
fromprocessorto system. Am386DX/DXL microproces-
sor bus cycles perform data transfer in a minimum of
only two clock periods. On a 32-bit data bus, the
maximum Am386DX/DXL device transfer at 20-MHz
bandwidth is therefore 40 Mb/s, at 25-MHz bandwidth is
50 Mb/s, at 33-MHz bandwidth is 66 Mb/s, and at
40-MHz bandwidth is 80 Mb/s. Any bus cycle will be
extended for more than two clock periods, however, if
external hardware withholds acknowledgment of the
cycle. At the appropriate time, acknowledgment is
signaled by asserting the Am386DX/DXL microproces-
sor READY input.

The Am386DX/DXL CPU can relinquish control of its
local buses to allow mastership by other devices, such

as direct memory access channels. When relinquished,
HLDA is the only output pin driven by the Am386DX/
DXL microprocessor providing near-complete isolation
of the processor from its system. The near-complete
isolation characteristic is ideal when driving the system
from test equipment and in fault-tolerant applications.

Functional data covered in this section describes the
processor’s hardware interface. First, the set of signals
available at the processor pins is described (see Signal
Description). Following that are the signal waveforms
occurring during bus cycles (see Bus Transfer Mecha-
nism, Bus Functional Description, and Other Functional
Descriptions).

Signal Description
Introduction

Ahead is a brief description of the Am386DX/DXL CPU
input and output signals arranged by functional groups
(see Figure 41).

Example signal:

M/IO —High voltage indicates Memory selected
—Low voltage indicates 1/O selected

The signal descriptions sometimes refer to AC timing
parameters, such as t25 RESET Setup Time and 26
RESET Hold Time.

Clock (CLK2)

CLK2 provides the fundamentali timing for the
Am386DX/DXL microprocessor. It is divided by two in-
ternally to generate the internal processor clock used for
instruction execution. The internal clock is comprised of
two phases, phase one and phase two. Each CLK2 pe-
riod is a phase of the internal clock. Figure 42 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known phase
by ensuring the RESET signal falling edge meets its ap-
plicable setup and hold times, t25 and t26.

Data Bus (D31-D0)

These three-state, bidirectional signals provide the gen-
eral purpose data path between the Am386DX/DXL mi-
croprocessor and other devices. Data bus inputs and
outputs indicate 1 when High. The data bus can transfer
data on 32- and 16-bit buses using a data bus sizing
feature controlled by the BS16 input. See Section Bus
Control. Data bus reads require that read data setup and
hold times, t21 and t22, be met for correct operation. In
addition, the Am386DX/DXL microprocessor requires
that all data bus pins be at a valid logic state (High or
Low) at the end of each read cycle, when READY is
asserted. During any write operation (and during halt
cycles and shut down cycles), the Am386DX/DXL
microprocessor always drives all 32 signals of the data
bus even if the current bus size is 16 bits.

68 Am386 Microprocessors for Personal Computers

AMD n

CLK2
2X Clock { Address Bus > A31-A2
BE3
l————— —»
32-Bit Data { D31-D0 | _BE2 32-Bit Address
BET > (Byte Enables
ADS __L.)
‘—‘
Bus Control ——N2 30 Am386DX/DXL W/R .
—— . ‘_—_’
us Contro BS16 Microprocessor D/c
— | c 5
READY Mo } Bus Cycle Definition
—»
LOCK
—
HOLD ‘
—_—
Bus Arbitration HLDA PEREQ
] BUSY
—— Coprocessor Signaling
INTR ERROR
Interrupts NMI Voo .
RESET GND } Power Connections
—’ '___—._
FLT
1—} Float
15021B-044
Figure 41. Functional Signal Groups
Processor Clock Processor Clock
Period Period
CLK2 Period CLK2 Period CLK2 Period CLK2 Period
f1 f2 f1 f2

Internal Am386DX/DXL e
CPU Clock (Half of [\ / \\ / \

the frequency of CLK2)

12.5 ns Min | 40-MHz
(40 MHz Max) J Am386DX/DXL CPU

15 ns Min | 33-MHz
(33MHz Max) | Am386DX/DXL CPU

40 ns Min 25-MHz
(25 MHz Max) Am386DX/DXL CPU

50 ns Min 20-MHz
(20 MHz Max) J Am386DX/DXL CPU

15021B-045

Figure 42. CLK2 Signal and Internal Processor Clock

Am386DX/DXL Microprocessor Data Sheet 69

n AMD

Address Bus (BE3-BEO, A31-A2)

These three-state outputs provide physical memory
addresses or I/O port addresses. The address bus is
capable of addressing 4 Gb of physical memory space
(00000000H-FFFFFFFFH), and 64 Kb of 1/O address
space (00000000H-0000FFFFH) for programmed 1/0.
I/0 transfers automatically generated for Am386DX/
DXL microprocessor-to-coprocessor communication
use /O addresses 800000F8H-800000FFH, so A31 is
High in conjunction with M/IO Low allows simple gen-
eration of the coprocessor select signal.

The Byte Enable outputs, BE3-BEQ, directly indicate
which bytes of the 32-bit data bus are involved with the
current transfer. This is most convenient for external
hardware.

BEO applies to D7-D0
BET applies to D15-D8
BE2 applies to D23-D16
BES applies to D31-D24

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2, 3, or
4 bytes). Refer to Section Operand Alignment.

When a memory write cycle or I/O write cycle is in pro-
gress and the operand being transferred occupies only
the upper 16 bits of the data bus (D31-D16), duplicate
data is simultaneously presented on the corresponding
lower 16 bits of the data bus (D15-D0). This duplication

is performed for optimum write performance on 16 bit
buses. The pattern of write data duplication is a function
of the Byte Enables asserted during the write cycle.
Table 13 lists the write data present on D31-D0, as a
function of the asserted Byte Enable outputs BE3—BEO.

Bus Cycle Definition Signals (W/R, D/C, M/10,
LOCK)

These three-state outputs define the type of bus cycle
being performed. W/R distinguishes between write
and read cycles, D/C between data and control cycles,
M/IO between memory and I/O cycles, and LOCK
between locked and unlocked bus cycles.

The primary bus cycle definition signals are W/R, D/C,
and M/IO, since these are the signals driven valid as the
ADS (Address Status output) is driven asserted. The
LOCK is driven valid at the same time as the first locked
bus cycle begins, which due to address pipelining, could
be later than ADS is driven asserted. See Pipelined Ad-
dress. The LOCK is negated when the READY input
terminates the last bus cycle that was locked.

Exact bus cycle definitions, as a function of W/R, D/C,
and M/IO, are given in Table14. Note one combination
of W/R, D/C, and M/IO is never given when ADS is as-
serted (however, that combination, which is listed as
does not occur, may occur during idle bus states when
ADS is not asserted). If M/IO, D/C, and W/R are quali-
fied by ADS asserted, then a decoding scheme may be
simplified by using this definition.

Table 13. Write Data Duplication as a Function of BE3—BEO

Am386DX/DXL CPU Byte Enables Am386DX/DXL CPU Write Data Automatic
BE3 BE2 BE1 BEO D31-D24 D23-D16 D15-D8 D7-DO Duplication?
High High High Low Undef Undef Undef A No
High High Low High Undef Undef B Undef No
High Low High High Undef (¢} Undef C Yes
Low High High High D Undef D Undef Yes
High High Low Low Undef Undef B A No
High Low Low High Undef C B Undef No
Low Low High High D o] D C Yes
High Low Low Low Undef C B A No
Low Low Low High D C B Undef No
Low Low Low Low D C B A No

Key: D =Logical Write Data D31-D24
C =Logical Write Data D23-D16

B =Logical Write Data D15-D8
A =Logical Write Data D7-D0

70

Am386 Microprocessors for Personal Computers

AMD a

Table 14. Bus Cycle Definition

M/io D/C WR Bus Cycle Type Locked?
Low Low Low Interrupt Acknowledge Yes
Low Low High Does Not Occur —
Low High Low 1/0 Data Read No
Low High High 1/0O Data Write No
High Low Low Memory Code Read No
High Low High Halt: Shutdown: No
Address =2 Address =0
BEO High BEO Low
BET High BET High
BEZ Low BE2 High
BES High BES High
A31-A2 Low A31-A2 Low
High High Low Memory Data Read Some Cycles
High High High Memory Data Write Some Cycles

Bus Control Signals (ADS, READY, NA, BS16)
Introduction

The following signals allow the processor to indicate
when bus cycle has begun and allow other system hard-
ware to control address pipelining, data bus width, and
bus cycle termination.

Address Status (ADS)
This three-state output indicates that a valid bus cycle

definition and address (W/R, D/C, M/10, BE3-BEO, and
A31-A2) is being driven at the Am386DX/DXL micro-
processor pins. It is asserted during T1 and T2P bus
states (see Non-pipelined Address and Pipelined

Address for additional information on bus states).
Transfer Acknowledge (READY)

This input indicates the current bus cycle is complete,
and the active bytes indicated by BE3-BEO and BS16
are accepted or provided. When READY is sampled
asserted during a read cycle or interrupt acknowledge
cycle, the Am386DX/DXL microprocessor latches the
input data and terminates the cycle. When READY is
sampled asserted during a write cycle, the processor
terminates the bus cycle.

READY is ignored on the first bus state of all bus cycles,
and sampled each bus state thereafter until asserted.
READY must eventually be asserted to acknowledge
every bus cycle, including Halt Indication and Shutdown
Indication bus cycles. When being sampled, READY
must always meet setup and hold times, t19 and t20, for
correct operation. See all sections of Bus Functional
Description.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the system is prepared to accept new values
of BE3-BEO, A31-A2, W/R, D/C, and M/IO from
the Am386DX/DXL microprocessor even if the end of

the current cycle is not being acknowledged on READY.
If this input is asserted when sampled, the next address
is driven onto the bus provided the next bus request is
already pending internally. See Address Pipelining and
Read and Write Cycles. NA must always meet setup
and hold times, t15 and t16, for correct operation.

Bus Size 16 (BS16)

The BS16 feature allows the Am386DX/DXL micropro-
cessor to directly connect to 32- and 16-bit data buses.
Asserting this input constrains the current bus cycle to
use only the lower-order half (D15-D0) of the data bus,
corresponding to BEO and BET. Asserting BS16 has no
additional effect if only BEO and/or BET are asserted in
the current cycle. However, during bus cycles asserting
BE2 orBES, asserting BS16 will automatically cause the
Am386DX/DXL microprocessor to make adjustments
for correct transfer of the upper byte(s) using only physi-
cal data signals D15-D0.

If the operand spans both halves of the data bus and
BS16 is asserted, the Am386DX/DXL microprocessor
will automatically perform another 16-bit bus cycle.
BS16 must always meet setup and hold times, t17 and
t18, for correct operation.

Am386DX/DXL CPU I/O cycles are automatically gen-
erated for coprocessor communication. Since the
Am386DX/DXL microprocessor must transfer 32-bit
quantities between itself and a 387DX math coproces-
sor, BS16 must not be asserted during 387DX math
coprocessor communication cycles.

Bus Arbitration Signals (HOLD, HLDA)
Introduction

This section describes the mechanism by which the
processor relinquishes control of its local buses when
requested by another bus master device. See
Entering and Exiting Hold Acknowledge for additional
information.

Am386DX/DXL Microprocessor Data Sheet 71

n AMD

Bus Hold Request (HOLD)

This input indicates some device other than the
Am386DX/DXL CPU requires bus mastership.

HOLD must remain asserted as long as any other de-
vice is alocal bus master. HOLD is not recognized while
RESET is asserted. If RESET is asserted while HOLD is
asserted, RESET has priority and places the bus into an
idle state, rather than the hold acknowledge (high
impedance) state. HOLD is level-sensitive and is a syn-
chronous input. HOLD signals must always meet setup
and hold times, t23 and t24, for correct operation.

Bus Hold Acknowledge (HLDA)

Assertion of this output indicates the Am386DX/DXL
microprocessor has relinquished control of its local bus
in response to HOLD asserted, and is in the Bus Hold
Acknowledge state.

The Hold Acknowledge state offers near-complete sig-
nal isolation. In the Hold Acknowledge state, HLDA is
the only signal being driven by the Am386DX/DXL mi-
croprocessor. The other output signals or bidirectional
signals (D31-D0, BE3-BEO, A31-A2, W/R, D/C, M/IO,
LOCK, and ADS) are in a high-impedance state so the
requesting bus master may control them. Pull-up resis-
tors may be desired on several signals to avoid spurious
activity when no bus master is driving them. See Resis-
tor Recommendations. Also, one rising edge occurring
on the NMI input during Hold Acknowledge is remem-
bered for processing after the HOLD input is negated.

In addition to the normal usage of Hold Acknowledge
with DMA controllers or master peripherals, the near-
complete isolation has particular attractiveness during
system test when test equipment drives the system and
in hardware-fault-tolerant applications.

Coprocessor Interface Signals (PEREQ, BUSY,
ERROR)

Introduction

Inthe following sections are descriptions of signals dedi-
cated to the numeric coprocessor interface. In addition
to the data bus, address bus, and bus cycle definition
signals, these following signals control communication
between the Am386DX/DXL microprocessor and its
387DX math coprocessor extension.

Coprocessor Request (PEREQ)

When asserted, this input signal indicates a coproces-
sor request for a data operand to be transferred to/from
memory by the Am386DX/DXL microprocessor. In re-
sponse, the Am388DX/DXL CPU transfers information
between the coprocessor and memory. Because
Am386DX/DXL microprocessor has internally stored
the coprocessor op-code being executed, it performs
the requested data transfer with the correct direction
and memory address.

PEREQis level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

Coprocessor Busy (BUSY)

When asserted, this input indicates the coprocessor is
still executing an instruction and is not yet able to accept
another. When the Am386DX/DXL microprocessor en-
counters any coprocessor instruction that operates on
the numeric stack (e.g., load, pop, or arithmetic opera-
tion) or the WAIT instruction, this input is first automati-
cally sampled until it is seen to be negated. This sam-
pling of the BUSY input prevents overrunning the execu-
tion of a previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions are
allowed to execute even if BUSY is asserted, since
these instructions are used for coprocessor initialization
and exception-clearing.

BUSY is levei-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

BUSY serves an additional function. If BUSY is sampled
Low at the falling edge of RESET, the Am386DX/DXL
microprocessor performs an internal self-test (see Bus
Activity During and Following Reset). If BUSY is sam-
pled High, no self-test is performed.

Coprocessor Error (ERROR)

This input signal indicates that the previous coprocessor
instruction generated a coprocessor error of a type
not masked by the coprocessor’s control register. This
input is automatically sampled by the Am386DX/DXL
microprocessor when a coprocessor instruction is en-
countered, and if asserted, the Am386DX/DXL device
generates Exception 16 to access the error-handling
software.

Several coprocessor instructions, generally those that
clear the numeric error flags in the coprocessor or
save coprocessor state, do execute without the
Am386DX/DXL microprocessor generating Exception
16 even if ERROR is asserted. These instructions are
FNINIT, FNCLEX, FSTSW, FSTSWAX, FSTCW,
FSTENV, FSAVE, FESTENV, and FESAVE.

ERROR s level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

Interrupt Signals (INTR, NMI, RESET)
Introduction

The following descriptions cover inputs that can inter-
rupt or suspend execution of the processor’s current
instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for inter-
rupt service, which can be masked by the Am386DX/
DXL CPU Flag Register IF bit. Whenthe Am386DX/DXL
microprocessor responds to the INTR input, it performs
two interrupt acknowledge bus cycles, and at the end of
the second, latches an 8-bit interrupt vector on D17-D0
to identify the source of the interrupt.

72 Am386 Microprocessors for Personal Computers

AMD a

INTR is level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal. To assure recognition of an
INTR request, INTR should remain asserted until the
first interrupt acknowledge bus cycle begins.

Non-Maskable Interrupt Request (NMI)

This inputindicates a request for interrupt service, which
cannot be masked by software. The non-maskable in-
terrupt request is always processed according to the
pointer or gate in slot 2 of the interrupt table. Because of
the fixed NMI slot assignment, no interrupt acknowledge
cycles are performed when processing NMI.

NMI is rising edge-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition of
NMI, it must be negated for at least eight CLK2 periods,
and then be asserted for at least eight CLK2 periods.

more CLK2 periods before requesting self-test). When
RESET is asserted, all other input pins, except FLT, are
ignored, and all other bus pins are driven to an idle bus
state as shown in Table 15. If RESET and HOLD are
both asserted at a point in time, RESET takes priority
even if the Am386DX/DXL device was in a Hold Ac-
knowledge state prior to RESET asserted.

RESET is level-sensitive and must be synchronous to
the CLK2 signal. If desired, the phase of the internal
processor clock and the entire Am386DX/DXL CPU
state can be completely synchronized to external cir-
cuitry by ensuring the RESET signal falling edge meets
its applicable setup and hold times, 125 and t26. The
signal summary is shown in Table 16.

Table 15. Pin State (Idle Bus) During Reset

Once NMI processing has begun, no additional NMI's Pin Name Signal Level During Reset

are processed until after the next IRET instruction, ADS High

which is typically the end of the NMI service routine. If D31-D0 High Impedance

NMI is re-asserted prior to that time, however, one rising BE3-BEO Low

edge on NMI will be remembered for processing after A31-A2 Hiah

executing the next IRET instruction. - 9

W/R Low

Reset (RESET) DS High

This input signal suspends any operation in progress Mo Low

and places the Am386DX/DXL microprocessor in a LOCK High

known reset state. The Am386DX/DXL device is reset HLDA Low

by asserting RESET for 15 or more CLK2 periods (80 or

Table 16. Am386DX/DXL Microprocessor Signal Summary
Input Synch Output High

Signal Active Input/ or Asynch to Impedance During
Name Function State Output CLK2 HLDA?
CLK2 Clock — | — —
D31-Do Data Bus High l[e] S Yes
BE3-BEO Byte Enables Low 0 — Yes
A31-A2 Address Bus High o} — Yes
W/R Write-Read Indication High o — Yes
D/c Data-Control Indication High o} — Yes
MG Memory-I/O Indication High o} — Yes
LOCK Bus Lock Indication Low 0 — Yes
ADS Address Status Low o — Yes
NA Next Address Request Low | S —
BSi6 Bus Size 16 Low | S —
READY Transfer Acknowledge Low | S —
HOLD Bus Hold Request High | S —
HLDA Bus Hold Acknowledge High (0] — No
PEREQ Coprocessor Request High | A —
BUSY Coprocessor Busy Low | A —
ERROR Coprocessor Error Low | A —_
INTR Maskable Interrupt Request High [A —
NMI Non-Maskable Intrpt Request | High 1 A —
RESET Reset High 1 S —

Am386DX/DXL Microprocessor Data Sheet 73

n AMD

Bus Transfer Mechanism
Introduction

All data transfers occur as a result of one or more bus
cycles. Logical data operands of byte, word, and Dword
lengths may be transferred without restrictions on
physical address alignment. Any byte boundary may be
used, although two or even three physical bus cycles
are performed as required for unaligned operand
transfers. See Dynamic Data Bus Sizing and Operand
Alignment.

The Am386DX/DXL microprocessor address signals
are designed to simplify external system hardware.
Higher-order address bits are provided by A31-A2.
Lower-order address in the form of BE3-BEO directly
provides linear selects for the four bytes of the 32-bit
data bus. Physical operand size information is thereby
implicitly provided for each bus cycle in the most usable
form.

Byte Enable outputs, BE3-BEQD, are asserted when their
associated data bus bytes are involved with the present
bus cycle, as listed in Table 17. During a bus cycle, any
possible pattern of contiguous asserted Byte Enable
outputs can occur, but never patterns having a negated
Byte Enable separating two or three asserted Enables.

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary (for

instance, for MULTIBUS | or MULTIBUS ll interface), as
a function of the lowest-order asserted Byte Enable.
This is shown by Table 18. Logic to generate A0 and A1
is given by Figure 43.

Table 17. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Signal| Associated Data Bus Signals
BEO D7-D0 (Byte 0—least significant)
BET D15-D8 (Byte 1)
BE2 D23-D16 (Byte 2)
BE3 D31-D24 (Byte 3—most significant)

Each bus cycle is composed of at least two bus states
and each bus state requires one processor clock period.
Additional bus states added to a single bus cycle are
called wait states. See Bus Functional Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data can
be transferred between external devices and the
Am386DX/DXL CPU at a maximum rate of one 4-byte
Dword every two processor clock periods, for a
maximum bus bandwidth of 80 Mb/s (Am386DX/DXL
microprocessor operating at 40-MHz processor clock
rate).

BEO
L H
JBE omn
- Li{x|H|L
BE2 H BE3
H LIL|x|[L
x | x LH x | L
L H L
BET
K — Map for A1 Signal
BEO
L H
gt (1) L
Lix]|L|H
BEZ hdl H BE3
e (x| H)
x| x \H{xJL
L H L
BET

K — Map for AO Signal

|
(=]

Y]
-

|

mDo)o

A0

15021B-046

Figure 43. Logic to Generate A0, A1 from BE3-BEO

74 Am386 Microprocessors for Personal Computers

AMD u

Table 18. Generating A31-A0 from BE3-BEO and A31-A2

Am386DX/DXL CPU Address Signals
A3l A2 BE3 BE2 E1 BEO
Physical Base
Address
A31 | ... A2] A1 | A0
A1 | ..., A2 0 O X Low
A31 | rrreeeees A2l 0 | 1 Low High
X A2 1] O X Low High High
3 N A2 1 |1 Low High High High
FFFFFFFFH
Physical
Memory gggggg:ﬁgﬁ I MathD())(oprocessor
4 Gb (See note) (387DX)
0000FFFFH
Accessible
Programmed
64 Kb I/O Space
00000000H 00000000H
Physical Memory Space 1/0 Space

Note: Since A31 is High during automatic communication with coprocessor, A31 High and M/IO Low can be used to
easily generate a coprocessor select signal.

Figure 44. Physical Memory and I/O Spaces

15021B-047

Am386DX/DXL Microprocessor Data Sheet

75

u AMD

Memory and /O Spaces

Bus cycles may access physical memory space or /O
space. Peripheral devices in the system may either be
memory-mapped, or I/O-mapped, or both. As shown in
Figure 44, physical memory addresses range from
00000000H to FFFFFFFFH (4 Gb) and 1/O addresses
from 00000000H to 0000FFFFH (64 Kb) for pro-
grammed I/O. Note the I/O addresses used by the auto-
matic 1/O cycles for coprocessor communication are
800000F8H to 800000FFH, beyond the address range
of programmed /O, to allow easy generation of a
coprocessor chip select signal using the A31 and M/10
signals.

Memory and I/O Organization

The Am386DX/DXL microprocessor datapath to mem-
ory and I/O spaces can be 32- or 16-bits wide. When
32-bits wide, memory and I/O spaces are organized
naturally as arrays of physical 32-bit Dwords. Each
memory or /O Dword has four individually addressable
bytes at consecutive byte addresses. The lowest-ad-
dressed byte is associated with data signals D17-DO0;
the highest-addressed byte with D31-D24.

The Am386DX/DXL microprocessor includes a bus
control input, BS16, that also allows direct connectionto
16-bit memory or I/O spaces organized as a sequence
of 16-bit word. Cycles to 32- and 16-bit memory or I/O
devices may occur in any sequence, since the BS16
controlis sampled during each bus cycle. (See Dynamic
Data Bus Sizing.) The Byte Enable signals, BE3-BEO,
allow byte granularity when addressing any memory or
1/0 structure, whether 32- or 16-bits wide.

Dynamic Data Bus Sizing

Dynamic Data Bus Sizing is a feature allowing direct
processor connection to 32- or 16-bit data buses for
memory or I/O. A single processor may connect to both
size buses. Transfers to or from 32- or 16-bit ports are
supported by dynamically determining the bus width
during each bus cycle. During each bus cycle an
address decoding circuit or the slave device itself may
assert BS16 for 16-bit ports, or negate BS16 for 32-bit
ports.

With BS16 asserted, the processor automatically
converts operand transfers larger than 16 bits, or mis-
aligned 16-bit transfers, into two or three transfers as
required. All operand transfers physically occur on
D15-D0 when BS16 is asserted. Therefore, 16-bit
memories or I/O devices only connect on data signals
D15-D0. No extra transceivers are required.

Asserting BS16 only affects the processor when BE2
and/or BE3 are asserted during the current cycle. If only
D15-DO0 are involved with the transfer, asserting BS16
has no affect since the transfer can proceed normally
over a 16-bit bus whether BS16 is asserted or not. In
otherwords, asserting BS16 has no effectwhen only the
lower half of the bus is involved with the current cycle.

There are two types of situations where the processor is
affected by asserting BS16, depending on which Byte
Enables are asserted during the current bus cycle.

Upper Half Only:
Only BE2 and/or BE3 asserted.

Upper and Lower Half:

At least BE1, BE2 asserted (and perhaps also
BEO and/or BE3).

Effect of asserting BS16 during Upper Half Only read
cycles:
Asserting BS76 during Upper Half Only reads causes the
Am386DX/DXL microprocessor to read data on the lower
16 bits of the data bus and ignore data on the upper 16 bits
of the data bus. Data that would have been read from
D31-D16 (as indicated by BEZ and BE3) will instead be
read from D15-DO0, respectively.

Effect of asserting BS16 during Upper Half Only write
cycles:

Asserting BS16 during Upper Half Only writes does not af-
fect the Am386DX/DXL microprocessor. When only BE2
and/or BE3 are asserted during a Write cycle, the
Am386DX/DXL microprocessor always duplicates data
signals D31-D16 onto D15-DO0 (see Table 13). Therefore,
no further Am386DX/DXL CPU action is required to per-
form these writes on 32- or 16-bit buses.

Effect of asserting BS16 during Upper and Lower Half
read cycles:

Asserting BS16 during Upper and Lower 'Half reads
causes the processor to perform two 16-bit read cycles for
complete physical operand transfer. Bytes 0 and 1 (as in-
dicated by BEO and BET) are read on the first cycle using
D15-D0. Bytes 2 and 3 (as indicated by BEZ and BE3) are
read during the second cycle, again using ‘\ D15-Do.
D31-D16 are ignored during both 16-bit cycles. BEO and
BET are always negated during the second 16 bn cycle.
See Figure 54 Cycles 2 and 2a.

Effect of asserting BS16 during Upper and Lower Half
write cycles:

Asserting BS16 during Upper and Lower Half writes
causes the Am386DX/DXL microprocessor to perform two
16-bit write cycles for complete physical operand transfer.
Allbytes are available the first write cycle allowing external
hardware to receive Bytes 0 and 1 (as indicated by BEO
and BET) using D15-D0. On the second cycle the
Am386DX/DXL microprocessor duplicates Bytes 2 and 3
on D15-D0 and Bytes 2 and 3 (as indicated by BEZ and
BEB) are written using D15-D0. BEO and BET are always
negated during the second 16-bit cycle. BS16 must be as-
serted during the second 16-bit cycle. See Figure 54 Cy-
cles 1 and 1a.

Interfacing with 32- and 16-Bit Memories

In 32-bit-wide physical memories such as Figure 45,
each physical Dword begins at a byte address that is a
multiple of 4. A31-A2 are directly used as a Dword
selects and BE3-BEQ as byte selects. BS16 is negated
for all bus cycles involving the 32-bit array.

76 Am386 Microprocessors for Personal Computers

AMD a

When 16-bit-wide physical arrays are included in the
system, as in Figure 46, each 16-bit physical word be-
gins at an address that is a multiple of 2. Note the ad-
dress is decoded to assert BS16 only during bus cycles
involving the 16-bit array. If desiring to use pipelined
address with 16-bit memories, then BE3—BEO and W/R
are also decoded to determine when BS16 should be
asserted. (See Pipelined Address with Dynamic Data
Bus Sizing.)

A31-A2 are directly usable for addressing 32- and
16-bit devices. To address 16-bit devices, A1 and two
Byte Enable signals are also needed.

To generate an A1 signal and two Byte Enable signals
for 16-bit access, BE3-BEO should be decoded as in
Table 19. Note that certain combinations of BE3-BEO
are never generated by the Am386DX/DXL micropro-
cessor, leading to “don’t care” conditions inthe decoder.
Any BE3-BEO decoder, such as shown in Figure 47,
may use the non-occurring BE3-BEO combinations to
its best advantage.

32, Data Bus (D31-D0)
Am386DX/DXL J— 32-Bit
Microprocessor Address Bus (BE3-BEO, A31-A2) Memory
T BS16
High

Figure 45. Am386DX/DXL Microprocessor with 32-Bit Memory 15021B-048
Data Bus (D31-D0)
3,2 >,
Am386DX/DXL \ 32-Bit
Microprocessor Address Bus Memory
(BE3-BEO, A31-A2)
BS16
d
Sgogzisr 16 , Data Bus (D15-D0)
7
Address Bus (A31-A2 16-Bit
\ () g Memory
(BE3-BED) (BHE, BLE, A1)
15021B-049
Figure 46. Am386DX/DXL Microprocessor with 32-Bit and 16-Bit Memory
Am386DX/DXL Microprocessor Data Sheet 77

n AMD

Table 19. Generating A1, BHE, and BLE for Addressing 16-Bit Devices

Am386DX/DXL CPU Signals 16-Bit Bus Signals
BE3 | BE2 | BET BEO A1 BHE BLE (A0) Comments
H* H* H* H* X X X X—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X X—non-contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X X—non-contiguous bytes
L* H* L* H* X X X X—non-contiguous bytes
L* H* L* L* X X X X—non-contiguous bytes
L L H H H L L
L* L* H* L* X X X X—non-contiguous bytes
L L L H L L H
L L L L L L L

BLE asserted when D7-DO of 16-bit bus is active.
BHE asserted when D15-D8 of 16-bit bus is active.
A1 Low for all even words; A1 High for all odd words.
Key: X =“Don't Care”

H = High voltage level

L =Low voltage level

* =A non-occurring pattern of Byte Enables; either none are asserted or the pattern has Byte Enables asserted for non-contiguous bytes.

Operand Alignment

With the flexibility of memory addressing on the
Am386DX/DXL microprocessor, itis possible to transfer
a logical operand that spans more than one phy-
sical Dword or Word of memory or I/0. Examples are
32-bit Dword operands beginning at addresses not
evenly divisible by 4- or a 16-bit Word operand spilit
between two physical Dwords of memory array.

Operand alignment and data bus size dictates when
multiple bus cycles are required. Table 20 describes the
transfer cycles generated for all combinations of logical
operand lengths, alignment, and data bus sizing. When
multiple bus cycles are required to transfer a multi-byte
logical operand, the highest-order bytes are transferred
first (but if BS16 asserted requires two 16-bit cycles be
performed, that part of the transfer is lowest-order first).

Bus Functional Description
Introduction

The Am386DX/DXL microprocessor has separate, par-
allel buses for data and address. The data bus is 32 bits
in width and is bidirectional. The address bus provides
a 32-bit value using 30 signals for the 30 upper-order
address bits and 4 Byte Enable signals to directly indi-
cate the active bytes. These buses are interpreted and
controlled via several associated definition or control
signals.

The definition of each bus cycle is given by three defini-
tion signals: M/10, W/R, and D/C. At the same time, a
valid address is present on the Byte Enable signals
BES-BEO and other address signals, A31—-A2. A status
signal, ADS, indicates when the Am386DX/DXL CPU
issues a new bus cycle definition and address.

Collectively, the address bus, data bus, and all associ-
ated control signals are referred to simply as the bus.

When active, the bus performs one of the bus cycles
below.

1. Read from memory space.

. Locked read from memory space.

. Write to memory space.

. Locked write to memory space.

. Read from I/O space (or coprocessor).

. Write to I/O space (or coprocessor).

. Interrupt acknowledge.

. Indicate halt or indicate shutdown.

0N U~ WD

Table 14 shows the encoding of the bus cycle definition
signals for each bus cycle. See Section Bus Cycle
Definition.

The data bus has a dynamic sizing feature supporting
32- and 16-bit bus size. Data bus size is indicated to the
Am386DX/DXL microprocessor using its Bus Size 16
(BS16) input. All bus functions can be performed with
either data bus size.

78 Am386 Microprocessors for Personal Computers

AMD a

|
m|
Ol

x
I
o]
m
(=}

¢
m|
N
-
[antl Il
x
u
Lot Bl
u
o
m
w

Al

sy
m|
-

x
x
>
—

L H L

BET
K — Map for A1 Signal (same as Figure 43)

BEO
L H
LLxLLL BET o
BE2 ermLHsea ;—D‘D"_i
HL@UL BE3
x| x|L|x]|L
Ll H L
BET

K — Map for 16-bit BHE signal

EO
L H
Llx]ofH)e
L
BEZ L LS H BE
3
Gl (x | H)
et
L H L
BET
K — Map for 16-bit BLE signal (same as A0 signal in Figure 43). 15021B-050
Figure 47. Logic to Generate A1, BHE, and BLE for 16-Bit Buses
Table 20. Transfer Bus Cycles for Bytes, Words, and Dwords
Byte-Length of Logical Operand
1 2 4
Physical Byte Address in Memory (low-order bits)) xx | 00 01 10 11 00 01 | 10 | 11
Transfer Cycles over 32-bit Data Bus b w w w r;g’* d Irg Im I}g'
b | w b, | w | hb, | tw, | hb, | hw, | mw,
Transfer Cycles over 16-bit Data Bus hb b hw Ib w hb,
mw Ib
Key: b= Byte transfer 3 =3-byte transfer
w= Word transfer d=Dword transfer
|= low-order portion h=high-order portion
m = mid-order portion x=Don't care
=BS16 asserted causes second bus cycle.
*For this case, 8086, 8088, 80186, 80188, 80286 transfer Ib first, then hb.
Am386DX/DXL Microprocessor Data Sheet 79

a AMD

Cycle 1 Cycle 2 Cycle 3
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Read) (Read)
T1 T2 T T2 T1 T2
o1 | o2 ot |o2|ot]o2| ot |oe2] ot | e2] o1]o2]| o1
ok qnpuy [[|] LT L[] LT L1 L1 L]
pars et [X vaiids Valid 2 Valid 3
(Outputs))
ADS (Output) I___) \ / N\ L/ \ Y/ N\
(|an:8 [
READY [__/_—ﬂ__/_—x_/_—x_/
(Input)
(o'Ltop?;:() [X Valid 1 Valid 2 Valid 3
el I e e D e
(Input during Read)

Fastest non-pipelined bus cycles consist of T1 and T2

15021B-051

Figure 48. Fastest Read Cycles with Non-Pipelined Address Timing

When the Am386DX/DXL CPU bus is not performing
one of the activities listed above, itis either Idle or in the
Hold Acknowledge state, which may be detected by ex-
ternal circuitry. The Idle state can be identified by the
Am386DX/DXL microprocessor giving no further asser-
tions on its address strobe output (ADS) since the begin-
ning of its most recent bus cycle, and the most recent
bus cycle has been terminated. The Hold Acknowledge
state is identified by the Am386DX/DXL CPU asserting
its Hold Acknowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. Abus
state is one processor clock period (two CLK2 periods)
in duration. A complete data transfer occurs during a
bus cycle, composed of two or more bus states.

The fastest Am386DX/DXL microprocessor bus cycle
requires only two bus states. For example, three con-
secutive bus read cycles, each consisting of two bus
states, are shown by Figure 48. The bus states in each
cycle are named T1 and T2. Any memory or I/O address
may be accessed by such a two-state bus cycle, if the
external hardware is fast enough. The high-bandwidth,
two-clock bus cycle realizes the full potential of fast main
memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the Am386DX/
DXL microprocessor READY input. Acknowledging the
bus cycle at the end of the first T2 results in the shortest

bus cycle, requiring only T1 and T2. If READY is not
immediately asserted, however, T2 states are repeated
indefinitely until the READY input is sampled asserted.

Address Pipelining

The address pipelining option provides a choice of bus
cycle timings. Pipelined or non-pipelined address timing
is selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When address pipelining is not selected, the current ad-
dress and bus cycle definition remain stable throughout
the bus cycle.

When address pipelining is selected, the address
(BE3-BEO, A31-A2) and definition (W/R, D/C, and
M/10) of the next cycle are available before the end of
the current cycle. To signal their availability, the
Am386DX/DXL microprocessor address status output
(ADS) is also asserted. Figure 49 illustrates the fastest
read cycles with pipelined address timing.

Note from Figure 49, the fastest bus cycles using
pipelined address require only two bus states, named
T1P and T2P. Therefore, cycles with pipelined address
timing allow the same data bandwidth as non-pipelined
cycles, but address-to-data access time is increased
compared to that of a non-pipelined cycle.

80 Am386 Microprocessors for Personal Computers

MDn

A
Cycle 1 Cycle 2 Cycle 3
Pipelined Pipelined Pipelined
(Read) (Read) (Read)
TP T2P TIP TP TP T2P
o1 | o2 o1 o2 | o1 |o2 | o1 | o2 | 01 | 02| o1]02
CLK2 (input) [| |
M/iG, BE3-BES, . , , :
AB1_AS, DG, W [Valid 1 Valid 2 Valid 3 Valid 4
(Outputs)
ADS /
(Output) — / /

NA
(Input)

[
[
o
[
[

(Input)
(ob?pi:() Valid 1 Valid 2 Valid 3
D31-Do — -
(Input during Read) In >‘__—'——— In1 —_ In2 R In3
Fastest pipelined bus cycles consist of T1P and T2P
15021B-052

Figure 49. Fastest Read Cycles with Pipelined Address Timing

By increasing the address-to-data access time,
pipelined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would be
required with pipelined address.

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an ad-
dress has been latched, pipelined availability of the next
address allows decoding circuitry to generate chip se-
lects (and other necessary select signals) in advance,
so selected devices are accessed immediately when
the next cycle begins. In other words, the decode time
for the next cycle can be overlapped with the end of the
current cycle.

If a system contains a memory structure of two or more
interleaved memory banks, pipelined address timing
potentially allows even more overlap of activity. This is
true whenthe interleaved memory controller is designed
to allow the next memory operation to begin in one
memory bank while the current bus cycle is still activat-
ing another memory bank. Figure 50 shows the general
structure of the Am386DX/DXL microprocessor with
two-bank and four-bank interleaved memory. Note each
memory bank of the interleaved memory has full data
bus width (32-bit data width typically, unless 16-bit bus
size is selected).

Further details of pipelined address timing are given in
Pipelined Address; Initiating and Maintaining Pipelined
Address; Pipelined Address with Dynamic Bus Sizing;
and, Maximum Pipelined Address Usage With 16-bit
Bus Size.

Read and Write Cycles
Introduction

Data transfers occur as a result of bus cycles, classified
as Read or Write cycles. During Read cycles, data is
transferred from an external device to the processor.
During Write cycles, data is transferred in the other di-
rection, from the processor to an external device.

Two choices of address timing are dynamically select-
able: non-pipelined or pipelined. After a bus idle state,
the processor always uses non-pipelined address tim-
ing. However, the NA (Next Address) input may be as-
sertedto select pipelined address timing for the next bus
cycle. When pipelining is selected and the Am386DX/
DXL microprocessor has a bus request pending inter-
nally, the address and definition of the next cycle is
made available even before the current bus cycle is
acknowledged by READY. Generally, the NA input is
sampled each bus cycle to select the desired address
timing for the next bus cycle.

Am386DX/DXL Microprocessor Data Sheet

81

u AMD

Two-Bank Interleaved Memory:
a. Address signal A2 selects bank
b. 32-bit datapath to each bank

32, DataBus

Am386DX/DXL 4 \
CPU Address Bus
A2 A2
A32 32
Interleave
DRAM DRAM
Controller Bank 0 Bank 1

Four-Bank Interleaved Memory:
a. Address signals A3 and A2 select bank
b. 32-bit datapath to each bank

32, DataBus

Am386DX/DXL [7
CPU Address Bus \ \ \ \
N as| Az \ s a2 N\ A3 AN A3 A2\
A32 A2 A2 A32
pterieave | | DRAM DRAM DRAM DRAM
ontroller Bank 0 Bank 1 Bank 2 Bank 3
15021B-053

Figure 50. Two-Bank and Four-Bank Interleaved Memory Structure

Two choices of physical data bus width are dynamically
selectable: 32 bits or 16 bits. Generally, the BS16 (Bus
Size 16) input is sampled nearthe end ofthe bus cycle to
confirm the physical data bus size applicable to the
current cycle. Negation of BS16 indicates a 32-bit size
and assertion indicates a 16-bit bus size.

If 16-bit bus size is indicated, the Am386DX/DXL CPU
automatically responds as required to complete the
transfer on a 16-bit data bus. Depending onthe size and
alignment of the operand, another 16-bit bus cycle may
be required. Table 19 provides all details. When neces-
sary, the Am386DX/DXL microprocessor performs an
additional 16-bit bus cycle, using D15-D0 in place of
D31-D16.

Terminating a Read cycle or Write cycle, like any bus cy-
cle, requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor in-
serts wait states into the bus cycle to allow adjustment

forthe speed of any external device. External hardware,
that has decoded the address and bus cycle type as-
serts the READY input at the appropriate time.

At the end of the second bus state within the bus cycle,
READY is sampled. At that time, if external hardware
acknowledges the bus cycle by asserting READY, the
bus cycle terminates as shown in Figure 51. If READY is
negated as in Figure 52, the cycle continues another
bus state (a wait state) and READY is sampled again at
the end of that state. This continues indefinitely until the
cycle is acknowledged by READY asserted.

When the current cycle is acknowledged, the
Am386DX/DXL microprocessor terminates it. When a
Read cycle is acknowledged, the Am386DX/DXL CPU
latches the information present at its data pins. When a
Write cycle is acknowledged, the Am386DX/DXL CPU
write data remains valid throughout phase one of the
next bus state to provide write data hold time.

82 Am386 Microprocessors for Personal Computers

AMD u

Idle Cycle 1 Cycle 2 Cycle 3 Idle Cycle 4 Idle
Non-Pipelined Non-Pipelined Non-Pipelined Non-Pipelined
(Write) (Read) (Write) (Read)

Ti T1 T2 T1 T2 T1 T2 Ti LR T2 Ti
cee [[T UYyuyuyuyuyuy oy
W[NSNS NN NN NN N NSNS

BE3-BED,
A31-A2, Valid 1 Valid 2 Valid 3 Valid 4
MAG, D/C
wa[
Aos [/N N /
o [
32-Bit 32-Bit 32-Bit 32-Bit
Bus Size Bus Size Bus Size Bus Size
BST6 [
End Cycle 1 End Cycle 2 End Cycle 3 End Cycle 4
[ocK [m Valid 1 Valid 2 Valid 3 Valid 4
D31-Do [ot »+—-~«)y« ont »t———t-— (i)——

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can

immediately follow the write cycle.

15021B-054

Figure 51. Various Bus Cycles and Idle States with Non-Pipelined Address (Zero Wait States)

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined ad-
dress timing. For example, Figure 51 shows a mixture of
Read and Write cycles with non-pipelined address tim-
ing. Figure 51 shows that the fastest possible cycles
with non-pipelined address have two bus states per bus
cycle. The states are named T1 and T2. In phase one of
the T1, the address signals and bus cycle definition sig-
nals are driven valid, and to signal their availability,
address status (ADS) is simultaneously asserted.

During Read or Write cycles, the data bus behaves as
follows. If the cycle is a read, the Am386DX/DXL micro-
processor floats its data signals to allow driving by the
external device being addressed. The Am386DX/DXL
device requires that all data bus pins be at a valid logic
state (High or Low) at the end of each read cycle, when
READY is asserted, even if all byte enables are not as-
serted. The system must be designed to meet this re-
quirement. If the cycle is a write, data signals are driven
by the Am386DX/DXL device beginning in phase two of

Am386DX/DXL Microprocessor Data Sheet 83

n AMD

T1 until phase one of the bus state following cycle
acknowledgment.

Figure 52 illustrates non-pipelined bus cycles with one
wait added to Cycles 2 and 3. READY is sampled
negated at the end of the first T2 in Cycles 2 and 3.
Therefore, Cycles 2 and 3 have T2 repeated. At the end
of the second T2, READY is sampled asserted.

When address pipelining is not used, the address and
bus cycle definition remain valid during all wait states.

When wait states are added and you desire to maintain
non-pipelined address timing, it is necessary to negate
NA during each T2 state exceptthe lastone, as shownin
Figure 52 Cycles 2 and 3. If NA is sampled asserted
during a T2 other than the last one, the next state
would be T2I (for pipelined address) or T2P (for pipe-
lined address) instead of another T2 (for non-pipelined
address).

Idle Cycle 1 Cycle 2 Idle Cycle 3 Idle
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Write) (Read)

Ti T1 T2 T1 T2 Ti T T2 T2 Ti
Shhnnnhhhinhhhnnhhhhnhil
Ve Va Ve Va Va Va Va Ve VaVa Va

BET-BED,
A31-p2, [Valid Valid 2 Valid 3
M/G, D/C

wr [SRR

RXXRRXIKXIXKIKKRX

a
XXXIXKRRXXKY XXX XKXX

32-Bit 32-Bit 32-Bit
BusISize Bus Size Bus Size
BST6 [- X
resoy [Woccsos) e
End Cycle 1 End Cycle 2 End Cycle 3
| |
ook [vaid1 X Valid 2 Valid 3

D31-Do [—f———F———— Out >—t———t—t1- —

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can

immediately follow the Write cycle.

15021B-055

Figure 52. Various Bus Cycles and Idle States with Non-Pipelined Address
(Various Number of Wait States)

84 Am386 Microprocessors for Personai Computers

o

AMD

HOLD Negated e No Request

HOLD Negated ¢

HOLD Negated o
Request Pending

HOLD Asserted

READY Asserted e HOLD Negated ¢ No Request

No Request Request Pending e

HOLD Negated

RESET
Asserted

Bus States:

fﬁ\)_
v READY Asserted o
HOLD Negated e

HOLD Asserted

READY Asserted e HOLD Asserted

ALWAYS

|

Request Pending

READY Negated ¢
NA Negated

T1— First clock of a non-pipelined bus cycle (Am386DX/DXL microprocessor drives new address and asserts ADS).
T2— Subsequent clocks of a bus cycle when NA has not been sampied asserted in the current bus cycle.

Ti — Idle state.

Th— Hold Acknowledge state (Am386DX/DXL microprocessor asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.

15022B-017

Four basic bus states describe bus operation when not using pipelined address. These states do include BS16 usage for 32-bitand 16-bitbus
size. If asserting BS16 requires second 16-bit bus cycle to be performed, it is performed before HOLD asserted acknowledged.

Figure 53. Bus States (Not Using Pipelined Address)

Figure 53 illustrates the bus states and transitions when
address pipelining is not used. The bus transitions be-
tween four possible states: T1, T2, Ti, and Th. Bus cy-
cles consist of T1 and T2, with T2 being repeated for
wait states. Otherwise, the bus may be idle in the Ti
state, or in hold acknowledge, the Th state.

When address pipelining is not used, the bus state dia-
gramis as shown in Figure 53. When the bus is idle, itis
in state Ti. Bus cycles always begin with T1. T1 always
leadsto T2. If abus cycle is not acknowledged during T2
and NA is negated, T2 is repeated. When a cycle is ac-
knowledged during T2, the following state will be T1 of
the next bus cycle if a bus request is pending internally,
or Ti if there is no bus request pending, or Th if the
HOLD input is being asserted.

The bus state diagram in Figure 53 also applies to the
use of BS16. If the Am386DX/DXL microprocessor
makes internal adjustments for 16-bit bus size, the
adjustments do not affect the external bus states. If an
additional 16-bit bus cycle is required to complete a
transfer on a 16-bit bus, it also follows the state transi-
tions shown in Figure 53.

Use of pipelined address allows the Am386DX/DXL
CPU to enter three additional bus states not shown
in Figure 53. Figure 59 in Pipelined Address is the com-
plete bus state diagram, including pipelined address
cycles.

Non-Pipelined Address With Dynamic Data Bus
Sizing

The physical data bus width for any non-pipelined bus
cycle can be either 32 or 16 bits. At the beginning of the
bus cycle, the processor behaves as if the data bus is
32-bits wide. When the bus cycle is acknowledged by
asserting READY at the end of a T2 state, the most
recent sampling of BS16 determines the data bus size
for the cycle being acknowledged. If BS16 was most re-
cently negated, the physical data bus size is defined as
32 bits. If BS16 was most recently asserted, the size is
defined as 16 bits.

When BS16 is asserted and two 16-bitbus cycles are re-
quired to complete the transfer, BS16 must be asserted
during the second cycle; 16-bit bus size is not assumed.
Like any bus cycle, the second 16-bit cycle must be ac-
knowledged by asserting READY.

Am386DX/DXL Microprocessor Data Sheet 85

n AMD

A transfer requiring two
cycles on 16-bit data bus

A transfer requiring two
cycles on 16-bit data bus

— —
Cycle 1 Cycle 1A Cycle 2 Cycle 2A
ldle Non-Pipelined | Non-Pipelined | Non-Pipelined | Non-Pipelined Idle
(Write ——1— Write) (Read ——1—» Read)
Part One Part Two Part One Part Two
Ti T1 T2 T1 T2 T1 T2 T T2 Ti
oke[ML LIL UL (L1
[N/ NS NS /" N/ | _/"|
Always Always
L L
BET-BEO | jXZXXiX Valid 1 Negated Valid 3 Negated
During Part Two During Part Two
BES-BEZ, |
A31-A2, [«———— Valid 1 @E———— Valid2
M/NO, D/C
wR [
Aos [/N NV NV
NA [Dont Dont Don't Dont
Care Care Care Care
BS16 [
16-Bit 16-Bit 16-Bit 16-Bit
Bus Size Bus Size Bus Size Bus Size
rewo [LN | KN | AR
ook [XDOOXIX Valid 1 Valid 2
d15-d0 d31-d16 d15—ld0 d31-d16
D15-Do [~< ou X ou »—+-— —1— —
d31-d16 Ignored Ignored
D31-D16 [(= ot ———)— -1 _
[I I I
Key: Dn = Physical data pinn
dn = Logical data pin n

15021B-057

Figure 54. Asserting BS16 (Zero-Wait-States, Non-Pipelined Address)

86 Am386 Microprocessors for Personal Computers

AMD n

A transfer requiring two
cycles on 16-bit data bus
A

» ~ Cycle 1 Cycle 1A) Cvele 2
e Non-Pipelined Non-Pipelined)I;(‘;el' d
(Read L » Read) N°"‘\N'Pe ine
Part One Part Two (Write)
Ti T T2 T1 T2 T1 T2

ahhhhEhLGLGEELEGRELGLEE
Ve Ve Va Ve Ve Vs Ve Ve Ve Vs

BET-BED | Valid 1 Negated during Valid 2
art Iwo
BE3-BEZ, | I
A31-A2, Valid 1 —_— > Valid 2
g 3% [X000
wr [

Aos [/ / /

Note: NA must be negated here to
allow recognition of asserted
BS16 in final T2.

NA [Don't Don't

Care Care

32-Bit
Bus Size

ssts [X ;i : I_%

16-Bit 16-Bit
Bus Size Bus Size

RERDY [R R XXX | R

LOCK [Valid 1 Vald 2
1 1 1
d15-d0 d31-d16 | d157d0
ors-o0 [B B et D S S SV @D Y T
|
Ignored Ignored d31|—d16
D31-D16 [-t —————— Out
I |
Key: Dn = Physical data pin n
dn = Logical data pin n

15021B-058

Figure 55. Asserting BS16 (One-Wait-State, Non-Pipelined Address)

Am386DX/DXL Microprocessor Data Sheet 87

a AMD

When a second 16-bit bus cycle is required to complete
the transfer over a 16-bit bus, the addresses generated
for the two 16-bit bus cycles are closely related to each
other. The addresses are the same, except BEO and
BET are always negated for the second cycle. This is be-
cause data on D15-D0 was already transferred during
the first 16-bit cycle.

Figures 54 and 55 show cases where assertion of BS16
requires a second 16-bit cycle for complete operand
transfer. Figure 54 illustrates cycles without wait states.
Figure 55 illustrates cycles with one wait state. In Figure
55 Cycle 1, the bus cycle during which BS16 is asserted,
note that NA must be negated in the T2 state(s) prior to
the last T2 state. This is to allow the recognition of BS16
asserted in the final T2 state. The relation of NA and
BS16 is given fully in Pipelined Address, but Figure 55
illustrates this only precaution you need to know when
using BS16 with non-pipelined address.

Pipelined Address

Address pipelining is the option of requesting the ad-
dress and the bus cycle definition of the next internally
pending bus cycle before the current bus cycle is
acknowledged with READY asserted. ADS is asserted
by the Am386DX/DXL microprocessor when the next
address is issued. The address pipelining option is
controlled on a cycle-by-cycle basis with the NA input
signal.

Once a bus cycle is in progress and the current address
has been valid for at least one entire bus state, the NA
input is sampled at the end of every phase one until the
bus cycle is acknowledged. During non-pipelined bus
cycles, therefore, NA is sampled at the end of phase one
in every T2. An example is Cycle 2 in Figure 56, during
which NA is sampled at the end of phase one of every
T2 (it was asserted once during the first T2 and has no
further effect during that bus cycle).

If NA is sampled asserted, the Am386DX/DXL micro-
processor is free to drive the address and bus cycle defi-
nition of the next bus cycle, and assert ADS, as soon as
it has a bus request internally pending. It may drive the
next address as early as the next bus state, whether the
current bus cycle is acknowledged at that time or not.

Regarding the details of address pipelining, the
Am386DX/DXL CPU has the following characteristics.
1. For NA to be sampled asserted, BS16 must be
negated at the sampling window (see Figure 56
Cycles 2 through 4, and Figure 57 Cycles 1 through
4). If NA and BS16 are both sampled asserted during

the last T2 period of a bus cycle, BS16 asserted has
priority. Therefore, if both are asserted, the current
bus size is takento be 16 bits and the next address is
not pipelined.

2. The next address may appear as early as the bus
state after NA was sampled asserted (see Figure 56
or 57). In that case, state T2P is entered immedi-
ately, However, when there is not an internal bus
request already pending, the next address will not be
available immediately after NA is asserted and T2I
is entered instead of T2P (see Figure 58 Cycle 3).
Provided the current bus cycle is not yet acknow-
ledged by READY asserted, T2P will be entered as
soon as the Am386DX/DXL microprocessor does
drive the next address. External hardware should
therefore observe the ADS output as confirmation
the next address is actually being driven on the bus.

3. Once NA is sampled asserted, the Am386DX/DXL
microprocessor commits itself to the highest priority
bus request that is pending internally. It can no
longer perform another 16-bit transfer to the same
address should BS16 be asserted externally, so
thereafter must assume the current bus size is 32
bits. Therefore, if NA is sampled asserted within a
bus cycle, BS16 must be negated thereafter in
that bus cycle (see Figures 56, 57, 58). Con-
sequently, do not assert NA during bus cycles that
must have BS16 driven asserted. See Dynamic Bus
Sizing with Pipelined Address.

4. Any address which is validated by a pulse on the
Am386DX/DXL CPU ADS output will remain stable
on the address pins for at least two processor clock
periods. The Am386DX/DXL microprocessor cannot
produce a new address more frequently than every
two processor clock periods (see Figures 56,57, 58).

5. Onlythe address and bus cycle definition of the very
next bus cycle is available. The pipelining capability
cannot look further than one bus cycle ahead (see
Figure 58 Cycle 1).

The complete bus state transitiondiagram, including op-
eration with pipelined address is given by Figure 59.
Note it is a superset of the diagram for non-pipelined
address only and the three additional bus states for
pipelined address are drawn in bold.

The fastest bus cycle with pipelined address consists of
just two bus states, T1P and T2P (recall for non-
pipelined address it is T1 and T2). T1P is the first bus
state of a pipelined cycle.

88 Am386 Microprocessors for Personal Computers

AMD n

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

T1 T2 T1 T2 T2P T1P T2P T1P T2l Ti
i ipisipiaipipipipipipipipipt
LUl Va Ve Va Ve Va Va Va Ve Va Va Ve

Phs1 A2, [XBXXXX Valid 1 Valid 2 Valid 3 Valid 4
MO, D/IC v //v v
wR [
wos [N T N VTNV
W[
To Allow To Allow To Allow
Recognizing Recognizing Recognizing
NA NA NA
! | !
S C N C
sy [AKX |
LOCK [Valid 1 Valid 2 Valid 3 Valid 4
p31-Do [< Out et ———1 "‘G@ Out H- _—@_-_

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA is only sampled during wait
states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least

one wait state (Cycle 2 above).

15021B-059

Figure 56. Transitioning to Pipelined Address During Burst of Bus Cycles

Am386DX/DXL Microprocessor Data Sheet

89

l‘:l AMD

Idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

Ti T1 T2 T2P TiP T2P T1P T2P | TIP T2 T2i Ti
cce[MUY UYHUYULUU Uy oy
UiV Ve Ve Ve Ve Va Va Va Ve Ve Va Va

BE3-BED,
A31-A2, Valid 1 Valid 2 Valid 3 Valid 4
MAG, D/C ///V v 4 //;v v
wR[/
! I N) N—
s [
To Allow To Allow To Allow ToAllow
Recognizing Recognizing Recognizing Recognizing
NA NA NA NA
! ! !
BST6
READY | AN
ook [XPOOOD Valid 1 Valid 2 Valid 3 Valid 4
D31-D0 [< out »—— ——-(IP—(out H- _@F}_—

Note: Following any idle bus state (Ti), the address is always non-pipelined and NA is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The pipelined cycles (2, 3, 4 above) are shown
with various numbers of wait states.

Figure 57. Fastest Transition to Pipelined Address Following Idie Bus State

15021B-060

920

Am386 Microprocessors for Personal Computers

AMD n

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 59, observe the transi-
tions from an idle state, Ti, to the beginning of a
pipelined bus cycle, T1P. From an idle state Ti, the first
bus cycle must begin with T1, and is therefore a non-
pipelined bus cycle. The next bus cycle will be pipelined,
however, provided NA is asserted and the first bus cycle
ends in a T2P state (the address forthe next bus cycle is
driven during T2P). The fastest path from anidle state to
a bus cycle with pipelined address is shown in below:

Ti, Ti, Ti T1-T2-T2P T1P-T2P
Idle Non-Pipelined Pipelined
States Cycle Cycle

T1-T2-T2P are the states of the bus cycle that estab-
lishes address pipelining for the next bus cycle, which
begins with T1P. The same is true after a bus hold state,
shown below:

Th, Th, Th T1-T2-T2P T1P-T2P
Hold Non-Pipelined Pipelined
Acknowledge Cycle Cycle
States

The transitionto pipelined address is shown functionally
by Figure 57 Cycle 1. Note that Cycle 1 is used to transi-
tion into pipelined address timing for the subsequent
Cycles 2, 3, and 4 that are pipelined. The NA input is as-
serted at the appropriate time to select address pipe-
lining for Cycles 2, 3, and 4.

Once a bus cycle is in progress and the current address
has become valid, the NA input is sampled at the end of
every phase one, beginning with the next bus state, until
the bus cycle is acknowledged. During Figure 57 Cycle
1 therefore, sampling begins in T2. Once NA is sampled
asserted during the current cycle, the Am386DX/DXL
microprocessor is free to drive a new address and bus
cycle definition on the bus as early as the next bus state.
In Figure 56 Cycle 1 for example, the next address
is driven during state T2P. Thus, Cycle 1 makes the
transition to pipelined address timing, since it begins

with T1 but ends with T2P. Because the address for Cy-
cle 2is available before Cycle 2begins, Cycle 2 is called
a pipelined bus cycle, and it begins with T1P. Cycle 2
begins as soonas READY asserted terminates Cycle 1.

Example transition bus cycles are Figure 57 Cycle 1 and
Figure 56 Cycle 2. Figure 57 shows transition during the
very first cycle after anidle bus state, which is the fastest
possible transition into address pipelining. Figure 56
Cycle 2, shows a transition cycle occurring during a
burst of bus cycles. In any case, a transition cycle is the
same whenever it occurs: it consists at least of T1, T2
(you assert NA at that time), and T2P (provided the
Am386DX/DXL microprocessor has an internal bus
request already pending, which it almost always has).
T2P states are repeated if wait states are added to the
cycle.

Note three states (T1, T2, and T2P) are only required in
a bus cycle performing a transition from non-pipelined
address into pipelined address timing; for example,
Figure 57 Cycle 1. Figure 57 Cycles 2, 3, and 4 show
that address pipelining can be maintained with two-
state bus cycles consisting only of T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined tim-
ing is maintained for the next cycle by asserting NA and
detecting that the Am386DX/DXL CPU enters T2P dur-
ing the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in the
nextcycle. T2P is identified by the assertion of ADS. Fig-
ures 56 and 57 however, show pipelining ending after
Cycle 4, because Cycle 4 ends in T2P. This indicates
the Am386DX/DXL CPU did not have an internal bus re-
quest prior to the acknowledgment of Cycle 4. If a cycle
ends with a T2 or T2, the next cycle will not be pipelined.

Realistically, address pipelining is almost always main-
tained as long as NA is sampled asserted. This is so,
because in the absence of any other request a code
prefetch request is always internally pending until the
instruction decoder and code prefetch queue are
completely full. Therefore, address pipelining is main-
tained for long bursts of bus cycles, if the bus is available
(i.e., HOLD negated) and NA is sampled asserted in
each of the bus cycles.

Am386DX/DXL Microprocessor Data Sheet 91

n AMD

CLK2 []

Pipelined

Cycle 1
(Write)

T2P T2P

(CLK) [—_/"‘_/__/_

T1P

Cycle 2
Pipelined

LL
Va

(Read)

T2 T2P TP

\/J

L LY

Cycle 3
Pipelined
(Write)

T2l

\/_

g gpin
VaVa

Cycle 4
Pipelined
(Read)

T2P TP

BE1-BEO,
A31-A2, I___ Valid 1 Valid 2 Valid 3 Valld 4
MAG, DIC 4 v I 1
| ADS is asserted as soon
as Am386DX/DXL CPU has
another bus cycle to perform,
which is not always immedi-
ately after NA is asserted.
WR [| { /
aos [%]

[X | 4

once

N
/in every T2P state.

Asserting NA more than

has no additional

ote: ADS is asserted

during any cycle

%

inT1Pi

NA could have been asserted

f desired. Assertion now is

the latest time possible to allow

Aslongas Am38(;DX/DXL CPU enters the
T2P state during Cycle 3, address pipe-
lining is maintained in Cycle 4.

X

effects. Am386DX/DXL CPU to enter T2P
state to maintain pipelining in
Cycle 3.
5576 [Z}’
—nson[_ng%zxrm RN ‘Q_JﬁXXlX
ok [Valid 1 Valid 2 Valid 3 Valid 4
D31-Do [X Out > ——-—--——Ger—< out
| |
15021B-061
Figure 58. Details of Address Pipelining During Cycles with Wait States
92 Am386 Microprocessors for Personal Computers

AMD n

HOLD Asserted

READY Asserted o

HOLD Negated o HOLD _Asserted

No Request

HOLD Negated o
Request Pending

HOLD
Asserted

RESET
Assen:ted
.

A

|____ READY Assertede
HOLD Negatede

y

~

Always

No Request
~N

READY Asserted o
HOLD Asserted

(No Request +

HOLD Asserted) o

NA Asserted o
READY Negated

NA Asserted o
(HOLD Asserted+
No Request)

Request Pending
HOLD Negated

READY Asserted o
' HOLD Negated o
HOLD Negated Request Pending

No Request

READY Asserted »
HOLD Negated ¢
Request Pending

READY Negatede
NA Negated

READY Negated
NA Asserted o

HOLD Negated o
Request Pending

READY Asserted e HOLD Negated e No Request

Bus States:

T1 — First clock of a non-pipelined bus cycle (Am386DX/DXL CPU drives new
address and asserts ADS).

T2 — Subsequent clocks of a bus cycle when NA has notbeen sampled asserted
in the current bus cycle.

T2l— Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle but there is not yet an internal bus request pending
(Am386DX/DXL CPU will not drive new address or assert ADS).

T2P—Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle and there is an internal bus request pending
(Am386DX/DXL CPU drives new address and asserts ADS).

T1P—First clock of a pipelined bus cycle.

Ti — Idle state.

Th — Hold Acknowledge state (Am386DX/DXL CPU asserts HLDA).

Asserting NA for pipelined address gives access to three more bus states: T2l,
T2P, and T1P.

Using pipelined address, the fastest bus cycle consists of TP and T2P.

READY Negatede
(No Request+
HOLD Asserted)

NA Asserted o
HOLD Negated o
Request Pending

READY Asserted

READY Negated

15021B-062

Figure 59. Am386DX/DXL Microprocessor Complete Bus States (Including Pipelined Address)

Am386DX/DXL Microprocessor Data Sheet 93

n AMD

Pipelined Address With Dynamic Data Bus Sizing

The BS16 feature allows easy interface to 16-bit data
buses. When asserted, the Am386DX/DXL micropro-
cessor bus interface hardware performs appropriate
action to make the transfer using a 16-bit data bus
connected on D15-D0.

There is a degree of interaction, however, between the
use of Address Pipelining and the use of Bus Size 16.
The interaction resuits from the multiple bus cycles re-
quired when transferring 32-bit operands over a 16-bit
bus. If the operand requires both 16-bit halves of the
32-bit bus, the appropriate Am386DX/DXL micropro-
cessor action is a second bus cycle to complete the op-
erand’stransfer. This necessity conflicts with NA usage.

When NA is sampled asserted, the Am386DX/DXL mi-
croprocessor commits itself to perform the next inter-
nally pending bus request, and is allowed to drive the
next internally pending address onto the bus. Asserting
NA therefore makes it impossible for the next bus cycle
to again access the current address on A31-A2, such as
may be required when BS16 is asserted by the external
hardware.

To avoid conflict, the Am386DX/DXL microprocessor is

designed with following two provisions.

1. To avoid conflict, BS16 must be negated in the current
bus cycle if NA has already been sampled asserted
in the current cycle. If NA is sampled asserted, the
current data bus size is assumed to be 32 bits.

2. Also to avoid conflict, if NA and BS16 are both
asserted during the same sampling window, BS16
asserted has priority and the Am386DX/DXL micro-
processor acts as if NA was negated at that time.

Certain types of 16- or 8-bit operands require no adjust-
ment for correct transferon a 16-bit bus. Those are read
or write operands using only the lower half of the data
bus, and write operands using only the upper half
of the bus, since the Am386DX/DXL CPU simultane-
ously duplicates the write data on the lower half of the
data bus. For these patterns of Byte Enables and
the W/R signals, BS16 need not be asserted at the
Am386DX/DXL CPU allowing NA to be asserted during
the bus cycle if desired.

Interrupt Acknowledge (INTA) Cycles

In response to an interrupt request on the INTR input
when interrupts are enabled, the Am386DX/DXL micro-
processor performs two interrupt acknowledge cycles.
These bus cycles are similar to read cycles in that bus
definition signals define the type of bus activity taking
place, and each cycle continues until acknowledged by
READY sampled asserted.

The state of A2 distinguishes the first and second in-
terrupt acknowledge cycles. The byte address driven
during the first interrupt acknowledge cycle is 4 (A31-
A3 Low, A2 High, BE3-BET High, and BEO Low). The
address driven during the second interrupt acknowl-
edge cycle is 0 (A31-A2 Low, BE3-BE1 High, BEO
Low).

The LOCK output is asserted from the beginning of the
first interrupt acknowledge cycle until the end of the sec-
ond interrupt acknowledge cycle. Four idle bus states,
Ti, are inserted by the Am386DX/DXL microprocessor
between the two interrupt acknowledge cycles, allowing
forcompatibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D31-D0
float. No data is read at the end of the first interrupt ac-
knowledge cycle. At the end of the second interrupt
acknowledge cycle, the Am386DX/DXL microprocessor
will read an external interrupt vector from D7-DO of the
data bus. The vector indicates the specific interrupt
number (from 0-255) requiring service.

Halt Indication Cycle

The Am386DX/DXL microprocessor halts as a result of
executing a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed. The
halt indication cycle is identified by the state of the bus
definition signals shown in Bus cycle Definition and a
byte address of 2. BEO and BEZ are the only signals
distinguishing halt indication from shutdown indication,
that drives an address of 0. During the halt cycle
undefined data is driven on D31-D0. The halt indication
cycle must be acknowledged by READY asserted.

A halted Am386DX/DXL CPU resumes execution when
INTR (if interrupts are enabled) or NMI or RESET is
asserted.

Shutdown Indication Cycle

The Am386DX/DXL microprocessor shuts down as a
result of a protection fault while attempting to process a
double fault. Signaling its entrance into the shutdown
state, a shutdown indication cycle is performed. The
shutdown indication cycle is identified by the state of the
bus definition signals shown in Bus Cycle Definition and
a byte address of 0. BEO and BEZ are the only signals
distinguishing shutdown indication from halt indication,
which drives an address of 2. During the shutdown
cycle, undefined data is driven on D31-D0. The shut-
down indication cycle must be acknowledged by
READY asserted.

A shutdown Am386DX/DXL microprocessor resumes
execution when NMI or RESET is asserted.

94 Am386 Microprocessors for Personal Computers

AMD n

A transfer requiring two

cycles on 16-bit data bus
A

~—

Previous
Cycle

CLK2 [B

aiilinaliil
s

Cycle 1 Cycle 1A

Pipelined Non-Pipelined
(Write —> Write)

Part One Part Two

TP T2

T1 T2

_/"|

Cycle 2
Non-Pipelined
(Read)

T1 T2

ihhhhEhhEGhEn
Ve Ve Ve Vs Vs

T2P

e [N NSNS
K

Always
BET-BED Valid 1 Negated During Valid 2 Valid 3
] al wo
BE3-BEZ, _ |
A31-A2, [X« Valid 1 >} Valid 2 Valid 3
MAO, DI = —
W/R |:

ADs [|

-

Y

> Note: NA must be negated in these Ts to allow
recognition of asserted BS16 in final T2s.

N

NA I: Don't Care Don't Care
32-Bit
Bus Size
BS16 I:
16-Bit 16-Bit
Bus Size Bus Size
READY [MMKW&W&
ook [G Valid 1 > Valid 2
d15-do d15-d0 | d31-d16 d15-do
D15-Do [—f— < Out X Out > ~(in]
|
d31-d16 lt131—d16I d31-d16
D31-D16 [—f-— < Out Out > ~in|
| I | | | I
Key: Dn = Physical data pin n Cycle 1 is pipelined. Cycle 1A cannot be pipelined, but its address can be inferred from
dn = Logical datapinn that of Cycle 1, to externally simulate address pipelining during Cycle 1A.
15021B-063
Figure 60. Using NA and BS16
Am386DX/DXL Microprocessor Data Sheet 95

n AMD

Interrupt

Acknowledge

Cycle 1

Previous
Cycle
T2
o2 [1]
e[TN/
ses g7 [XXXXX
BED,
A31-A3,
M/iQ, DT,
W/R

XXXXX

Idle
(4 Bus States)

Ti Ti

L L
N NS

Interrupt
Acknowledge
Cycle 2

E
E
=
=

Idle

rer7 [XRXXKRXXRKT

Ignored

Ignored

p7-Do [

-

Ignored

D31-D8 [

Interrupt Vector (0-255) is read on D7-DO0 at end of second Interrupt Acknowledge bus cycle.

.<—,I(_>___

Ignored

Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect. Choose the
approach that is simplest for your system hardware design.

Figure 61. Interrupt Acknowledge Cycles

@_.__

15021B-064

96

Am386 Microprocessors for Personal Computers

AMD n

CLK2

D31-Do

Cycle 1
Non-Pipelined
(Write)

T2

Cycle 1A
Non-Pipelined
(Halt)

T T2

Idle

N3 \Va Ve Ve Wa Ve Vs

Am386DX/DXL CPU remains

/]

Valid 1

BE2 is Low
for Halt Cycle

Valid 1

NV NV

Ignored

Note: Halt cycle must be

acknowledged by READY
asserted. Wait states may
be added to the cycle if
desired.

Valid 1

Valid 2

I:OutX

Out 1

X Undefined

)— (Floating) -

Figure 62. Halt Indication Cycle

halted until INTR, NMI, or
RESET is asserted.

Am386DX/DXL CPU responds
to HOLD input while in the
Halt state.

15021B-065

Am386DX/DXL Microprocessor Data Sheet

97

n AMD

CLK2
y

(CLK)

BE3-BE1
MAG, WR

|
m|

g

0,

A31-A2, D/C

o

>
2]

BS16

READY

LOCK

D31-Do

[

Cycle 1
Pipelined
(Read)

k2
&T1P

(LI
_/"|

T2P

(LI

[NSNS

Cycle 2
Pipelined
(Shutdown)

TP T2|

L LY
N/ N\

Idle

|: Valid 1
BEO is Low
for Shutdown
Cycle
|: Valid 1

Ti Ti

Am386DX/DXL CPU re-
mains shutdown until NMI or
RESET is asserted.

Am386DX/DXL CPU re-
sponds to HOLD input
while in the Shutdown
state.

Note: Shutdown cycle must

be acknowledged by READY
asserted. Wait states may be
added to the cycle if desired.

Valid 1

L

Valid 2

Q>+

---<In1) < Undefined >—(Toating)—

Figure 63. Shutdown Indication Cycle

15021B-066

98

Am386 Microprocessors for Personal Computers

AMD a

Other Functional Descriptions
Entering and Exiting Hold Acknowledge

The Bus Hold Acknowledge State, Th, is entered in
response to the HOLD input being asserted. In the
Bus Hold Acknowledge state, the Am386DX/DXL
microprocessor floats all output or bidirectional signals,
except for HLDA. HLDA is asserted as long as the

Am386DX/DXL CPU remains in the bus hold acknowl-
edge state. In the Bus Hold Acknowledge state, all in-
puts except HOLD, FLT, RESET, BUSY, ERROR, and
PEREQ are ignored (also up to one rising edge on NMI|
is remembered for processing when HOLD is no longer
asserted).

Idie

Hold
4— Acknowledge —»

Idle

-

/"]

Ti Th Th Th
ce [U ULUUL UL
o [N/ NSNS
HOLD [_ V4
HLDA [
A3t Ao G, ﬁzzxz
- /i —_—
! D%, Wi -

(Floating) ————XXX)

DS

READY

m|
Z
o
M [M M [} i i

\-—=—" (Floating) - ——— [

>--——-|(Flo:>a1ting)| ———-m

————f~——" (Floating) ————{———"

Note: For maximum design flexibility, the Am386DX/DXL CPU has no internal pullup resistors on its outputs. The design may
require an external pullup on ADS and other Am386DX/DXL CPU outputs to keep them negated during float periods.

15021B-067

Figure 64. Requesting Hold from Idle Bus

Am386DX/DXL Microprocessor Data Sheet 99

n AMD

Th may be entered from a bus idle state, as in Figure 64,
or after the acknowledgment of the current physical bus
cycle if the LOCK signal is not asserted, as in Figures 65
and 66. If HOLD is asserted during a locked bus cycle,
the Am386DX/DXL microprocessor may execute one
unlocked bus cycle before acknowledging HOLD. If as-
serting BS16 requires a second 16-bit bus cycle to com-
plete a physical operand transfer, it is performed before
HOLD is acknowledged, although the bus state dia-
grams in Figures 53 and 59 do not indicate that detail.

Th is exited in response to the HOLD input being ne-
gated. The following state will be Ti as in Figure 64 if no
bus request is pending. The following bus state will be
T1 if abus request is internally pending, as in Figures 65
and 66.

This also exited in response to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI in-
put while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exited,
unless of course, the Am386DX/DXL microprocessor is
reset before Th is exited.

RESET During HOLD Acknowledge

RESET being asserted takes priority over HOLD being
asserted. Therefore, Th is exited in response to the
RESET input being asserted. If RESET is asserted
while HOLD remains asserted, the Am386DX/DXL mi-
croprocessor drives its pins to defined states during
reset, as in Table 15 Pin State During RESET, and
performs internal reset activity as usual.

If HOLD remains asserted when RESET is negated, the
Am386DX/DXL microprocessor enters the hold ac-
knowledge state before performing its first bus cycle,
provided HOLD is still asserted when the Am386DX/
DXL microprocessor would otherwise perform its first
bus cycle. If HOLD remains asserted when RESET is
negated, the BUSY input is still sampled as usual to de-
termine whether a self test is being requested, and ER-
ROR is still sampled as usual to determine whether a
387DX math coprocessor versus an 80287 (or none) is
present.

Float

Activating the FLT input floats all Am386DX/DXL CPU
bidirectional and output signals, including HLDA. As-
serting FLT isolates the Am386DX/DXL CPU from the
surrounding circuitry.

As the Am386DX/DXL microprocessor is packaged in a
surface mount PQFP, it cannot be removed from the
motherboard when In-Circuit Emulation (ICE) is
needed. The FLT input allows the Am386DX/DXL CPU
to be electrically isolated from the surrounding circuitry.
This allows connection of an emulator to the Am386DX/
DXL microprocessor PQFP without removing it fromthe
PCB. This method of emulation is referred to as ON-
Circuit Emulation (ONCE).

Entering and Exiting Float

FLT is an asynchronous, active Low input. It is recog-
nized on the rising edge of CLK2. When recognized, it
aborts the current bus cycle and floats the outputs of the
Am386DX/DXL microprocessor (Figure 68). FLT must
be held Low for a minimum of 16-CLK2 cycles. Reset
should be asserted and held asserted until after FLT is
deasserted. This will ensure that the Am386DX/DXL
CPU will exit Float in a valid state.

Asserting the FLT input unconditionally aborts the cur-
rent bus cycle and forces the Am386DX/DXL micro-
processor into the Float mode. Since activating FLT
unconditionally forces the Am386DX/DXL CPU into
Float mode, the Am386DX/DXL CPU is not guaranteed
to enter Float in a valid state. After deactivating FLT, the
Am386DX/DXL CPU is not guaranteed to exit Float
mode in a valid state. This is not a problem, as the FLT
pin is meant to be used only during ONCE. After exiting
Float, the Am386DX/DXL CPU must be reset to return it
to a valid state. Reset should be asserted before FLT is
deasserted. This will ensure that the Am386DX/DXL
CPU will exit Float in a valid state.

FLT has an internal pull-up resistor, and if it is not used it
should be unconnected.

Bus Activity During and Following Reset

RESET is the highest priority input signai capable of in-
terrupting any processor activity when it is asserted. A
bus cycle in progress can be aborted at any stage; or
idle states or bus hold acknowledge states discontinued
so that the RESET state is established.

RESET should remain asserted for at least 15-CLK2
periods to ensure it is recognized throughout the
Am386DX/DXL microprocessor, and at least 80-CLK2
periods if Am386DX/DXL device self-test is going to be
requested at the falling edge. RESET asserted pulses
less than 15 CLK2 periods may not be recognized.
RESET pulses less than 80 CLK2 periods followed by
a self-test may cause the self-test to report a failure
when no true failure exists.

The additional RESET pulse width is required to clear
additional state prior to valid self-test.

Provided the RESET falling edge meets setup and hold
times, t25 and 126, the internal processor clock phase is
defined at that time, as illustrated by Figure 67.

An Am386DX/DXL microprocessor self-test may be re-
quested at the time RESET is negated by having the
BUSY input at a Low level, as shown in Figure 67. The
self-test requires (22°) + approximately 60-CLK2 periods
to complete. The self-test duration is not affected by the
testresults. Even if the self-test indicates a problem, the
Am386DX/DXL device attempts to proceed with the re-
set'sequence afterward.

100 Am386 Microprocessors for Personal Computers

AMD n

After the RESET falling edge (and after the self-test if
it was requested) the Am386DX/DXL microprocessor
performs an internal initialization sequence for approxi-
mately 350 to 450 CLK2 periods.

The Am386DX/DXL microprocessor samples its ER-
ROR input some time after the falling edge of RESET
and before executing the first ESC instruction. During

this sampling period BUSY must be High. If ERROR
was sampled active, the Am386DX/DXL device em-
ploys the 32-bit protocol of a 387DX math coprocessor.
Even though this protocol was selected, it is still neces-
sary to use a software recognition test to determine the
presence or identity of the coprocessor and to assure
compatibility with future processors.

Cycle 1 Hold Cycle 2
Non-Pipelined Acknowledge Non-Pipelined
(Read) (Write)
T T2 T2 Th Th T1 T2
cve [LI LML LML L L L oy
(CLK) [va—\fvw_f
HoLD [S A \
— | HOLD asserted no later
than READY asserted
HLDA [|
I — — (Floating)
M/0, BE3-BED, Valid1 | | >cccmmmpooaaaao]] Vali
A31-A2, D/C, W/R [X alid 1 [K alid 2
— (Floating)
ADS [N\ L/ N <SR /S
W [
32-Bit Bus Size I
BST6 [-
Note: If asserting BS16 requires a second
bus cycle to be performed, the second cy-
cle is performed before Hold Acknowledge.
READY |:
1
(Negated, or Last Locked Cycle) H
— oatin:
LOCK Valid 1 oo (Fexng) | K Valid 2
Floatin Floatin
D31-Do |: S EEEEE (-- _g_) ----------- d?} ------- (----g-)-------< Out

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) requirements

are met. This waveform is useful for determining Hold Acknowledge latency.

15021B-068

Figure 65. Requesting Hold from Active Bus (NA Negated)

Am386DX/DXL Microprocessor Data Sheet 101

u AMD

CLK2

(CLK)

HOLD

HLDA

M/AG, BE3-BED,
A31-A2, DIC, WR

ADS

3l

r 1 M} 0 e { e N e B |

D31-Do

TP

| |

JEpEgEgs
N N

Cycle 1

Pipelined

(Write)

T2l T2l

L L
N |

Th

L
N |

Th T1

LY

L

HOLD asserted in same bus

state as NA asserted

AN

(LML LT L
N N

Hold Cycle 2
Acknowledge Non-Pipelined
(Read)

(T

(Floating)

valid | 1 DD XD ------ f====== K Valid 2
(Floating)
1 e N Z
ZM
X
(Negated or Last Locked Cycle))

Valid 1 oo (o) K Valid 2

ou X out > -1- (Floating)) _____l.__. <;,,,

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) requirements
are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 66. Requesting Hold from Active Bus (NA Asserted)

15021B-069

Table 21. Component and Revision Identifier History

[ntel I:_mMGDX/DXL Component Revision

1386 leroprocessor Identifier Identifier
Stepping Name Revision

D1 D 03 08

102

Am386 Microprocessors for Personal Computers

AMD a

4¢——— Reset >i= Internal _, Cycle 1 1

itializati
> 15 CLK2 duration if not Initiaization
going to request self-test.

> 80 CLK2 duration before
requesting self-test.

Non-Pipelined

If self-test is performed, add (Read)
(22°) + 60* to these numbers T4 T2

* * * *
1 2 31|17 18 |19 ||395 1396 397 |398

cve [_[UITUYUUUUyyuyyyuyL

" A imatel
Reset [/ \ pproximately

[o2]ot]o2][o1|o2[01|[o2[01]62 ‘
oL (nterna) [DCDOC)O&OOOCXT\I\/J\ /N N ?

Negated to allow sensing of a

No self-test 387DX math coprocessor
BUSY [(Note 1) g g % I ”__RXXXXX 3
Low to begin self-test (Note 2) Asserted to indicate 387DX

4% math coprocessor protocol
ERFOR |

—»
SE3-mE0, WA UP1030 OLK2

M/iO, HLDA [Low || During Reset /<XXXX>‘ Valid 1

Up to 30 CLK2 —¥ I

A31-A2, , , .
D/C, TOCK High|| During Reset NOOXXXA Valid 1
Up to 30 CLK2 —

ADs [High|| During Reset TNV
w5 [XXKXXKXKRK |
a5 [XXXKXKXKXKN
READY [|
pst-Do [YOOOKXXX)----1F----- (Floating) - == === === =|{- - - - - S f

Notes: 1. BUSY should be held stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.
2. If self-test is requested, the Am386DX/DXL microprocessor outputs remain in their reset state as shown here and in Table 14. |

Figure 67. Bus Activity from Reset Until First Code Fetch 15021B-070 1

L7\ /
Control [____X_ Valid pr-----------o-mcmmmmmoooonno < X

Data [-« Valid Y------mcemmcmocooocoooooooos < X |
Address [X___Vaid DR LR < X

Reset [_/

15022B-029
Figure 68. Entering and Exiting FLT

Am386DX/DXL Microprocessor Data Sheet 103

a AMD

Self-Test Signature

Upon completion of self-test, (if self-test was requested
by holding BUSY Low at least eight CLK2 periods before
and after the falling edge of RESET), the EAX register
will contain a signature of 00000000h indicating the
Am386DX/DXL CPU passed its self-test of microcode
and major PLA contents with no problems detected. The
passing signature in EAX, 00000000h, applies to all
Am386DX/DXL microprocessor revision levels. Any
non-zero signature indicates the Am386DX/DXL CPU
unit is faulty.

Component and Revision Identifiers

To assist Am386DX/DXL microprocessor users, the mi-
croprocessor after reset holds a component identifier
and a revision identifier in its DX register. The upper 8
bits of DX hold 03h as identification of the Am386DX/
DXL CPU component. The lower 8 bits of DX hold an
8-bit unsigned binary number related to the component
revision level. The revision identifier begins chronologi-
cally with a value zero and is subject to change (typically
it will be incremented) with component steppings in-
tended to have certain improvements or distinctions
from previous steppings.

These features are intended to assist Am386DX/DXL
microprocessor users to a practical extent. However,
the revision identifier value is not guaranteed to change
with every stepping revision nor to follow a completely
uniform numerical sequence, depending on the type or
intention of revision or manufacturing materials required
to be changed.

Coprocessor Interfacing

The Am386DX/DXL microprocessor provides an auto-
matic interface for a 387DX floating-point math co-
processor. A 387DX math coprocessor uses an 1/O-
mapped interface driven automatically by the
Am386DX/DXL microprocessor and assisted by three
dedicated signals: BUSY, ERROR, and PEREQ.

As the Am386DX/DXL CPU begins supporting a
coprocessor instruction, it tests the BUSY and ERROR
signals to determine if the coprocessor can accept its
next instruction. Thus, the BUSY and ERROR inputs
eliminate the need for any preamble bus cycles forcom-
munication between processor and coprocessor. A
387DX math coprocessor can be given its command
op-code immediately. The dedicated signals provide
instruction synchronization, and eliminate the need of
using the Am386DX/DXL CPU WAIT op-code (9Bh) for
387DX math coprocessor instruction synchronization
(the WAIT op-code was required when 8086 or 8088
was used with the 8087 coprocessor).

Custom coprocessors can be included in Am386DX/
DXL microprocessor based systems, via memory-
mapped or I/O-mapped interfaces. Such coprocessor
interfaces allow a completely custom protocol, and are
not limited to a set of coprocessor protocol primitives. In-
stead, memory-mapped or I/O-mapped interfaces may
use all applicable Am386DX/DXL microprocessor in-
structions for high-speed coprocessor communication.
The BUSY and ERROR inputs of the Am386DX/DXL
CPU may also be used for the custom coprocessor in-
terface, if such hardware assist is desired. These sig-
nals can be tested by the Am386DX/DXL CPU WAIT op-
code (9Bh). The WAIT instruction will wait until the
BUSY input is negated (interruptable by an NMI or en-
able INTR input), but generates an Exception 16 fault if
the ERROR pin is in the asserted state when the BUSY
goes (or is) negated. If the custom coprocessor inter-
face is memory-mapped, protection of the addresses
used for the interface can be provided with the
Am386DX/DXL microprocessor on-chip paging or seg-
mentation mechanisms. If the custom interface is 1/0-
mapped, protection of the interface can be provided with
the Am386DX/DXL microprocessor IOPL (/O Privilege
Level) mechanism.

A 387DX math coprocessor interface is I/O mapped as
shown in Table 22. Note that a 387DX math coproces-
sor interface addresses are beyond the OhFFFFh range
for programmed /0. When the Am386DX/DXL CPU
supports a 387DX math coprocessor, the Am386DX/
DXL microprocessor automatically generates bus cy-
cles to the coprocessor interface addresses.

Table 22. Math Coprocessor Port Addresses

Address in Am386DX/DXL 387DX
CPU /O Space Coprocessor Register
Opcode Register
800000F8h (32-bit port)
Operand Register
800000FCh (32-bit port)

To correctly map a 387DX math coprocessor registers
to the appropriate /O addresses, connect a 387DX
math coprocessor CMDO pin directly to the A2 output of
the Am386DX/DXL microprocessor.

Software Testing for Coprocessor Presence

When software is used to test for coprocessor (387DX)
presence, it should use only the following coprocessor
op-codes: FINIT, FNINIT, FSTCW mem, FSTSW mem,
FSTSW AX. To use other coprocessor op-codes whena
coprocessor is known to be not present, first set EM = 1
in Am386DX/DXL microprocessor CRO.

104 : Am386 Microprocessors for Personal Computers

AMD n

ABSOLUTE MAXIMUM RATINGS

Storage Temperature —65°C to +150°C
Ambient Temperature Under Bias . . —65°C to +125°C
Supply Voltage with Respect

tOVss i -05Vto+7V
Voltage on Other Pins -0.5VtoVcc +0.5V

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to Absolute
Maximum Ratings for extended periods may affect device
reliability.

DC CHARACTERISTICS over COMMERCIAL operating ranges

Vec=5 V £5%; Tcase =0°C to +85°C (PGA)

Voc=5 V+10%; Tcase =0°C to +100°C (PQFP —20, 25, and 33 MHz)

Vee=5 V+5%; Tcase =0°C to +100°C (PQFP —40 MHz)

Symbol Parameter Desctription Notes Min Max Unit
Vi Input Low Voltage (Note 1) -0.3 0.8 A
Viu Input High Voltage 2.0 Vee+0.3 \
Vie CLK2 Input Low Voltage (Note 1) -0.3 0.8 \J
Vike CLK2 Input High Voltage 27 Vee +0.3 \"
Vou Output Low Voltage
lo.=4 mA: A31-A2, D31-D0 (Note 6) 0.45 Vv
lo.=5 mA: BE3-BEO, W/R, 0.45 \%
D/C, M/iO, LOCK, ADS, HLDA
Vo Output High Voltage
lon=1 mA: A31-A2, D31-D0 (Note 6) 24 \
low=0.9 mA: BE3-BED, 2.4 Y
W/R, D/T, M/IO, TOCK,
ADS, HLDA
lu Input Leakage Current 0V<VinsVee +15 uHA
(All pins except BS16, PEREQ,
BUSY, FLT, and ERROR)
™ Input Leakage Current Vw=2.4V 200 RA
(PEREQ Pin) (Note 2)
I Input Leakage Current ViL=0.45 -400 RA
(BS16, BUSY, FLT, and ERROR) (Note 3)
lo Output Leakage Current 0.45V < Vour<Vee +15 MHA
lec Supply Current (Note 7) Voc = 5.0 V Vee=56.5V
CLK2 =40 MHz: with —-20 lec Typ=130 155 mA
CLK2 =50 MHz: with —25 lec Typ =160 190 mA
CLK2 =66 MHz: with -33 lec Typ=210 245 mA
CLK2 =80 MHz: with —40 lec Typ =330 400 mA
lecss Standby Current locss Typ=20 pA
(Am386DXL microprocessor) (Note 5) 150 pA
Ci Input or I/O Capacitance Fe=1 MHz (Note 4) 10 pF
Cour Output Capacitance Fc=1 MHz (Note 4) 12 pF
Cow CLK2 Capacitance Fe=1 MHz (Note 4) 20 pF
Notes: 1. The Min value, -0.3, is not 100% tested.

. PEREQ input has an internal pulidown resistor.

. BS16, BUSY, FLT, and ERROR inputs each have an internal pullup resistor.

. Measurement taken with inputs at rails, outputs unloaded, BS6, BUSY, FLT, and ERROR at Vcc voltage level, PEREQ at Gnd.

1
2
3
4. Not 100% tested.
5
6
7

. Outputs are CMOS and will pull to rail if load is not resistive.

. Inputs at rails (Vcc or Vss).

Am386DX/DXL Microprocessor Data Sheet 105

n AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating range —40 MHz

Vec =5V £5%; Tcase = 0°C to +85°C (PGA)

Vee=5 V £5%; Tcase = 0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 40 MHz
Am386DXL CPU Half CLK2 freq. 0 40 MHz
1 CLK2 Period: Am386DX CPU 71 125 250 ns
Am386DXL CPU 71 12.5 ns
2 CLK2 High Time at Vike 71 4 ns
3 CLK2 Low Time at 0.8V 71 5 ns
4 CLK2 Fall Time 2.7 V0.8 V (Note 3) 71 4 ns
5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 4 ns
6 A31-A2 Valid Delay C.=50 pF 70,73, 81 4 13 ns
7 A31-A2 Float Delay (Note 1) 81 4 20 ns
8 BE3-BEO, LOCK Valid Delay C.=50 pF 70, 73, 81 4 13 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 ns
10 W/R, MO, D/C Valid Delay C.=50 pF 70, 73, 81 4 13 ns
10a | ADS Valid Delay C.=50 pF 70,73, 81 4 13 ns
11 W/R, M/iG, D/C, ADS Float Delay (Note 1) 81 4 20 ns
12 D31-D0 Write Data Valid Delay C.=50 pF (Note 4) 70,74, 81 7 18 ns
12a | D31-D0 Write Data Hold Time C.=50 pF 70, 75 2 ns
13 D31-DO Float Delay (Note 1) 81 4 17 ns
14 HLDA Valid Delay C.=50 pF 70, 81 4 17 ns
14f HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 17 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 2 ns
17 BS16 Setup Time 72 5 ns
18 BS16 Hold Time 72 2 ns
19 READY Setup Time 72 7 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 4 ns
22 D31-D0 Read Hold Time 72 3 ns
23 HOLD Setup Time 72 4 ns
24 HOLD Hold Time 72 2 ns
25 RESET Setup Time 82 4 ns
26 RESET Hold Time 82 2 ns
27 NMI, INTR Setup Time (Note 2) 72 5 ns
28 NMI, INTR Hold Time (Note 2) 72 5 ns
29 PEREQ, ERROR, BUSY, (Note 2) 72 5 ns
FLT* Setup Time
30 PEREQ, ERROR, BUSY, (Note 2) 72 4 ns
FLT* Hold Time
Notes: 1. Float condition occurs when maximum output current becomes less than Lo in magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific clock period.
3. Rise and fall times are not tested.
4. Min time not 100% tested.
*PQFP package only.
106 Am386 Microprocessors for Personal Computers

AMD a

SWITCHING CHARACTERISTICS over COMMERCIAL operating range— 33 MHz

Vee=5 V £5%; Tcase =0°C to +85°C (PGA)

Vee=5V £10%; Tcase =0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 333 MHz
Am386DXL CPU Half CLK2 freq. 0 33.3 MHz
1 CLK2 Period: Am386DX CPU 7 15 250 ns
Am386DXL CPU 71 15 ns
2 CLK2 High Time at Viue 71 4 ns
3 CLK2 Low Time at 0.8V 71 5 ns
4 CLK2 Fall Time 2.7 V-0.8 V (Note 3) 71 4 ns
5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 4 ns
6 A31-A2 Valid Delay C.=50 pF 70, 73, 81 4 15 ns
7 A31-A2 Float Delay (Note 1) 81 4 20 ns
8 BE3-BEO, LOCK Valid Delay C.=50 pF 70, 73, 81 4 15 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 ns
10 W/R, M/, D/C Valid Delay C.=50 pF 70, 73, 81 4 15 ns
10a | ADS Valid Delay C.=50 pF 70, 73, 81 4 14.5 ns
11 W/R, MAG, D/C, ADS Float Delay (Note 1) 81 4 20 ns
12 D31-D0 Write Data Valid Delay C.=50 pF (Note 4) 70,74, 81 7 23 ns
12a | D31-D0 Write Data Hold Time C.=50 pF 70,75 2 ns
13 D31-DO0 Float Delay (Note 1) 81 4 17 ns
14 HLDA Valid Delay C.=50 pF 70, 81 4 20 ns
14f | HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 20 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 2 ns
17 BS16 Setup Time 72 5 ns
18 BS16 Hold Time 72 2 ns
19 READY Setup Time 72 7 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 5 ns
22 D31-D0 Read Hold Time 72 3 ns
23 HOLD Setup Time 72 9 ns
24 HOLD Hold Time 72 2 ns
25 RESET Setup Time 82 5 ns
26 RESET Hold Time 82 2 ns
27 NMI, INTR Setup Time (Note 2) 72 5 ns
28 NMI, INTR Hold Time (Note 2) 72 5 ns
29 PEREQ, ERROR, BUSY, (Note 2) 72 5 ns
FLT* Setup Time
30 | PEREQ, ERROR, BUSY, (Note 2) 72 2 ns
FLT* Hold Time
Notes: 1. Float condition occurs when maximum output current becomes less than Lo in magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure

recognition within a specific clock period.

3. Rise and fall times are not tested.
4. Min time not 100% tested.
*PQFP package only.

Am386DX/DXL Microprocessor Data Sheet

107

a AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating range — 25 MHz

Vec =5V £5%; Tcase = 0°C to +85°C (PGA)

Vee=5V +10%; Tease =0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 25 MHz
Am386DXL CPU Half CLK2 freq. 0 25 MHz
1 CLK2 Period: Am386DX CPU 71 20 250 ns
Am386DXL CPU 71 20 ns
2 CLK2 High Time at Vike 71 4 ns
3 CLK2 Low Time at 0.8V 71 5 ns
4 CLK2 Fall Time 2.7 V-0.8 V (Note 3) 71 7 ns
5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 7 ns
6 A31-A2 Valid Delay C.=50 pF 70, 73, 81 4 17 ns
7 A31-A2 Float Delay (Note 1) 81 4 30 ns
8 BE3-BEO, LOCK Valid Delay C.=50 pF 70, 73, 81 4 17 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 30 ns
10 W/R, M/IG, D/C, ADS Valid Delay C.=50 pF 70, 73, 81 4 17 ns
11 W/R, M/IG, D/C, ADS Float Delay (Note 1) 81 4 30 ns
12 D31-D0 Write Data Valid Delay C.=50 pF 70,74, 81 7 23 ns
12a | D31-DO0 Write Data Hold Time C.=50 pF 70,75 2 ns
13 D31-DO0 Float Delay (Note 1) 81 4 22 ns
14 HLDA Valid Delay C.=50 pF 70, 81 4 22 ns
14f HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 30 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 3 ns
17 BS16 Setup Time 72 5 ns
18 BS76 Hold Time 72 3 ns
19 READY Setup Time 72 9 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 7 ns
22 D31-D0 Read Hold Time 72 5 ns
23 HOLD Setup Time 72 9 ns
24 HOLD Hold Time 72 3 ns
25 RESET Setup Time 82 8 ns
26 RESET Hold Time 82 3 ns
27 NMI, INTR Setup Time (Note 2) 72 6 ns
28 NMI, INTR Hold Time (Note 2) 72 6 ns
29 PEREQ, ERROR, BUSY, FLT* (Note 2) 72 6 ns
Setup Time
30 PEREQ, ERROR, BUSY, FLT* (Note 2) 72 5 ns
Hold Time

Notes: 1. Float condition occurs when maximum output current becomes less than lo in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure

recognition within a specific clock period.

3. Rise and fall times are not tested.
*PQFP package only.

108

Am386 Microprocessors for Personal Computers

AMD n

SWITCHING CHARACTERISTICS over COMMERCIAL operating range — 20 MHz

Vee =5V £5%; Tcase = 0°C to +85°C (PGA)

Vee=5 V £10%; Tcase =0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 20 MHz
Am386DXL CPU Half CLK2 freq. 0 20 MHz
1 CLK2 Period: Am386DX CPU 71 25 250 ns
Am386DXL CPU 71 25 ns
2 CLK2 High Time at Vike 71 6 ns
3 CLK2 Low Time at0.8V 71 6 ns
4 CLK2 Fall Time 2.7 V-0.8 V (Note 3) 7 ns
5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 ns
6 A31-A2 Valid Delay C.=120 pF 70, 73, 81 4 30 ns
7 A31-A2 Float Delay (Note 1) 81 4 32 ns
8 BE3-BEO, LOCK Valid Delay C.=75pF 70, 73, 81 4 30 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 32 ns
10 W/R, MAIG, D/C, ADS Valid Delay C.=75pF 70,73, 81 4 28 ns
11 W/R, M/iG, D/C, ADS Float Delay (Note 1) 81 4 30 ns
12 D31-D0 Write Data Valid Delay C.=120 pF 70,74, 81 4 38 ns
13 D31-D0 Float Delay (Note 1) 81 4 27 ns
14 HLDA Valid Delay C.=75pF 70, 81 6 28 ns
14f HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 30 ns
15 NA Setup Time 72 9 ns
16 NA Hold Time 72 14 ns
17 BS16 Setup Time 72 13 ns
18 BS16 Hold Time 72 21 ns
19 READY Setup Time 72 12 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 11 ns
22 D31-D0 Read Hold Time 72 6 ns
23 HOLD Setup Time 72 17 ns
24 HOLD Hold Time 72 5 ns
25 RESET Setup Time 82 12 ns
26 RESET Hold Time 82 4 ns
27 NMI, INTR Setup Time (Note 2) 72 16 ns
28 NMI, INTR Hold Time (Note 2) 72 16 ns
29 PEREQ, ERROR, BUSY, FLT* (Note 2) 72 14 ns
Setup Time
30 PEREQ, ERROR, BUSY, FLT* (Note 2) 72 5 ns
Hold Time

Notes: 1. Float condition occurs when maximum output current becomes less than |0 in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific clock period.

3. Rise and fall times are not tested.

*PQFP package only.

Am386DX/DXL Microprocessor Data Sheet 109

a AMD

SWITCHING WAVEFORMS

The switching characteristics consist of output delays,
input setup requirements, and input hold requirements.
All characteristics are relative to the CLK2 rising edge
crossing the 2.0 V level.

Switching characteristic measurement is defined by
Figure 69. Inputs must be drivento the voltage levels in-
dicated by this diagram. Am386DX/DXL CPU output de-
lays are specified with minimum and maximum limits
measured as shown. The minimum Am386DX/DXL
microprocessor delay times are hold times provided to
external circuitry. Am386DX/D XL microprocessor input
setup and hold time are specified as minimums, defining

the smallest acceptable sampling window. Within the
sampling window, a synchronous input signal must
be stable for correct Am386DX/DXL microprocessor
operation.

Outputs ADS, W/R, D/C, MO, LOCK, BE3-BEO,
A31-A2, and HLDA only change at the beginning of
phase one. D31-D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ, FLT, and D31-D0 (read cycles) in-
puts are sampled at the beginning of phase one. The
NA, BS16, INTR, and NMI inputs are sampled at the
beginning of phase two.

Max

Valid

LOCK, MO, W/R, Output n

A31-A2, ADS, DT, I:
BE3-BEO, HLDA

15V

5

v . Valid
Output n+1

D31-D0 [

Valid
Output

/ Valid
15 v Output n+1

_ 3.0V 3
NA, BST6,
INTR, NMI

1.5V |noit5V

Valid

ov

FLT, ERROR,
BUSY, PEREQ,

READY, HOLD, [
D31-Do

Legend: A—Maximum Output Delay Spec
B—Minimum Output Delay Spec
C—Minimum Input Setup Spec
D—Minimum Input Hold Spec

Note: Input waveforms have tr <2.0 ns from 0.8 Vto 2.0 V.

3.0V

ov

15021B-071

Figure 69. Drive Levels and Measurement Points

110 Am386 Microprocessors for Personal Computers

AMD l‘.‘

Am386DX/DXL CPU Output ﬂ

Cu

Cu includes all parasitic capacitances.

15021B-072
Figure 70. AC Test Load
‘ t1
< 12 >
Ves—0.8V l—\ __?l__!_
CLK2 20V —
osvfil——N
15 <3 4
Figure 71. CLK2 Timing 15021B-073
Am386DX/DXL Microprocessor Data Sheet 111

n AMD

CLK2
READY
HOLD

D31-Do

BUSY
ERROR
PEREQ

FLT
NA

BST6
127 128 N
INTR, NMI I:
15021B-074
Figure 72. Input Setup and Hold Timing
02 01 Tx 02 01
oz | JF__]/____%W'
t8 »|
Min Max
BE3-BED,) / " I
LOCK [Valid n X -X Valid n+1
110 t10a s
Min Max
W/R, M/iG,) \ ;
Lo [Validn X X Valid ne1
16 M| ol
Min Max
A31-A2 [Validn J Valid n+1
|
HLDA [
15021B-075
Figure 73. Output Valid Delay Timing
112 Am386 Microprocessors for Personal Computers

AMD a

™

o1

CLK2 I:

62

12 Min Max
pstDo | cmememeeeeneee --- X vaian
15021B-076
Figure 74. Write Data Valid Delay Timing (25, 33, and 40 MHz)
T1
o1 92
CLK2 I: _7[—_7[—__/___
WA [
Min
t12a
D31-D0 [Valid n >
15021B-077
Figure 75. Write Data Hold Timing (25, 33, 40 MHz)
T1
o1 02
we [_F A _F __
W/R I: /
12 Min, Max
D31-Do I: Valid n < Valid n+1
15021B-078
Figure 76. Write Data Valid Delay Timing (20 MHz2)
Am386DX/DXL Microprocessor Data Sheet 113

n AMD

nom + 6 T T |

nom + 3 |— —

nom /_

nom-3 [—

Output Valid Delay (ns)

nom -6 [—

nom -9 | |
50 75 100 125 150

C. (picofarads)

Note: This graph will not be linear outside of the C. range shown. 15021B-079

Figure 77. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (C.=120 pF)

nom+9 [I T T

nom + 6
nom+3
Output Valid Delay (ns)

nom

nom -3

nom -6 | l
75 100 125 150
C. (picofarads)

Note: This graph will not be linear outside of the C. range shown. 15021B-080

Figure 78. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL=75 pF)

114 Am386 Microprocessors for Personal Computers

AMD n

nom+9 |—]

nom + 6

Output Valid Delay (ns)

nom + 3

nom

nom -3 |—
| | |

50 75 100 125 150
C. (picofarads)

Note: This graph will not be linear outside of the C. range shown.

15021B-081
Figure 79. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL=50 pF)
8 | | |
Rise Time (ns) 0.8 V-2.0V
2 — —
8 | | |
50 75 100 125 150
C. (picofarads)

Note: This graph will not be linear outside of the C. range shown. 15021B-082

Figure 80. Typical Output Rise Time Versus Load Capacitance
at Maximum Operating Temperature

Am386DX/DXL Microprocessor Data Sheet 115

u AMD

Th TiorT1
62 o1 62 01 62
cLkz [l__7(__7[—_7
1 Min Max Min ™| Max
m-m,[I R P P .
LOCK (High 2)
t11 t10 t10a —e
_ Min Max Min Max
W/R’N@[I I A R DU A
D/C, ADS (High2)
7 Min Max 1 Min Max
A31—A2|: — —— T — | — —1T —
(High Z)
13 Min Max 2 Min Max
D31—D0[— — 11T — |1 — —
(High 2)
t13—Also applies to data float when write
cycle is followed by read or idle
t14 t14f olt14 t14f _lq o)
Min Max Min
HLDA I:
15021B-083
Figure 81. Output Float Delay and HLDA Valid Delay Timing
RESET _ Initialization Sequence
02o0rd1 d2o0r01 02 o1
CLK2
t26
RESET [N
t25
The second internal processor phase following RESET High-to-Low transition (provided 25 and t26 are met) is ¢2. 15021B-084

Figure 82. RESET Setup and Hold Timing and Internal Phase

116

Am386 Microprocessors for Personal Computers

AMD u

INSTRUCTION SET

This section describes the Am386DX/DXL micropro-
cessor instruction set. A table lists all instructions along
with instruction encoding diagrams and clock counts.
Further details of the instruction encoding are then pro-
vided in the following sections, which completely de-
scribe the encoding structure and the definition of all
fields occurring within Am386DX/DXL CPU instructions.

Am386DX/DXL Microprocessor Instruc-
tion Encoding and Clock Count Summary
To calculate elapsed time for an instruction, multiply the
instruction clock count, as listed in Table 23, by
the processor clock period (e.g., 50 ns for a 20-MHz,
40 ns for a 25-MHz, 30 ns for a 33-MHz, and 25 ns for a
40-MHz Am386DX/DXL microprocessor).

For more detailed information on the encodings of
instructions refer to Section Instruction Encodings. Sec-
tion Instruction Encodings explains the general struc-
ture of instruction encodings and defines exactly the
encodings of all fields contained within the instruction.

Instruction Clock Count Assumptions

1. The instruction has been prefetched and decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No Exceptions are detected during instruction
execution.

5. If an effective address is calculated, it does not use
two general register components. One register,
scaling, and displacement can be used within the
clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand.

2. n=number of times repeated.

3. m = number of components in the next instruction
executed, where the entire displacement (if any)
counts as one component; the entire immediate data
(if any) counts as one component; and each of the
other bytes of the instruction and prefix(es) each
count as one component.

Am386DX/DXL Microprocessor Data Sheet 117

a AMD

Table 23. Am386DX/DXL Microprocessor instruction Set Summary

Clock Count Comments
Protected Protected

Instruction Format Mode Mode | Mode | Mode
GENERAL DATA TRANSFER
MOV =Move:
Register to Register/Memory 1000100wW modreg r/m 22 2/2 b h
Register/Memory to Register 1000101w modreg I/m 2/4 2/4 b h
Immediate to Register/Memory 1100011w |mod000 r/m |immediate data 22 2/2 h
Immediate to Register (short form) 1011wreg immediate data 2 2
Memory to Accumulator (short form) 1010000w | full displacement 4 4 b h
Accumulator to Memory (short form) 1010001w | full displacement 2 2 b h
Register/Memory to Segment Register| 10001110 mod sreg3 r/m 2/5 18,19 b h,i,j
Segment Register to Register/Memory| 10001100 mod reg m 22 22 b h
MOVSX=Move with Sign Extension
Register from Register/Memory | 00001111 | 1011111w | modreg r/m] 3/6 3/6 b h
MOVZX =Move with Zero Extension
Register from Register/Memory | 00001111 I 1011011w | modreg ©m I 3/6 3/6 b h
PUSH =Push:
Register/Memory 11111111 mod110 ©m I 5 5 b h
Register (short form) 01010 reg 2 2 b h
Segment Register (ES,CS,SS,0orDS) | 000sreg2110 2 2 b h
Segment Register (FS or GS) 00001111 10sreg3000 | 2 2 b h
Immediate 011010s0 immediate data 2 2 b h
PUSHA =Push All 01100000 18 18 b h
POP=Pop
Register/Memory 10001111 mod000 ©m l 5 5 b h
Register (short form) 01011 reg 4 4 b h
Segment Register (ES, SS, or DS) 000sreg2111 7 21 b h,i,j
Segment Register (FS or GS) 00001111 10sreg3001 | 7 21 b h,i,j
POPA =Pop All 01100001 24 24 b h
XCHG =Exchange
Register/Memory with Register 1000011w modreg r/m | 3/5 3/5 b, f f,h
Register with Accumulator (shortform) | 10010 reg Clock Count 3 3
IN=Input from: 80‘;:::*
Fixed Port 1110010w | port number 026 12 6*/26**
Variable Port 1110110w 027 13 727
OUT =Output to:
Fixed Port 1110011w | port number 024 10 4%/24*
Variable Port 1110111w 025 1 5%/25**
LEA = Load EA to Register 10001101 modreg r/m 2 2

*IfCPL<IOPL **If CPL>IOPL

0 Clock count shown applies if /O permission allows /O to the port in Virtual 8086 Mode. If /O bit map denies permission, Exception 13 fault occurs; refer to clock counts for INT 3

instruction.

118

Am386 Microprocessors for Personal Computers

AMD a

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
e | M | il A,
Instruction Format Mode | Mode Mode | Mode
SEGMENT CONTROL
LDS =Load pointer to DS 11000101 modreg r/m 7 22 b h,i,j
LES = Load pointer to ES 11000100 modreg r/m 7 22 b h,i,j
LFS=Load pointer to FS 00001111 10110100 modreg r/m 7 25 b h,i,j
LGS =Load pointer to GS 00001111 10110101 modreg r/m 7 25 b h,i,j
LSS =Load pointer to SS 00001111 10110010 modreg r/m 7 22 b h,i,j
FLAG CONTROL
CLC=Clear Carry Flag 11111000 2 2
CLD = Clear Direction Flag 11111100 2 2
CLI=Clear Interrupt Enable Flag 11111010 8 8 m
CLTS=Clear Task Switched Flag 00001111 00000110 6 6 c i
CMC = Complement Carry Flag 11110101 2 2
LAHF =Load AH into Flag 10011111 2 2
POPF =Pop Flag 10011101 5 5 b h.n
PUSHF = Push Flag 10011100 4 4 b h
SAHF =Store AH into Flag 10011110 3 3
STC=Set Carry Flag 11111001 2 2
STD=Set Direction Flag 11111101 2 2
STI=Set interrupt Enable Flag 11111011 8 8 m
ARITHMETIC
ADD=Add
Register to Register 000000dw | modreg r/m 2 2
Register to Memory 0000000w | modreg r/m 7 7 b h
Memory to Register 0000001w | modreg r/m 6 6 b h
Immediate to Register/Memory 100000sw mod000 r/m | immediate data 27 7 b h
Immediate to Accumulator (shortform) | 000001 0w | immediate data 2 2
ADC =Add with carry
Register to Register 000100dw | modreg r/m 2 2
Register to Memory 0001000w | modreg r/m 7 7 b h
Memory to Register 0001001w | modreg I/m 6 6 b h
Immediate to Register/Memory 100000sw | mod010 ©m | immediate data 7 217 b h
Immediate to Accumulator (shortform) | 0001010w | immediate data 2 2
INC =Increment
Register/Memory 1111111w | mod000 ©vm 2/6 2/6 b h
Register (short form) 01000 reg 2 2
SUB =Subtract
Register from Register 001010dw | modreg ©m 2 2
Register from Memory 0010100w modreg 1/m 7 7 b h
Memory from Register 0010101w | modreg ©/m 6 6 b h
Am386DX/DXL Microprocessor Data Sheet 119

a AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtual Real Virtual
Address | Address |Address| Address

Instruction Format Mode Mode Mode | Mode

ARITHMETIC (continued)

Immediate from Register/Memory 0010011w | mod101 ©vm | immediate data 2/7 2/7 b h

Immediate from Accumulator 0001110w | immediate data 2 2

(short form)

SBB=Subtract with Borrow

Register from Register 000110dw | modreg r/m 2 2

Register from Memory 0001100w | modreg rm 7 7 b h

Memory from Register 0001101w | modreg ©m 6 6 b h

Immediate from Register/Memory 100000sw | mod011 rm | immediate data 27 217 b h

Immediate from Accumulator 0001110w immediate data 2 2

DEC=Decrement

Register/Memory 1111111w | reg001 /m 2/6 2/6 b h

Register (short form) 01001 reg 2 2

CMP =Compare

Register with Register 001110dw modreg r/m 2 2

Memory with Register 0011100w | modreg rm 5 5 b h

Register with Memory 0011101w | modreg r/m 6 6 b h

Immediate with Register/Memory 100000sw mod111 r/m | immediate data 2/5 2/5 b h

Immediate with Accumulator(shortform)l 0011110w immediate data 2 2

NEG =Change Sign 1111011w | mod011 m 26 2/6 b h

AAA = ASCII Adjust for Add 00110111 4 4

DAA =Decimal Adjust for Add 00111111 4 4

AAS = ASCIl Adjust for Subtract 00100111 4 4

DAS =Decimal Adjust for Subtract | 00101111 4 4

MUL =Mutltiply (Unsigned)

Accumulator with Register/Memory I 1111011w l mod100 /m |

Multiplier -Byte 12-17/15-20{12-17/15-20| b,d dh
-Word 12-25/15-28|12-25/15-28 | b,d dh
-Doubleword 12-41/15-44|12-41/15-44| b,d dh

IMUL = Integer Multiply (signed)

Accumulator with Register/Memory | 1111011w | mod101 rm I

Multiplier -Byte 12-17/15-20{12-17/15-20| b,d dh
-Word 12-25/15-28|12-25/15-28 | b,d d,h
-Doubleword 12-41/15-44|12-41/15-44| b,d d,h

Register with Register’/Memory I 00001111 I 10101111 | mod reg r/m

Multiplier -Byte 12-17/15-20{12-17/15-20| b,d d,h
-Word 12-25/15-2812-25/15-28 b,d dh
-Doubleword 12-41/15-44|12-41/15-44| b,d dh

Register/Memory with Immediate

to Register | 011010s1 | modreg 1/m | immediate data

-Word 13-26/14-27|13-26/14-27| b,d dh
-Doubleword 13-42/14-43|13-42/14-43| b,d dh

120 Am386 Microprocessors for Personal Computers

AMD n

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtual Real Virtual
Address | Address | Address| Address
Instruction Format Mode Mode Mode | Mode
ARITHMETIC (continued)
DIV =Divide (Unsigned)
Accumulator by Register/Memory l 1111011 w I mod110 ©m I
Divisor -Byte 1417 14117 be eh
-Word 22/25 22/25 be eh
-Doubleword 38/41 38/41 b,e e h
IDIV = Integer Divide (Signed)
Accumulator by Register/Memory I 11110112 | mod111 ©m |
Divisor -Byte 19/22 19/22 be e h
-Word 27/30 27/30 b,e e h
-Doubleword 43/46 43/46 b,e e h
AAD = ASCII Adjust for Divide 11010101 00001010 19 19
AAM =ASCIl Adjust for Multiply 11010100 00001010 17 17
CBW=Convert Byte to Word 10011000 3 3
CWD=Convert Word to 10011001 2 2
Double Word
LOGIC
Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
Register/Memory by 1 1101000w mod TTT /m 37 37 b h
Register/Memory by CL 1101001w mod TTT ©m 3/7 37 b h
Register Memory by Immediate Count] 1100000w | mod TTT ©m | immediate 8-bit data 37 37 b h
Through Carry (RCL and RCR)
Register/Memory by 1 1101000w | modTTT ©m 9/10 9/10 b h
Register/Memory by CL 1101001w mod TTT ©m 9/10 9/10 b h
Register/Memory by Immediate Count| 1100000w mod TTT /m | immediate 8-bit data 9/10 9/10 b h
T Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHUSAL
101 SHR
111 SAR
SHLD =Shift Left Double
Register/Memory by Immediate 00001111 10100100 modreg 1/m |immediate 8-bit data 377 317
Register/Memory by CL 00001111 10100101 modreg ©/m 37 37
SHRD = Shift Right Double
Register/Memory by immediate 00001111 10101100 modreg 1/m |immediate 8-bit data 377 317
Register/Memory by CL 00001111 10101101 modreg r/m 317 37
AND=And
Register to Register 001000dw | modreg /m 2 2
Register to Memory 0010000w | modreg m 7 7 b h
Memory to Register 0010001w mod reg /m 6 6 b h
Immediate to Register/Memory 1000000w mod110 r/m | immediate data 27 27 b h
Immediate to Accumulator (shortform) | 0010010w | immediate data 2 2
TEST=And Function to Flags, no Result
Register/Memory and Register 1000010w |modreg rm 2/5 2/5 b h
Immediate Data and Register/Memory| 1111011w mod000 ©m | immediate data 25 2/5 b h
Immediate Data and Accumulator 1010100w immediate data 2 2
L_(short form)
Am386DX/DXL Mlcroprocessor Data Sheet 121

o

a AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
oo | et | ent | i
Instruction Format Mode Mode | Mode | Mode
LOGIC (continued)
OR=0r
Register to Register 000010dw mod reg r/m 2 2
Register to Memory 0000100w | modregr/m 7 7 b h
" Memory to Register 0000101w | modregr/m 6 6 b h
Immediate and Register/Memory 1000000w | mod001r/m immediate data 27 27 b h
Immediate to Accumulator (shortform) | 00001 10w immediate data 2 2
XOR =Exclusive or
Register to Register 001100dw | modregr/m 2 2
Register to Memory 0011000w | modregr/m 7 7 b h
Memory to Register 0011001w mod reg /m 6 6 b h
Immediate to Register/Memory 1000000w mod110rm immediate data 27 27 b h
Immediate to Accumulator (shortform) | 001101 0w | immediate data 2 2
NOT =Invert Register/Memory 1111011w mod 01 0r/m —l 2/6 2/6 b h
STRING MANIPULATION Clock Count
Virtual 8086
CMPS =Compare Byte/Word 1010011w Mode 10 10 b h
INS = Input Byte/Wd from DX Port 0110110w 029 15 9Y/29** b h,m
LODS = Load Byte/Wd to AL/AX 1010110w 5 5 b h
MOVS =Move Byte/Word 1010010w 8 8 b h
OUTS =Output Byte/Wdto DXPort | 0110111w 028 14 8Y28** b h,m
SCAS =Scan Byte/Word 1010111w 8 8 b h
STOS = Store Byte/Word from AL/AXEX| 1010101w 5 5 b h
XLAT =Translate String 11010111 5 5 h
REPEATED STRING MANIPULATION Repeated by Count in CX or ECX
REPE CMPS = Compare string
REPNE CMPS(:ZIS::Z;ZAZ:?;)'Q 11110011 1010011w I S:'OS;!%%% rg 5+8n 5+9n b h
(Find Match) 11110010 1010011w Mode 5+9n 5+49n b h
REP INS =Input String 11110010 0110110w I 028 +6n 14+6n B+6n'!_ b h,m
REP LODS = Load String 11110010 1010110w 5+6n zi::: b h
REP MOVS=Move String 11110010 1010010w 8+4n 8+4n b h
REP OUTS =Output String 11110010 0110111w | 026 +5n 12+5n 6+5n:/' b h,m
REPE SCAS =Scan String 2650
(Find Non-ALZAX/EAX) 11110011 1010111w I 5+8n 5+8n b h
REPNE SCAS =Store String
(Find AL/AX/EAX) 11110010 [1010111w 5+8n 5+9n b h
REP STOS =Store String 11110010 1010101w 5+5n 5+6n b h
BIT MANIPULATION
BSF=Scan Bit Forward 00001111 10111100 mod reg r/m 1143n 11+3n b h
BSR=Scan Bit Reverse 00001111 10111101 mod reg r/m 9+3n 9+3n b h

* If CPL<IOPL ** It CPL > IOPL

¢ Clock count shown applies if I/O permission allows /O to the port in Virtual 8086 Mode. [f /O bit map denies

permission, Exception 13 fault occurs; refer to clock counts for INT 3 instruction.

122

Am386 Microprocessors for Personal Computers

AMD u

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Real) Virtual Real) Virtual
Address | Address | Address| Address
Instruction Format Mode Mode | Mode | Mode
BIT MANIPULATION (continued)
BT =Test Bit
Register/Memory, Immediate 00001111 10111010 mod10 0 r/m |immediate 8-bitdata | 3/6 3/6 b h
Register/Memory, Register 00001111 10100011 modreg r/m 312 3/12 b h
BTC = Test Bit and Complement
Register/Memory, Immediate 00001111 10111010 mod111 r/m |immediate 8-bitdata | 6/8 6/8 b h
Register/Memory, Register 00001111 10111011 modreg r/m 6/13 6/13 b h
BTR=Test Bit and Reset
Register/Memory, Immediate 00001111 10111010 mod110 r/m |immediate 8-bitdata | 6/8 6/8 b h
Register/Memory, Register 00001111 10110011 modreg ©/m 6/13 6/13 b h
BTS =Test Bit and Set
Register/Memory, Immediate 00001111 10111010 mod101 r/m |immediate 8-bitdata | 6/8 6/8 b h
Register/Memory, Register 00001111 10101011 modreg r/m 6/13 6/13 b h
CONTROL TRANSFER
CALL= Call
Direct Within Segment 11101000 full displacement 7+m 7+m b r
Register/Memory 11111111 mod010 ©m 7+m 7+m b hr
Indirect Within Segment 10+m 10+m
Direct Intersegment unsigned full offset, selector 17+m 34+m b j kT
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 52+m hjkr
Via Call Gate to Different Privilege Level, (No Parameters) 86+m hikr
Via Call Gate to Different Privilege Level, (x Parameters) 94+4x+m hjkr
From 80286 Task to 80286 TSS 273 hi k1
From 80286 Task to Am386DX/DXL CPU TSS 298 hjkr
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 218 hijkr
From Am386DX/DXL CPU Task to 80286 TSS 273 h,jkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 300 hijkr
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 218 hj kr
Indirect Intersegment [11111111 mod011 ©/m J 22+m 38+m b h,j,kr
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 56+ m hijkr
Via Call Gate to Different Privilege Level (No Parameters) 90+m hijkr
Via Call Gate to Different Privilege Level (x Parameters) 98+4x+m hijkr
From 80286 Task to 80286 TSS 278 hijkr
From 80286 Task to Am386DX/DXL CPU TSS 303 hjkr
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 222 hjkr
From Am386DX/DXL CPU Task to 80286 TSS 278 h,jkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 305 hjkr
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 222 hjkr
JMP =Unconditional Jump
Short 11101011 8-bit displacement 7+m 7+m r
Direct within Segment 11101001 full displacement 7+m 7+m r
Register/Memory 11111111 mod100 m 7+m 7+m b hr
Indirect within Segment 10+m 10+m
Direct Intersegment unsigned full offset, selector 12+m 27+m Bk
Am386DX/DXL Microprocessor Data Sheet 123

n AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected| Protected
Virtual Real Virtual
Add, Add Address| Add
Instruction Format Mode Mode | Mode | Mode
CONTROL TRANSFER (continued)
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 45+ m hjkr
From 80286 Task to 80286 TSS 274 hjkr
From 80286 Task to Am386DX/DXL CPU TSS 301 h,j kr
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 219 h,j k,r
From Am386DX/DXL CPU Task to 80286 TSS 270 hjkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 308 hj Kk, r
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 221 hj. k,r
Indirect Intersegment 11111111 mod101 ©m 17+m 31+m b h,j,k,r
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+ m h,j k,r
From 80286 Task to 80286 TSS 279 h,jkr
From 80286 Task to Am386DX/DXL CPU TSS 306 hj kr
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 223 hj k1
From Am386DX/DXL CPU Task to 80286 TSS 275 h,j kr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 308 hj kr
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 225 hjkr
RET=Return from CALL
Within Segment 11000011 10+m 10+m b ahr
Within Seg. Adding Immediateto SP | 11000010 16-bit displacememl 10+m 10+m b g hr
Intersegment 11001011 18+m 32+m b a,hj.kr
Intersegment Adding Immediate to SP| 11001010 16-bit displacememl 18+m 32+m b a.h,jkr
Protected Mode Only (RET) to Different Privilege Level
Intersegment 69 hijkr
Intersegment Adding Immediate to SP 69 hikr
CONDITIONAL JUMPS (Note: Times are Jump “Taken or Not Taken™)
JO =Jump on Overflow
8-bit Displacement 01110000 8-bit displacement 7+mor3 | 7+m or 3| r
Full Displacement 00001111 10000000 full displacement 7+mor3 | 7+m or 3| r
JNO =Jump on Not Overflow
8-bit Displacement 01110001 8-bit displacement 7+mor3 | 7+m or 3| r
Full Displacement 00001111 10000001 full displacement 7+mor3 | 7+mor 3| r
JB/UNAE =Jump on Below/Not Above or Equal
8-bit Displacement 01110010 8-bit displacement 7+mor3 }7+mor 3| r
Full Displacement 00001111 10000010 full displacement 7+mor3 | 7+m or 3| r
JNB/JAE =Jump on Not Below/Above or Equal
8-bit Displacement 01110011 8-bit displacement 7+mor3 | 7+mor j r
Full Displacement 00001111 10000011 full displacement 7+mor3 | 7+mor r
JENZ =Jump on Equal/ Zero)
8-bit Displacement 01110100 8-bit displacement 7+mor3 | 7+mor 3| r
Full Displacement 00001111 10000100 full displacement 7+mor3 | 7+mor 3| 4
JNE/JNZ = Jump on Not Equal/Not Zero
8-bit Displacement 01110 101 | B-bit displacement 7+mor3 | 7+mor 3| r
Full Displacement 00001111 10000101 full displacement 7+mor3 | 7+mor 3| r
JBE/JNA =Jump on Below or Equal/Not Above
8-bit Displacement 01110110 8-bit displacement 7+mor3 | 7+mor 3| r
Full Displacement 00001111 10000110 full displacement 7+mor3 | 7+mor 3| r

124 Am386 Microprocessors for Personal Computers

AMD a

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
Instruction Format Mode Mode | Mode | Mode
CONDITIONAL JUMPS (continued)
JNBE/JA =Jump on Not Below or Equal/Above
8-bit Displacement 01110111 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10000111 full displacement 7+mor3 | 7+4mor 3 r
JS =Jump on Sign
8 -bit Displacement 01111000 8-bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001000 full displacement 7+mor3 | 7+4mor 3 r
JNS =Jump on Not Sign
8-bit Displacement 01111001 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10001001 full displacement 7+mor3 | 7+mor 3 r
JP/JPE = Jump on Parity/Parity Even
8-bit Displacement 01111010 8-bit displacement 7+mor3 | 74mor3 r
Full Displacement 00001111 10001010 full displacement 7+mor3 | 7+mor 3 r
JNP/JPO =Jump on Not Parity/Parity Odd
8-bit Displacement 01111011 8-bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001011 {ull displacement 7+mor3 | 7+4mor3 r
JL/UNGE =Jump on Less/Not Greater or Equal
8-bit Displacement 01111100 8-bit displacement 7+mor3 | 7+mor3 r
Full Displacement 00001111 10001100 full displacement 7+mor3 | 7+mor3 r
JNL/JGE = Jump on Not Less/Greater or Equal
8-bit Displacement 01111101 8-bit displacement 7+mor3 | 74mor3 r
Full Displacement 00001111 10001101 full displacement 7+mor3 | 7+mor3 r
JLE/UNG = Jump on Less or Equal/Not Greater
8-bit Displacement 01111110 8-bit displacement 7+#mor3 | 7+mor3 r
Full Displacement 00001111 10001110 full displacement 7+mor3 | 7+mor 3 r
JNLE/JG =Jump on Not Less or Equal/Greater
8-bit Displacement 01111111 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10001111 full displacement 7+mor3 | 7+mor 3 r
JCXZ=Jump on CX Zero * 11100011 8-bit displacement 9+mor5]| 9+mor5 r
JECXZ =Jump on ECX Zero * 11100011 8-bit displacement 9+mor5 | 9+mor5 r
LOOP =Loop CX Times 11100010 8-bit displacement 11 +m 114+m r
LOOPZ/LOOPE =Loop with Zero/Equal | 1110000 1 8-bit displacement 11 +m 11+m r
LOOPNZ/LOOPNE=Loop while NotZero[11 100000 8-bit displacement 11 4+m 11+m r
CONDITIONAL BYTE SET (Note: Times are Register/Memotry)
SETO=Set Byte on Overflow
To Register/Memory [00001111 |10010000 Imodooo m | 4/5 4/5 h
SETNO=Set Byte on Not Overfiow
To Register/Memory [0 0001111 I 1001000 1J mod000 ©rm l 4/5 4/5 h
SETB/SETNAE = Set Byte on Below/Not Above or Equal
To Register/Memory [00001111 |10010010 Jmodooo m I 4/5 4/5 h
* Address Size Prefix Differentiates JCXZ from JECXZ.
Am386DX/DXL Microprocessor Data Sheet 125

n AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
JRou | Vinuas | Roat | virtus
Instruction Format Mode Mode | Mode | Mode
CONDITIONAL BYTE SET (continued)
SETNB =Set Byte on Not Below/Above or Equal
To Register/Memory IT) 0001111 l 10010011 mod000 ©m I 4/5 4/5 h
SETE/SETZ = Set Byte on EqualZero
To Register/Memory | 00001111 110010100 | mod 000 r/ml 4/5 4/5 h
SETNE/SETNZ =Set Byte on Not Equal/Not Zero
To Register/Memory | 00001111 | 10010101 rmodooo /m | 4/5 4/5 h
SETBE/SETNA =Set Byte on Below or Equal/Not Above
To Register/Memory | 00001111 I 10010110] mod000 ©m I 4/5 4/5 h
SETNBE/SETA =Set Byte on Not Below or Equal/Above
To Register/Memory I 00001111 | 10010111 rmodooo m | 4/5 4/5 h
SETS =Set Byte on Sign
To Register/Memory l00001111 l 10011000 Imodooo /m I 4/5 4/5 h
SETNS =Set Byte on Not Sign
To Register/Memory l 00001111 |10011001 I mod000 rm I 4/5 4/5 h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory |700001 111 I 10011010 l mod000 ©m I 4/5 4/5 h
SETNP/SETPO=Set Byte on Not Parity/Parity Odd
To Register/Memory | 00001111 I 10011011 | mod 00 0 r/ml 4/5 4/5 h
SETL/SETNGE =Set Byte on Less/Not Greater or Equal
To Register/Memory I 00001111 | 10011100 [modooo r/m| 4/5 4/5 h
SETNL/SETGE =Set Byte on Not Less/Greater or Equal
To Register/Memory I00001111 I01111101 lmodooo r/mJ 4/5 4/5 h
SETLE/SETNG =Set Byte on Less or Equal/Not Greater
To Register/Memory IT)0001 111 | 10011110 l mod000 ©m l 4/5 4/5 h
SETNLE/SETG =Set Byte on Not Less or Equal/Greater
To Register/Memory 00001111 10011111 | mod000 ©/m 4/5 4/5 h
ENTER =Enter Procedure 11001000 16-bit displacement, 8-bit level
L=0 10 10 b h
L=1 12 12 b h
L>1 15+4(n-1) | 15+4(n-1)| b h
LEAVE = Leave Procedure 4 4 b h
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified 11001101 type] 37 b
Type 3 11001100 33 b
INTO =Interrupt 4 if Overflow FlagSet | 11001110
If OF =1 35 b,e
1fOF =0 3 3 b, e

126 Am386 Microprocessors for Personal Computers

AMD u

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected !
Real Virtual | Real | Virtual :
Address | Address |Address | Address
Instruction Format Mode Mode | Mode | Mode
INTERRUPT INSTRUCTIONS (continued) '
Bound=Interrupt 5 if Detect LO 1100010 modreg r/m
Value Out of Range
It Out of Range 44 b,e leghijkr
If in Range 10 10 b,e |eghjkr
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate to Same Privilege Level 59 a,j.kr
Via Interrupt or Trap Gate to Different Privilege Level 99 a,j.kr
From 80286 Task to 80286 TSS via Task Gate . 282 g,k r
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate - 309 gk r
From 80286 Task to Virtual 8086 Mode via Task Gate 226 g kr
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 284 g kr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 311 g kr
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 228 ..k r
From Virtual 8086 Mode to 80286 TSS via Task Gate 289 gk
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 316 gk
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 119 aikr
INT: Type 3
Via Interrupt or Trap Gate to Same Privilege Level 59 g,k r
Via Interrupt or Trap Gate to Different Privilege Level 99 aikr
From 80286 Task to 80286 TSS via Task Gate 278 g, kr
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate 305 ag.jkr
From 80286 Task to Virtual 8086 Mode via Task Gate 222 g, k,r
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 280 g, k1
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 307 g, j. k1
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 224 ag.jkr
From Virtual 8086 Mode to 80286 TSS via Task Gate 285 gk r
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 312 gl kr
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 119 gk
INTO
Via Interrupt or Trap Gate to Same Privilege Level 59 a.jkr
Via Interrupt or Trap Gate to Different Privilege Level 99 a.jkr
From 80286 Task to 80286 TSS via Task Gate 280 g,ikr
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate 307 g kr
From 80286 Task to Virtual 8086 Mode via Task Gate 224 a9k r
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 282 ag.jkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 309 gikr
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 225 ag.jkr '
From Virtual 8086 Mode to 80286 TSS via Task Gate 287 a5k 1
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 314 g kr !
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 119 g kr ;
BOUND
Via Interrupt or Trap Gate to Same Privilege Level 59 a,jkr .
Via Interrupt or Trap Gate to Different Privilege Level 99 g,k r |
From 80286 Task to 80286 TSS via Task Gate 254 a.jkr !
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate 284 gk r
From 80286 Task to Virtual 8086 Mode via Task Gate 231 a.0kr
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 264 a.jkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 294 g, kr
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 243 gikr
From Virtual 8086 Mode to 80286 TSS via Task Gate 264 aikr
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 294 a.jkr
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 119 ajkr
INTERRUPT RETURN i
IRET =Interrupt Return 22 g,h,jkr
Protected Mode Only (IRET)
To the Same Privilege Level (within Task) 38 g, hjkr
To Different Privilege Level (within Task) 82 g, hj k1
From 80286 Task to 80286 TSS 232 hjkr
From 80286 Task to Am386DX/DXL CPU TSS 265 h,jkr
From 80286 Task to Virtual 8086 Task 213 h,j,kr
From 80286 Task to Virtual 8086 Mode (within Task) 60
From Am386DX/DXL CPU Task to 80286 TSS 271 hjk,r
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 275 hikr
From Am386DX/DXL CPU Task to Virtual 8086 Task 223 h,j.kr
From Am386DX/DXL CPU Task to Virtual 8086 Mode (within Task) 60
.
Am386DX/DXL Microprocessor Data Sheet 127

n AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected | Protected
Instruction Format Mode Mode | Mode | Mode
PROCESSOR CONTROL
HLT =HALT 5 5 I
MOV =Move to and From Control/Debug/Test Registers
CRO/CR2/CR3 from register 00001111 00100010 11 eeereg 11/4/5 11/4/5 |
Register From CR3-0 00001111 00100000 11 eeereg 6 6 |
DR3-0 From Register 00001111 00100011 11 eeereg 22 22 |
DR7-6 From Register 00001111 00100011 11 eeereg 16 16 |
Register from DR7-6 00001111 00100001 11 eeereg 14 14 1
Register from DR3-0 00001111 00100001 11 eeereg 22 22 |
TR7-6 from Register 00001111 00100110 11 eeereg 12 12 |
Register from TR7-6 00001111 00100100 11 eeereg 12 12 |
NOP =No Operation 10010000 3 3
WAIT = Wait until BUSY 10011011 7 7
pin is negated
NOP =No Operation 3 3
PROCESSOR EXTENSION INSTRUCTIONS
Pr E: ion Escap F1011TTT modLLL ©m h
TTT and LLL bits are op-code information for coprocessor
PREFIX BYTES
Address Size Prefix 01100111 0]
LOCK = Bus Lock Prefix 11110000 0 0 m
Operand Size Prefix 01100110 4] 0
Segment Override Prefix
CS: 00101110 0 0
DS: 00111110 0 0
ES: 00100110 0 0
FS: 01100100 0 0
GS: 01100101 0 0
SS: 00110110 0 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory ro 1100011 I modreg r/m I N/A 2021 a h
LAR =Load Access Rights
From Register/Memory ﬁ 0001111 l 00000010 I mod reg rM N/A 15/16 a g.hj.p
LGDT = Load Global Descriptor
Table Register [00001111 [00000001 [medoto um | 1 1 | oe |
LIDT = Load Interrupt Descriptor
Table Register [00001111 [00000001 [modor1 um | " 1 | be | n
LLDT=Load Locai Descriptor
Table Register to Register/Memory I 00001111 | 00000000 I mod010 1rm I N/A 20/24 a g,h,j!
LMSW = Load Machine Status Word
From Register/Memory 00001111 00000001 mod110 r/m 11/14 11714 b.c h,1

128 Am386 Microprocessors for Personal Computers

AMD n

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtual Real Virtual
Address | Address | Address| Address
Instruction Format Mode Mode | Mode | Mode
PROTECTION CONTROL (continued)
LSL=Load Segment Limit
From Register/Memory l 00001111 l 00000011 I mod reg ©m]
Byte-Granular Limit N/A 21/22 a g.hjp
Page-Granular Limit N/A 25/26 a g,hjp
LTR=Load Task Register
From Register/Memory LO 0001111 TO 0000000 I mod001 ©m I N/A 28/27 a g,hj!
SGDT =Store Global Descriptor
Table Register [00001111 |00000001 Imodooo /m | 9 9 b,c h

SIDT = Store Interrupt Descriptor

Table Register

100001111 I00000001

| mod 00 1

SLDT =Store Local Descriptor Table Register

To Register/Memory 00001111 00000000 mod000 r/m N/A 2/2 a h
SMSW = Store Machine Status Word| 00001111 00000001 mod100 ©/m 212 22 _b, c h, |
STR=Store Task Register

To Register/Memory LO 0001111 l 00000000 l mod001 ©m N/A 2/2 a h
VERR = Verify Read Access

Register/Memory 00001111 00000000 mod100 r/m N/A 10/11 a g.hjp
VERW = Verify Write Access 00001111 00000000 mod101 rm N/A 16/16 a g.hjp

Instruction Notes for Table 23.

Notes a through c apply to Am386DX/DXL CPU Real Address
Mode only.

a.

C.

This is a Protected Mode instruction. Attempted execution in Real
Mode will result in Exception 6 (Invalid op-code).

. Exception 13 fault (General Protection) will occur in Real Mode if

an operand reference is made that partially or fully extends beyond
the maximum CS, DS, ES, FS, or GS limit, FFFFH. Exception 12
(fault stack segment limit violation or not present) will occurin Real
Mode if an operand reference is made that partially or fully extends
beyond the maximum SS limit.

This instruction may be executed in Real Mode. In Real Mode, its
purpose is primarily to initialize the CPU for Protected Mode.

Notes d through g apply to Am386DX/DXL CPU Real Address
Mode and Am386DX/DXL CPU Protected Virtual Address Mode.

d.

g.

The Am386DX/DXL CPU uses an early-out multiply algorithm.
The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual
clocks, use the following formula:

Actual Clock =if m < >0 then max ([logz2 |m|], 3) +b clocks: if m=0
then 3 +b clocks

In this formula, m is the multiplier, and

b =9 for register to register,

b =12 for memory to register,

b =10 for register with immediate to register,

b =11 for memory with immediate to register.

. An Exception may occur, depending on the value of the operand.
. LOCK is automatically asserted, regardless of the presence or

absence of the LOCK prefix.
LOCK is asserted during descriptor table accesses.

Notes h through r apply to Am386DX/DXL CPU Protected Virtual
Address Mode only.

h.

3

o

o

Exception 13 fault (General Protection Violation) will occur if the
memory operand in CS, DS, ES, FS, or GS cannot be used due to
either a segment limit violation or access rights violation. If a stack
limitis violated, an Exception 12 (Stack Segment Limit Violation or
Not Present) occurs.

For segment load operations, the CPL, RPL, and DPL must agree
with the privilege rules to avoid an Exception 13 fault (General
Protection Violation). The segment's descriptor must indicate
present or Exception 11 (CS, DS, ES, FS, GS Not Present). If the
SSregister is loaded and a stack segment not present is detected,
an Exception 12 (Stack Segment Limit Violation or Not Present)
occurs.

All segment descriptor accesses in the GDT or LDT made by this
instruction will automatically assert LOCK to maintain descriptor
integrity in multiprocessor systems.

. JMP, CALL, INT, RET, and IRET instructions referring to another

code segment will cause an Exception 13 (General Protection
Violation) if an applicable privilege rule is violated.

. An Exception 13 fault occurs if CPL is greater than 0 (0 is the most

privileged level).
An Exception 13 fault occurs if CPL is greater than |OPL.

. The IF bit of the flag register is not updated if CPL is greater than

IOPL. The IOPL and VM fields of the flag register are updated only
if CPL=0.

. The PE bit of the MSW (CRO) cannot be reset by this instruction.

Use MOV into CRO if desiring to reset the PE bit.

. Any violation of privilege rules as applied to the selector operand

does not cause a protection Exception; rather, the zero flag is
cleared.

Am386DX/DXL Microprocessor Data Sheet 129

n AMD

q. If the coprocessor's memory operand violates a segment limit or
segment access rights, an Exception 13 fault (General Protection
Exception) will occur before the ESC instruction is executed. An
Exception 12 fault (Stack Segment Limit Violation or Not Present)
will occur if the stack limit is violated by the operand's starting
address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be in the
defined limit of a code segment or an Exception 13 fault (General
Protection Violation) will occur.

Instruction Encoding
Overview

All instruction encodings are subsets of the general in-
struction format shown in Figure 83. Instructions consist
of one or two primary op-code bytes, possibly an ad-
dress specifier consisting of the mod r/m byte and
scaled index byte, adisplacement if required, and anim-
mediate data field if required.

Within the primary op-code or op-codes, smaller encod-
ing fields may be defined. These fields vary according to
the class of operation. The fields define such informa-
tion as direction of the operation, size of the displace-
ments, register encoding, or sign extension.

Almost all instructions referring to an operand in mem-
ory have an addressing mode byte following the primary
op-code byte(s). This byte, the mod r/m byte, specifies
the address mode to be used. Certain encodings of the
mod r/m byte indicate a second addressing byte, the
scale-index-base byte, follows the mod r/m byte to fully
specify the addressing mode.

Addressing modes can include a displacement immedi-
ately following the mod r/m byte, or scaled index byte. If
adisplacement is present, the possible sizes are 8, 16,
or 32 bits.

If the instruction specifies an immediate operand, the
immediate operand follows any displacement bytes.
The immediate operand, if specified, is always the last
field of instruction.

Figure 83 illustrates several of the fields that can appear
in an instruction, such as the mod field and the r/m field,
but the Figure does not show all fields. Several smaller
fields also appear in certain instructions, sometimes

within the op-code bytes themselves. Table 24 is acom-
plete list of all fields appearing in the Am386DX/DXL mi-
croprocessor instruction set. Further ahead, following
Table 24, are detailed tables for each field.

32-Bit Extensions of the Instruction Set

With the Am386DX/DXL microprocessor, the 8086/
80186/80286 instruction set is extended in two ortho-
gonal directions: 32-bit forms of all 16-bit instructions
are added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc-
tions referencing memory. This orthogonal instruction
set extension is accomplished having a Default (D) bit in
the code segment descriptor, and by having 2 prefixes
to the instruction set.

Whether the instruction defaults to operations of 16 or
32 bits depends on the setting of the D bit in the code
segment descriptor, which gives the default length
(either 32 or 16 bits) for both operands and effective ad-
dresses when executing that code segment. Inthe Real
Address Mode or Virtual 8086 Mode, no code segment
descriptors are used, but a D value of 0 is assumed in-
ternally by the Am386DX/DXL microprocessor when
operating in those modes (for 16-bit default sizes com-
patible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effective
Address Size Prefix, allow overriding individually the
Default selection of operand size and effective address
size. These prefixes may precede any op-code bytes
and affect only the instruction they precede. If neces-
sary, one or both of the prefixes may be placed before
the op-code bytes. The presence of the Operand Size
Prefix and the Effective Address Prefix will toggle the
operand size or the effective address size, respectively,
to the value opposite from the Default setting. For exam-
ple, if the default operand size is for 32-bit data opera-
tions, then presence of the Operand Size Prefix toggles
the instruction to 16-bit data operation. As another
example, if the default effective address size is 16 bits,
presence of the Effective Address Size prefix
toggles the instruction to use 32-bit effective address
computations.

[TTTT7 7777717777 mod TTT /m] ss_index base | d32|16] 8 |none data32| 16 | 8 | none

7 0 7

0 765320 765320
N I\ VN

— J_ J
v v I g g
opcode mod r/m s-i-b address immediate
(one or two bytes) byte byte displacement data
(T represents an opcode bit) < ~ (4,2, 1bytes (4, 2, 1 bytes
register and address or none) or none)
mode specifier
15021B—085

Figure 83. General Instruction Format

130 Am386 Microprocessors for Personal Computers

AMD n

Table 24. Fields within Am386DX/DXL Microprocessor Instructions

Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 bits) 1

d Specifies Direction of Data Operation 1

s Specifies if an Immediate Data Field must be Sign-Extended 1

reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;

3 for r/m

ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
titn For Condition Instructions, specifies a Condition Asserted or a Condition Negated 4

Note: Table 23 shows encoding of individual instructions.

These 32-bit extensions are available in all Am386DX/
DXL microprocessor modes, including the Real Ad-

dress Mode or the Virtual 8086 Mode. In these modes - -

the default is always 16 bits, so prefixes are needed to Register Selected | Register Selected
specify 32-bit operands or addresses. For instructions . During 16-Bit During 32-Bit
with more than one prefix, the order of prefixes is reg Field | Data Operations | Data Operations
unimportant. 000 AX EAX
Unless specified otherwise, instructions with 8- and 001 CX ECX
16-bit operands do not affect the contents of the high- 010 DX EDX
order bits of the extended registers. 011 BX EB::

. . 100 SP ES!
Encoding of Instruction Fields 101 BP EBP
Within the instruction are several fields indicating regis- 110 s ESI
ter selection, addressing mode and so on. The exact en- 111 DI EDI

codings of these fields are defined immediately ahead.
Encoding of Operand Length (w) Field
For any given instruction performing a data operation,

Encoding of reg Field When w Field
is not Present in Instruction

Encoding of reg Field When w Field
is Present in Instruction

th(_a ipstruclion is e>.<ecuting asa 32-.or 1§-bit operati'on. Register Specified by reg Field
Within the constraints of the operation size, the w field During 16-Bit Data Operations
encodes the operand size as either one byte or the full - -
operation size, as shown in the table below. Function of w Field
- - reg (when w = 0) (whenw=1)
Operand Size Operand Size
During 16-Bit During 32-Bit 000 AL AX
w Field Data Operations | Data Operations 001 CL CX
0 8 Bits 8 Bits 010 DL DX
1 16 Bits 32 Bits o1t BL BX
100 AH SP
Encoding of The General Register (reg) Field 101 CH BP
The general register is specified by the reg field, which 110 DH St
may appear in the primary op-code bytes, or as the reg m BH ol
field of the mod r/m byte, or as the r/m field of the mod
r/m byte.
Am386DX/DXL Microprocessor Data Sheet 131

e

a AMD

Register Specified by reg Field
During 32-Bit Data Operations
Function of w Field

reg (when w =0) (whenw = 1)
000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
11 BH EDI

Encoding of The Segment Register (sreg) Fleld

The sreg field in certain instructions is a 2-bit field allow-
ing one of the four 80286 segment registers to be speci-
fied. The sreg field in other instructions is a 3-bit field, al-
lowing the Am386DX/DXL microprocessor FS and GS
segment registers to be specified.

2-Bit sreg2 Field
2-Bit sreg2 Field

Segment Register Selected

00 ES
01 Ccs
10 SS
1 DS
3-Bit sreg3 Field
3-Bit sreg3 Field Segment Register Selected
000 ES
001 cs
010 SS
011 DS
100 FS
101 . GS
110 do not use
M do not use

Encoding of Address Mode

Except for special instructions, such as PUSH or POP,
where the addressing mode is pre-determined, the ad-
dressing mode for the current instruction is specified by
addressing bytes following the primary op-code. The
primary addressing byte is the mod r/m byte, and a sec-
ond byte of addressing information, the scale-index-
base (s-i-b) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing
mode and the mod r/m byte has r/m = 100 and mod = 00,
01, or 10. When the s-i-b byte is present, the 32-bit ad-
dressing mode is a function of the mod, ss, index, and
base fields.

The primary addressing byte, the mod r/m byte, also
contains three bits (shown as TTT in Figure 83) some-
times used as an extension of the primary op-code. The
three bits, however, may also be used as a register
field (reg).

When calculating an effective address, either 16-bit ad-
dressing or 32-bit addressing is used. 16-bit addressing
uses 16-bit address components to calculate the effec-
tive address while 32-bit addressing uses 32-bit ad-
dress components to calculate the effective address.
When 16-bit addressing is used, the mod r/m byte is in-
terpreted as a 16-bit addressing mode specifier. When
32-bit addressing is used, the mod r/m byte is inter-
preted as a 32-bit addressing mode specifier.

Tables on the following pages define all encodings of all
16- and 32-bit addressing modes.

132 Am386 Microprocessors for Personal Computers

AMD u

Encoding of 16-Bit Address Mode with mod r/m Byte

mod r/'m Effective Address mod r/m Effective Address
00 000 DS:[BX + Sl] 10 000 DS:BX + Sl + d16]
00 001 DS:[BX + DI] 10 001 DS{BX + DI + d16]
00 010 SS:[BP + SI] 10 010 SS:[BP + Sl + d16]
00 011 DS:[BP + Di] 10 011 SS:[BP +Di+d16]
00 100 DSSI] 10 100 DS{SI + d16]
00 101 Ds:[DI] 10 101 DS:[D! + d16]
00 110 DS:d16 10 110 SS:[BP +d16]
00 111 DS:[BX] 10 111 DS:[BX +d16]
01 000 DS:BX + Sl + d8] 11 000 Register— See Below
o1 001 DS:[BX + DI +d8] 11 001 Register— See Below
01 o010 SS:[BP + S| + d8] 11 010 Register— See Below
01 011 SS:[BP + DI + d8] 1 o Register— See Below
01 100 DSS! + d8] 11 100 Register— See Below
o1 101 DS:[DI + d8g] 1 101 Register— See Below
o1 110 SS:[BP +d8] 11 110 Register— See Below
o1 111 DS{BX + d8] 11 Register— See Below
Register Specified by r/m Register Specified by r’'m
During 32-Bit Data Operations During 16-Bit Data Operations
Function of w Field Function of w Field
mod r/m (when w = 0) (when w = 1) mod r/'m (when w = 0) (when w = 1)
11 000 AL EAX 11 000 AL AX
11 001 CL ECX 11 001 CL CcX
11 010 DL EDX 11 010 DL DX
11 o1t BL EBX 11 o1 BL BX
11 100 AH ESP 11 100 AH SP
11 101 CH EBP 11 101 CH BP
11 110 DH ESI 11 110 DH Sl
11 111 BH EDI 1 111 BH DI

Am386DX/DXL Microprocessor Data Sheet 133

n AMD

Encoding of 32-Bit Address Mode with mod r/m byte

(No s-i-b Byte Present)
mod r/m Effective Address mod r'm Effective Address

00 000 DS:[EAX] 10 000 DS{EAX + d32)

00 001 DS{ECX] 10 001 DS:[ECX + d32]

00 010 DS:EDX] 10 010 DS{EDX + d32]

00 o011 DS{EBX] 10 o1 DS:[EBX +d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:wd32 10 101 SS:[EBP +d32]

00 110 DS:[ESI] 10 110 DS:[ESI + d32]

00 111 DS:[EDI] 10 111 DS:[EDI + d32]

01 000 DS:[EAX + d8] 11 000 Register— See Below
01 001 DS:[ECX + d8] 11 001 Register— See Below
01 o010 DS:EDX + d8] 11 o010 Register— See Below
01 Ot DS{EBX + d8] 1 o1 Register— See Below
ot 100 s-i-b is present 11 100 Register— See Below
01 101 SS:[EBP +d8] 11 101 Register— See Below
01 110 DS:[ESI + d8] 1 110 Register— See Below
o1 111 DS:EDI + d8] 11 111 Register— See Below

Register Specified by reg or r/m Register Specified by reg or r/m
During 32-Bit Data Operations During 16-Bit Data Operations
Function of w Field Function of w Field
mod r/'m (when w = 0) (whenw=1) mod r/m (when w = 0) (whenw=1)
11 000 AL EAX 11 000 AL AX
11 001 CL ECX 11 001 CL CX
11 010 DL EDX 11 010 DL DX
11 o1t BL EBX 11 011 BL BX
11 100 AH ESP 11 100 AH SP
11 101 CH EBP 11 101 CH BP
11 110 DH ESI 11 110 DH SI
11 111 BH EDI 1 111 BH DI
134 Am386 Microprocessors for Personal Computers

AMD u

Encoding of 32-Bit Address Mode (mod r/m Byte and s-i-b present)

Note: Mod field in mod r/m byte; ss, index, base fields in s-i-b byte.

mod base Effective Address ss Scale Factor

00 000 DS:[EAX + (scaled index)] 00 x1

00 001 DS:[ECX + (scaled index)] 01 x2

00 010 DS:{EDX + (scaled index)] 10 x4

00 011 DS:{EBX + (scaled index)] 11 x8

00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ESI + (scaled index)] .

00 111 DS:{EDI + (scaled index)] Index Index Register
000 EAX

01 000 DS:{EAX + (scaled index) + d8] 001 . ECX

01 001 DS:[ECX + (scaled index) + d8] 010 EDX

01 010 DS:[EDX + (scaled index) + d8] 011 EBX

01 011 DS:[EBX + (scaled index) + d8] 100 no index reg (see note)

01 100 SS:[ESP + (scaled index) + d8] 101 EBP

01 101 SS{EBP + (scaled index) + d8] 110 ESI

01 110 DS:{ESI + (scaled index) + d8} 111 EDI

01 111 DS:[EDI + (scaled index) + d8] Note: When index field is 100, indicating no index register, then ss field

must equal 00. If index is 100 and ss does not equal 00, the effective
address is undefined.

10 000 DS:[EAX + (scaled index) + d32]

10 oot DS:[ECX + (scaled index) + d32]

10 010 DS:{EDX + (scaled index) + d32]

10 011 DS:[EBX + (scaled index) + d32]

10 100 SS:[ESP + (scaled index) + d32]

10 101 SS:[EBP + (scaled index) + d32]

10 110 DS:[ESI + (scaled index) + d32]

10 111 DS:[EDI + (scaled index) + d32]

Encoding of Operation Direction (d) Field

In many two-operand instructions the d field is present
to indicate which operand is considered the source and
which is the destination.

d Direction of Operation

Register/Memory €— Register

0 | reg Field indicates Source Operand;
mod r/m or mod ss index base indicates
Destination Operand.

Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immedi-
ate data fields. The s field has an effect only if the size of
the immediate data is 8 bits and is being placedin a 16-
or 32-bit destination.

Effecton Effect on
s Immediate Data 8 Immediate Data 16|32

0 | None None

Register €— Register Memory

1 reg Field indicates Destination Operand;

mod r/m or mod ss index base indicates Source
Operand.

1 | Sign-Extended Data 8 tofill] None
16-Bit or 32-Bit Destination

Am386DX/DXL Microprocessor Data Sheet 135

n AMD

Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and
set on condition), tttn is encoded with n indicating to use
the condition (n=0) or its negation (n=1), and ttt giving
the condition to test.

Encoding of Control or Debug or Test Register

(eee) Field

For the loading and storing of the Control, Debug and

Test registers.

When Interpreted as Control Register Field

eee Code Reg Name
000 CRoO
010 CR2
011 CR3

Do not use any other encoding.

When Interpreted as Debug Register Field

Mnemonic Condition tttn
(0] Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Not Greater Than | 1110
NLE/G Not Less Than or Equal/Greater Than | 1111

eee Code Reg Name
000 DRo
001 DR1
010 DR2
011 DR3
110 DRé
111 DR7

Do not use any other encoding.

When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
111 TR7

Do not use any other encoding.

136 Am386 Microprocessors for Personal Computers

AMD a

MECHANICAL DATA

Introduction

In this section, the physical packaging and its connec-
tions are described in detail.

Package Dimensions and Mounting
The initial Am386DX/DXL microprocessor package is a
132-pin ceramic pin grid array (PGA). Pins of this pack-
age are arranged 0.100 inch (2.54 mm) center-to-
center, in a 14 x 14 matrix, three rows around.

A wide variety of available sockets allow low insertion
force or zero insertion force mountings, and a choice of
terminals such as soldertail, surface mount, or wire
wrap.

Package Thermal Specification

The Am386DX/DXL microprocessor is specified for
operation when ambient temperature is within the range
of 0°C—-100°C. The ambient temperature may be meas-
ured in any environment, to determine whether the
Am386DX/DXL microprocessor is within specified oper-
ating range.

The PGA ambient temperature should be measured at
the center of the top surface opposite the pins.

ELECTRICAL DATA

Introduction

The following sections describe recommended electri-
cal connections for the Am386DX/DXL microprocessor
and its electrical specifications.

Power and Grounding
Power Connections

The Am386DX/DXL CPU is implemented in CS21S
technology and has modest power requirements. How-
ever, its high clock frequency and 72 output buffers (ad-
dress, data, control, and HLDA) can cause power
surges as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution at
high frequency, 20 Vcc and 21 Vss pins separately feed
functional units of the Am386DX/DXL CPU.

Power and ground connections must be made to all
external Vcc and GND pins of the Am386DX/DXL CPU.
Onthe circuit board, all Vcc pins mustbe connectedon a
Vceplane. All Vss pins must be likewise connected to the
GND plane.

Power Decoupling Recommendations

Liberal decoupling capacitance should be placed near
the Am386DX/DXL CPU. The Am386DX/DXL micro-
processor driving its 32-bit parallel address and data
buses at high frequencies can cause transient power
surges, particularly when driving large capacitive loads.

Low inductance capacitors and interconnects are rec-
ommended for best high frequency electrical perform-
ance. Inductance can be reduced by shortening circuit
board traces between the Am386DX/DXL microproces-
sor and decoupling capacitors as much as possible. Ca-
pacitors specifically for PGA packages are also com-
mercially available, for the lowest possible inductance.

Resistor Recommendations

The ERROR, FLT, and BUSY inputs have resistor
pull-ups of approximately 20 Kohms built into the
Am386DX/DXL CPU to keep these signals negated
when no 387DX math coprocessor is present in the sys-
tem (or temporarily removed from its socket). The BS16
input also has an internal pull-up resistor of approxi-
mately 20 Kohms, and the PEREQ input has an internal
pull-down resistor of approximately 20 Kohms.

In typical designs, the external pull-up resistors are re-
commended. However, a particular design may have
reason to adjust the resistor values recommended here,
or alter the use of pull-up resistors in other ways.

Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. NC pins should always re-
main unconnected.

Particularly when not using interrupts or bus hold, (as
when first prototyping, perhaps) prevent any chance of
spurious activity by connecting these associated inputs
to GND.

Pin Signal
B7 INTR
B8 NMI
D14 HOLD

If not using address pipelining, pull-up D13 NA to Vce.
If not using 16-bit size, pull-up C14 BS16 to Vce.
Pull-ups in the range of 20 Kohms are recommended.

Am386DX/DXL Microprocessor Data Sheet 137

u AMD

PHYSICAL DIMENSIONS

CGX 132

Index Corner 1.480 1.300 Base Plang ————»

BSC Seating Plane ——

1.440

1.480

@@@@@@@/

JoJoJoX - JOJo
OJoJoJoJoJoJo)]

©eeOeOOO
©@PeOeePOe®O
©e00OOO
OJo) - JOJOJOJC)
OJJOJOJOJOJO)
\@©©@@©©

/
@O
©00
©00
©00

90©
©00
©00
@O

A

T
|

T

e
!

o
]
o
o
A
o
o
o
w

Bottom View (Pins Facing Up) Side View

15304C
BP 36
4/30/91 CD

138 Am386 Microprocessors for Personal Computers

AMD I‘;‘

PHYSICAL DIMENSIONS (continued)

PQB 132 —Plastic Quad Flat Pack (Trimmed and Formed)

(\AAAAAAAAAAAAMAAMAMAMMASAAAAARAA T Y 1
=] :
D A A]
Top View
—-H.— 0.025 REF
(?(() LA LA ABRA AR ERER R AR AL EE L) ())‘%g—}%g
080 o.gzo
Side View 11772E

Am386DX/DXL Microprocessor Data Sheet

139

a AMD
PHYSICAL DIMENSIONS (continued)

PQB 132 —Plastic Quad Flat Pack with Molded Carrier Ring
(Outer Ring measured in millimeters)

. 45.87 R
_ 45.50 46.13 N
s 45.90 4137 o
Y 37.87 4163 T
s 3515 _ 38.00 o
N 35.25 32.15 L
) 1.097 _ 8225 o
ooaa 1103
0.952
,’-‘_Ll sl la e saa s aaa e daalalaly ||/"_]
45.50[37.87 | 32.150.944 3 :
45.90|38.00 |32.25 [0.952]
3 F
45.87|41.3735.15|1.007|] E 0008
46.13|41.63(35.25[1.103|] \5 0012
] A\ N
p L T A
s S | I
. | |
. — |
: / | |
] [L Ul
(N

LI B I I I O 0 RN I R I N

l
)
o lLr

TOP VIEW 0.008
0.45 Typ 0.016
.ﬂ’itch — / i'_'i "
Y il (}y
;- -! \llIIIJ!llllJ!llIl(lllllllllllllllllllllllllllllllllll;l\ll/(()3IQ.OO 4.80
I i] | 1.80
0.65 Typirﬁ] nooo : —
-fr - SIDE VIEW
L |

14826E
CB 51
7/28/92 SG

140 Am386 Microprocessors for Personal Computers

FINAL

Am386™SX/SXL

High-Performance, 32-Bit Microprocessor

with 16-Bit Data Bus

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

| 40-, 33-, 25-, and 20-MHz operating speeds

m True static design for long battery life in
portable PCs
—0 MHz (DC) minimum frequency
—Typical standby (DC) current < 20 A
—Typical operating current < 165 mA at 20 MHz

—Wide range of chip set and BIOS support take
advantage of standby mode capabilities

B Lower heat dissipation facilitates elimination of
cooling fan in desktop PCs

B Pin-for-pin replacement of the Intel i386SX
B Supports 387SX-compatible math
coprocessors

B 100-pin PQFP package with optional protective
ring for better lead coplanarity

B AMD advanced 0.8 micron CMOS technology

GENERAL DESCRIPTION

The Am386SX/SXL microprocessor is a high-speed,
true static implementation of the Intel i386SX. It is ideal
for both desktop and battery-powered notebook
personal computers. For notebooks, the Am386SXL
microprocessor’s true static design offers longer battery
life with low operating power consumption and standby
mode. At 20 MHz, this device offers a current which is
22% lower than the Intel i386SX. Standby mode allows
the Am386SXL CPU to be clocked down to 0 MHz (DC)
and retain full register contents. Typical current in
standby mode is reduced to less than 20 pA—nearly a
1000x reduction in power consumption versus the
Intel i386SX.

For desktop PCs, the Am386SX/SXL microprocessor
offers a 21% increase in the maximum operating speed,
from 33 to 40 MHz. Also, this device offers lower heat
dissipation, allowing system designers to remove or re-
duce the size and cost of the cooling fan.

This device will be available in a standard 100-pin
Plastic Quad Flat Pack (PQFP). This package may be
shipped in an optional protective ring for better lead
protection during manufacturing.

Typical Power Consumption

250 -

200 -1

lc (MA) 1501

100 1

501

(Am386SX microprocessor only)

O Inteli386SX @ 5.0V
A Am386SX/SXL CPU@ 5.0V
O Am386SXLVCPU@3.3V

0 l I T
0 2 16 20

Note: Inputs at Voo or Vss. Frequency (MHz)

25

I T
33 40

Publication#: 15022 Rev.D Amendment:/0
Issue Date: October 1992

141

n AMD

BLOCK DIAGRAM
Segmentation Unit Paging Unit Bus Control
HOLD, INTR,
. f 3-Input <_—J\ Request NMI, ERROR,
S— Y T - 5| Adder /| Adder % Prioritizer ¥ BUSY, RESET,
g HLDA, FLT
Effoctve Addross B !’ > Descriptor 32| page %
- Registers Cache 5
32 i)
3
| Unitang Control 9
Attribute :} an <:-—_ o
Attribute
PLA PLA __
» Address BHE, BLE,
@ 1 —J; Driver [® A23.A1
S =
£ g
Protection 3 's
Test Unit & 2 3 N
o p = Pipeline! M/G, D/C,
4 7| W/R, LOCK,
AN [Internal Control Bus S §) Bus Size [P s op
K] < S Control =
3 4 READY
2 'S
5 S
3
MUX/
Barrel
i . Prefetch/ Trans- 4% D15-D0
Shifter, Decode and U Instruction refetc celvers
Adder s y L | Decoder Limit 32
P— equencing Checker
| Flags
Multiply/
Divide
3-Decoded | code | 16-Byte
ng{,‘,’ ! Instruction | gtream| Code
Register L Queue Queue
File <:
ALY C | Instruction s2Bit Instruction
ﬁ Control ontro Predecode Prefetch /
ALU Dedicated ALU Bus]

32
16305C-001

142 Am386 Microprocessors for Personal Computers

AMD n

LOGIC SYMBOL

2XClock =9 CLK2

Data Bus D15-DO

A23-A1
Address Bus

LE, BHE

ailich

Am386SX/SXL NMI

—
———
——
——
—
W/R Microprocessor
RESET %—- g
k_
—>
——

FLT Float
\
PEREQ
Math
ERROR ¢ Coprocessor
Control

Interrupt Control

[¢—
4— DC INTR J
Bus Cycle {
Definition — wmic HLDA Bus
Arbitration
\ &— [OCK HOLD | Control
ADS READY
ADS N READY
15022B-003

Bus Cycle Control

FUNCTIONAL DESCRIPTION

True Static Operation (Am386SXL CPU)

The Am386SXL microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am386SXL CPU eliminates the minimum operating
frequency restriction. It may be clocked from its maxi-
mum speed of 40 MHz all the way down to 0 MHz
(DC). System designers can use this feature to design
battery-powered notebook PCs with long battery life.

Standby Mode (Am386SXL CPU)

This true static design allows for a standby mode. At any
operating speed (40 to 0 MHz), the Am386SXL micro-
processor will retain its state (i.e., the contents of all
its registers). By shutting off the clock completely, the
device enters standby mode. Since power consumption
is proportional to clock frequency, operating power
consumption is reduced as the frequency is lowered.
In standby mode, typical current draw is reduced to
less than 20 pA at DC.

Not only does this feature improve battery life, but it also
simplifies the design of power-conscious notebook
computers in the following ways:

1. Eliminates the need for software in the BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock since the system does not need to know what
state the processor is in.

Lower Operating lcc (Am386SXL CPU)

True static design also allows lower operating lcc when
operating at any speed. See the following graph for
typical current at operating speeds.

Performance On Demand (Am386SXL CPU)

The Am386SXL microprocessor retains its state at any
speed from 0 MHz (DC) to its maximum operating
speed. With this feature, system designers may vary the
operating speed of the system to extend the battery life
in portable systems.

For example, the system could operate at low speeds
during inactivity or polling operations. However, upon
interrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the system can be returned to a low (or 0 MHz) oper-
ating speed without losing its state. This design maxi-
mizes battery life while achieving optimal performance.

Am386SX/SXL Microprocessor Data Sheet 143

a AMD

CONNECTION DIAGRAMS
Top Side View — 100-Lead Plastic Quad Flat Pack

Top Side View

Notes: Pin 1 is marked for orientation.

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility
with future shippings of the Am386SX/SXL microprocessor.

144 Am386 Microprocessors for Personal Computers

AMD n

CONNECTION DIAGRAMS (continued)
Pin Side View — 100-Lead Plastic Quad Flat Pack

Pin Side View

Notes: Pin 1 is marked for orientation.
NC = Not connected; connection of an NC pin may cause a malfunction
or incompatibility with future shippings of the Am386SX/SXL microprocessor.

Am386SX/SXL Microprocessor Data Sheet

145

u AMD

PIN DESIGNATION TABLES (sorted by Functional Grouping)

Address Data Control NC Vce Vss
Pin Name | PinNo. | Pin Name | PinNo. | Pin Name Pin No. Pin No. | Pin No. | Pin No.
Al 18 Do 1 ADS 16 20 8 2
A2 51 D1 100 BHE 19 27 9 5
A3 52 D2 99 BLE 17 29 10 11
A4 53 D3 96 BUSY 34 30 21 12
A5 54 D4 05 CLK2 15 31 32 13
A6 55 D5 94 Die 24 43 39 14
A7 56 D6 03 ERROR 36 44 42 22
A8 58 D7 92 FLT 28 45 48 35
A9 59 D8 90 HLDA 3 46 57 41
A10 60 D9 89 HOLD 4
A1 61 47 69 49
D10 88 INTR 40
kA 71 50
A12 62 D11 87 [OCK 26
A13 64 Mo 23 84 63
Al4 65 D12 86 o 91 67
D13 83 NA 6
A5 66 NMI 38 97 68
A16 70 D14 82 PEREQ 37 77
A17 72 D15 81 AEADY 7 78
:}g ;3 RESET 33 85
R 25
A20 75 w %8
A21 76
- A22 79
A23 80
PIN DESIGNATION TABLES (sorted by Pin Number)
Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name
1 Do 21 Voo 41 Vss 61 A1 81 D15
2 Vss 22 Vss 42 Vee 62 A12 82 D14
3 HLDA 23 MG 43 NC 63 Vss 83 D13
4 HOLD 24 Dc 44 NC 64 A13 84 Vee
5 Vss 25 WR 45 NC 65 Al4 85 Vss
6 NA 26 LOCK 46 NC 66 A15 86 D12
7 READY 27 NC 47 NC 67 Vss 87 D11
8 Veo 28 FLT 48 Voo 68 Vss 88 D10
9 Voo 29 NC 49 Vss 69 Veo 89 D9
10 Veo 30 NC 50 Vss 70 A16 90 D8
11 Vss 31 NC 51 A2 71 Veo 91 Vee
12 Vss 32 Vee 52 A3 72 A17 92 D7
13 Vss 33 RESET 53 A4 73 A18 93 D6
14 Vss 34 BUSY 54 A5 74 A19 94 D5
16 CLK2 35 Vss 55 A6 75 A20 95 D4
16 ADS 36 ERROR 56 A7 76 A21 96 D3
17 BLE 37 PEREQ 57 Vee 77 Vss 97 Vee
18 Al 38 NMI 58 A8 78 Vss 98 Vss
19 BHE 39 Veo 59 A9 79 A22 99 D2
20 NC 40 INTR 60 A10 80 A23 100 D1
146 Am386 Microprocessors for Personal Computers

AMD l"l

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

NG 80386SX/SXL -2 ’9
Valid Combinations
NG 80386SX —40, —40/F
-33, -33/F
-25, -25/F
NG | 80386SX/SXL 20, -20/F
-16*, —16/F*

*Contact AMD for 16-MHz availability.

OPTIONAL PROCESSING
None = Trimmed and Formed PQFP in high-temp trays
/F = Ringed PQFP in horizontal tubes

TEMPERATURE RANGE
Blank = Commercial (0°C to +100°C)

SPEED OPTION

—40=40 MHz (Am386SX microprocessor only)
-33=33 MHz

—25=25 MHz

—20=20 MHz

-16=16 MHz*

DEVICE NUMBER/DESCRIPTION
80386SX/SXL

Am386SX/SXL High-Performance,
Low-Power, 32-Bit Microprocessor with
16-Bit Data Bus

PACKAGE TYPE
NG = 100-Pin Plastic Quad Flat Pack (PQB100)

Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
specific valid combinations and to check on newly
released combinations.

Am386SX/SXL Microprocessor Data Sheet 147

S

u AMD

PIN DESCRIPTIONS

A23-A1
Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS

Address Status (Active Low; Output)

Indicates that a valid bus cycle definition and address
(W/R, D/C, M/I0, BHE, BLE, and A23-A1) are being
driven at the Am386SX/SXL microprocessor pins.

BHE, BLE
Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take part
in a bus cycle.

BUSY
Busy (Active Low; Input)

Signals a busy condition from a processor extension.

CLK2

CLK2 (Input)

Provides the fundamental timing for the Am386SX/SXL
microprocessor.

D15-D0

Data Bus (Inputs/Outputs)

Inputs data during memory, /O, and interrupt
acknowledge read cycles; outputs data during memory
and I/O write cycles.

D/C

Data/Control (Output)

A bus cycle definition pin that distinguishes data cycles,
either memory or I/O, from control cycles which are:
interrupt acknowledge, halt, and code fetch.

ERROR
Error (Active Low; Input)

Signals an error condition from a processor extension.

FLT
Float (Active Low; Input)

An input which forces all bidirectional and output
signals, including HLDA, to the three-state condition.

HLDA
Bus Hold Acknowledge (Active High; Output)
Output indicates that the Am386SX/SXL microproces-

sor has surrendered control of its logical bus to another
bus master.

HOLD
Bus Hold Request (Active High; Input)

Input allows another bus master to request control of the
local bus.

INTR
Interrupt Request (Active High; Input)
A maskable input that signals the Am386SX/SXL micro-

processor to suspend execution of the current program
and execute an interrupt acknowledge function.

LoCcK
Bus Lock (Active Low; Output)
A bus cycle definition pin that indicates that other

system bus masters are not to gain control of the
system bus while it is active.

Mo

Memory/IO (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA
Next Address (Active Low; Input)
Used to request address pipelining.

NC

No Connect

Should always be left unconnected. Connection of aNC
pin may cause the processor to malfunction or be
incompatible with future steppings of the Am386SX/
SXL microprocessor.

NMI
Non-Maskable Interrupt Request
(Active High; Input)

A non-maskable input that signals the Am386SX/SXL
microprocessor to suspend execution of the current
program and execute an interrupt acknowledge
function.

PEREQ -

Processor Extension Request (Active High; Input)
Indicates that the processor has data to be transferred
by the Am386SX/SXL microprocessor.

READY
Bus Ready (Active Low; Input)

Terminates the bus cycle.

148 Am386 Microprocessors for Personal Computers

AMD n

RESET
Reset (Active High; Input)

Suspends any operation in progress and places the
Am386SX/SXL microprocessor in a known reset state.
Vcc

System Power (Input)

Provides the +5 V nominal DC supply input.

Vss
System Ground (Input)

Provides the 0 V connection from which all inputs and
outputs are measured.

W/R
Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

Am386SX/SXL Microprocessor Data Sheet 149

n AMD

INTRODUCTION

The Am386SX/SXL microprocessor is 100% object-
code compatible with the Am386DX/DXL, 286, and
8086 microprocessors. System manufacturers can
provide Am386DX/DXL CPU-based systems optimized
for performance and Am386SX/SXL CPU-based sys-
tems optimized for cost, both sharing the same
operating systems and application software. Systems
based on the Am386SX/SXL microprocessor can
access the world’s largest existing microcomputer
software base.

Instruction pipelining, high-bus bandwidth, and a very
high-performance ALU ensure short average instruction
execution times and high system throughput. The
Am386SX/SXL CPU is capable of execution at
sustained rates of 2.5-3.0 million instructions per
second (MIPS).

The integrated Memory Management Unit (MMU)
includes an address translation cache, advanced multi-
tasking hardware, and a four-level hardware-enforced
protection mechanism to support operating systems.
The virtual machine capability of the Am386SX/SXL
CPU allows simultaneous execution of applications
from multiple operating systems such as MS-DOS and
UNIX.

The Am386SX/SXL CPU offers on-chip testability and
debugging features. Four breakpoint registers allow
conditional or unconditional breakpoint traps on code
execution or data accesses for powerful debugging of
even ROM-based systems. Other testability features
include self-test, three-state of output buffers, and direct
access to the page translation cache.

BASE ARCHITECTURE

The Am386SX/SXL microprocessor consists of a cen-
tral processing unit, a Memory Management Unit, and a
bus interface.

The central processing unit consists of the execution
unit andthe instruction unit. The execution unit contains
the eight 32-bit general purpose registers which are
used for both address calculation and data operations
and a 64-bit barrel shifter used to speed shift, rotate,
multiply, and divide operations. The instruction unit
decodes the instruction op-codes and stores theminthe
decoded instruction queue for immediate use by the
execution unit.

The MMU consists of a segmentation unit and a paging
unit. Segmentation allows the managing of the logical
address space by providing an extra addressing
component, one that allows easy code and data
relocatability, and efficient sharing. The paging
mechanism operates beneath and is transparent to the
segmentation process, to allow management of the
physical address space.

The segmentation unit provides four leveis of protection
for isolating and protecting applications and the
operating system from each other. The hardware
enforced protection allows the design of systems with a
high degree of integrity.

The Am386SX/SXL microprocessor has two modes of
operation: Real Address Mode (Real Mode) and
Protected Virtual Address Mode (Protected Mode). In
Real Mode the Am386SX/SXL CPU operates as a very
fast 8086, but with 32-bit extensions, if desired. Real
Mode is required primarily to set up the processor for
Protected Mode operation.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386SX/SXL microproces-
sor operating system by use of paging.

Finally, to facilitate high-performance system hardware
designs, the Am386SX/SXL microprocessor bus
interface offers address pipelining and direct Byte
Enable signals for each byte of the data bus.

Register Set

The Am386SX/SXL microprocessor has 34 registers as
shown in Figure 1. These registers are grouped into the
following seven categories:

General Purpose Registers: The eight 32-bit general
purpose registers are used to contain arithmetic and
logical operands. Four of these (EAX, EBX, ECX, and
EDX) can be used either in their entirety as 32-bit
registers, as 16-bit registers, or split into pairs of
separate 8-bit registers.

Segment Registers: Six 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data.

Flags and Instruction Pointer Registers: The two
32-bit special purpose registers in Figure 1 record or
control certain aspects of the Am386SX/SXL micropro-
cessor state. The EFLAGS register includes status and
control bits that are used to reflect the outcome of many
instructions and modify the semantics of some
instructions. The Instruction Pointer (EIP) is 32-bits
wide. The EIP controls instruction fetching, and the
processor automatically increments it after executing an
instruction.

Control Registers: The four 32-bit control registers are
used to control the global nature of the Am386SX/SXL
microprocessor. The CRO register contains bits that set
the different processor modes (Protected, Real, Paging,
and Coprocessor Emulation). CR2 and CR3 registers
are used in the paging operation.

150 Am386 Microprocessors for Personal Computers

AMD u

31 16 15 8 7 0
AH AIX AL
BH B|X BL
CH C|X CL
DH D|X DL
S|
DI
BP
SP
15 0
31 16 15 0
FLAGS
IP

Page Fault Linear Address Register
Page Directory Base Register
16 15 0
63 48
31 0

Linear Breakpoint Address 0
Linear Breakpoint Address 1
Linear Breakpoint Address 2
Linear Breakpoint Address 3

Breakpoint Status
Breakpoint Control
31 0
Test Control
Test Status

Reserved for future use—do not use.

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

Cs
SS
DS
ES
FS
GS

EFLAGS |

EIP

CRo
CR1
CR2
CR3

GDTR
IDTR
LDTR
TR

DRoO
DR1
DR2
DR3
DR4
DR5
DRé
DR7

TR6
TR7

-

Figure 1. Am386SX/SXL Microprocessor Registers

General Purpose Registers

Segment Registers

Flags & Instruction Pointer

Control Registers

System Address Registers

Debug Registers

Test Registers

15022B-004

Am386SX/SXL Microprocessor Data Sheet

151

a AMD

System Address Registers: These four special regis-
ters reference the tables or segments supported by
the 80286/Am386SX/SXL/Am386DX/DXL CPU’s pro-
tection model. These tables or segments are:

GDTR (Global Descriptor Table Register),
IDTR (Interrupt Descriptor Table Register),
LDTR (Local Descriptor Table Register),
TR (Task State Segment Register).

Debug Registers: The six programmer accessible de-
bug registers provide on-chip support for debugging.
The use of the debug registers is described in the sec-
tion Debugging Support.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressable
Memories) in the Translation Look-Aside Buffer portion
of the Am386SX/SXL microprocessor. Their use is dis-
cussed in the section Testability.

EFLAGS Register

The flag register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 2, control certain operations and indicate the
status of the Am386SX/SXL microprocessor. The lower
16 bits (bits 15-0) of EFLAGS contain the 16-bit flag
register named FLAGS. This is the default flag register

used when executing 8086, 80286, or real mode code.
The functions of the flag bits are given in Table 1.

Control Registers

The Am386SX/SXL microprocessor has three control
registers of 32 bits, CR3-CRO, to hold the machine
state of a global nature. These registers are shown in
Figures 1 and 2. The defined CRO bits are described in
Table 2.

Instruction Set

The instruction set is divided into nine categories of
operations:
Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High-Level Language Support
Operating System Support
Processor Control

These instructions are listed in the Instruction Set Clock
Count Summary (pages 217 through 231).

Special Fields:
I/O Privilege Level

Nested Task

17 16 15 114 1312

Status Flags:
Overflow

Sign

Zero

Aux Carry
Parity

Carry
1110 9 8 7J65 43 21|o
v v v) v

VM|RF| 0 [NT| IOPL
1

OF|DF| IF | TF|SF|ZF| 0 |AF| O |PF| 1 |CF| EFLAGS

Control Flags:
Trap

Interrupt
Direction
Resume

Paging Enable Monitor Coprocessor
Emulate Coprocessor

Virtual 8086 Mode

Protection Enable

Task Switched
1 LA 2]

TS|EM|MP|PE| CRO

31 16: 15

Msw
15022B-005

Figure 2. Status and Control Register Bit Functions

152 Am386 Microprocessors for Personal Computers

AMD u

Table 1. Flag Definitions

Bit Position Name Function
0 CF Carry Flag—Set on high-order bit carry or borrow; cleared otherwise.
2 PE Parity Flag—Set if low-order 8 bits of result contain an even number of 1 bits;
cleared otherwise.
4 AF Auxiliary Carry Flag—Set on carry from or borrow to the low-order 4 bits of
AL; cleared otherwise.
6 ZF Zero Flag—Set if result is zero; cleared otherwise.
7 SF Sign Flag—Set equal to high-order bit of result (0 if positive, 1 if negative).
8 TE Single-Step Flag—Once set, a single-step interrupt occurs after the next
instruction executes. TF is cleared by the single-step interrupt.
9 IE Interrupt-Enable Flag—When set, maskable interrupts will cause the CPU to
transfer control to an interrupt vector specified location.
10 DF Direction Flag—Causes string instructions to auto-increment (default) the
appropriate index registers when cleared. Setting DF causes auto-decrement.
Overflow Flag—Set if the operation resulted in a carry/borrow into the sign bit
11 OF (high-order bit) of the result but did not result in a carry/borrow out of the high-
order bit or vice-versa.
I/O Privilege Level—Indicates the maximum CPL permitted to execute /O
instructions without generating an Exception 13 fault or consulting the 1/0
12,13 I1OPL permission bit map while executing in protected mode. For virtual 8086 mode
it indicates the maximum CPL allowing alteration of the IF bit.
Nested Task—Indicates that the execution of the current task is nested within
14 NT
another task.
Resume Flag—Used in conjunction with debug register breakpoints. It is
16 RF checked at instruction boundaries before breakpoint processing. If set, any
debug fault is ignored on the next instruction.
Virtual 8086 Mode—If set while in protected mode, the Am386SXL micro-
17 VM processor will switch to virtual 8086 operation, handling segment loads as
8086 does, but generating Exception 13 faults on privileged op-codes.
Table 2. CRO Definitions
Bit Position Name Function
Protection Mode Enable—Places the Am386SXL microprocessor into pro-
tected mode. If PE is reset, the processor operates again in Real Mode. PE
0 PE may be set by loading MSW or CRO0. PE can be reset only by loading CRO;
it cannot be reset by the LMSW instruction.
1 MP Monitor Coprocessor Extension—Allows WAIT instructions to cause a
processor extension Not Present exception (number 7).
Emulate Processor Extension—Causes a processor extension Not Present
2 EM exception (number 7) on ESC instructions to allow emulating a processor
extension.
Task Switched—Indicates the next instruction using a processor extension will
3 TS cause Exception 7, allowing software to test whether the current processor
extension context belongs to the current task.
31 PG Paging Enable Bit—Is set to enable the on-chip paging unit. It is reset to

disable the on-chip paging unit.

Am386SX/SXL Microprocessor Data Sheet 153

a AMD

All Am386SX/SXL microprocessor instructions operate
on either 0, 1, 2, or 3 operands; an operand resides in a
register, in the instruction itself, orin memory. Most zero
operand instructions (e.g., CLI, STI) take only one byte.
One operand instructiongenerally is two bytes long. The
average instruction is 3.2-bytes long. Since the
Am386SX/SXL CPU has a 16-byte prefetch instruction
queue, an average of 5 instructions will be prefetched.
The use of two operands permits the following types of
common instructions:

Register to Register

Memory to Register

Immediate to Register

Memory to Memory

Register to Memory

Immediate to Memory
The operands can be either 8, 16, or 32 bits long. As a
general rule, when executing code written for the
Am386SX/SXL microprocessor (32-bit code), operands
are 8 or 32 bits; when executing existing 8086 or 80286
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to all instructions which override the
default length of the operands (i.e., use 32-bit operands
for 16-bit code, or 16-bit operands for 32-bit code).

Memory Organization

Memory on the Am386SX/SXL microprocessor is
divided into 8-bit quantities (Bytes), 16-bit quantities
(Words), and 32-bit quantities (Dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address. Dwords are stored
in four consecutive bytes in memory with the low-order
byte at the lowest address. The address of a Word or
Dword is the byte address of the low-order byte.

In additionto these basic data types, the Am386SX/SXL
microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up into
one or more variable length segments, which can be
swapped to disk or shared between programs. Memory
can also be organized into one or more 4-Kb pages.
Finally, both segmentation and paging can be
combined, gaining the advantages of both systems.
The Am386SX/SXL CPU supports both pages and
segmentation in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary. Segmentation is useful for organizing
memory in logical modules, and, as such, is atool forthe
application programmer, while pages are useful to the
system programmer for managing the physical memory
of a system.

Effective Address Calculation
Index
Base Displacement
Scale
1,2,4,8 15 0
» + BHE-BLE
N A23-A1 .
Physical
Effective Address Memory
2 >
15 2 0 4 . .
. . 32 Paging Unit 24
R Logical or Segﬁl‘f".'at'o" 7 (Optional Use) 7
Virtual Address nit Li)
Selector P 114, inear Physical
L Address Address
Descriptor
- Segment Register Index
15021B-011

Figure 3. Address Translation

154 Am386 Microprocessors for Personal Computers

AMD n

Address Spaces

The Am386SX/SXL microprocessor has three types of
address spaces: logical, linear, and physical. A logical
address (also known as a virtual address) consists of a
selector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all of
the addressing components (Base, Index, Displace-
ment) discussed in the section Addressing Modes, into
an effective address. This effective address, along with
the selector, is known as the logical address. Since each
task onthe Am386SX/SXL CPU has a maximum of 16K
(2'*-1) selectors, and offsets can be 4 Gb (with paging
enabled), this gives a total of 2¢ bits, or 64 tb, of logical
address space per task. The programmer sees the
logical address space.

The segmentation unit translates the logical address
space into a 32-bit linear address space. If the paging
unit is not enabled then the 32-bit linear address is
truncated into a 24-bit physical address. The physical
address is what appears on the address pins.

The primary differences between Real Mode and
Protected Mode are how the segmentation unit
performs the translation of the logical address into the
linear address, size of the address space, and paging
capability. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
effective address to form the linear address. This linear
address is limited to 1 Mb. In addition, Real Mode has
no paging capability.

Protected Mode will see one of two different address
spaces, depending on whether or not paging is enabled.
Every selector has a logical base address associated
with it that can be up to 32 bits in length. This 32-bit
logicalbase address is added to the effective address to
form a final 32-bit linear address. If paging is disabled,
this final linear address reflects physical memory and is
truncated so that only the lower 24 bits of this address
are used to address the 16-Mb memory address space.
If paging is enabled, this final linear address reflects a
32-bit address that is translated through the paging unit
to form a 16-Mb physical address. The logical base
address is stored in one of two operating system tables
(i.e., the Local Descriptor Table or Global Descriptor
Table).

Figure 3 shows the relationship between the various
address spaces.

Segment Register Usage

The main data structure used to organize memory is the
segment. On the Am386SX/SXL CPU, segments are
variable sized blocks of linear addresses which have
certain attributes associated with them. There are two
main types of segments, code and data. The segments
are of variable size and can be as small as 1 byte or as
large as 4 Gb (2% bits).

In order to provide compact instruction encoding and
increase processor performance, instructions do not

need to explicitly specify which segment register is
used. The segment register is automatically chosen
according to the rules of Table 3 (Segment Register
Selection Rules). In general, data references use the
selector contained in the DS register; stack references
use the SS register; and, instruction fetches use the CS
register. The contents of the Instruction Pointer provide
the offset. Special segment override prefixes allow the
explicit use of a given segment register and override the
implicit rules listed in Table 3. The override prefixes also
allow the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all six
segments could have the base address set to zero and
create a system with 4-Gb linear address space.
This creates a system where the virtual address space
is the same as the linear address space. Further details
of segmentation are discussed in the section Protected
Mode Architecture.

Addressing Modes

The Am386SX/SXL microprocessor provides a total of
eight addressing modes for instructions to specify
operands. The addressing modes are optimized to allow
the efficient execution of high-level languages suchas C
and FORTRAN, and they coverthe vast majority of data
references needed by high-level languages.

Register and Inmediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands.

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction as part of the op-code.

32-Bit Memory Addressing Modes

The remaining six modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by summing any com-
bination of the following three address elements (see
Figure 3).

Displacement: an 8-,16-, or 32-bit immediate value,
following the instruction.

Base: The contents of any general purpose register.
The base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general purpose register
except for ESP. The index registers are used to access
the elements of an array or a string of characters. The
index register’s value can be multiplied by a scale factor,
either 1, 2, 4, or 8. The scaled index is especially useful
for accessing arrays or structures.

Am386SX/SXL Microprocessor Data Sheet 155

a AMD

Table 3. Segment Register Selection Rules

STOS, REP MOVS Instructions

Other Data References, with
Effective Address Using Base

Register of:
[EAX] DS
[EBX] DS
[ECX] DS
[EDX] DS
[ESI] DS
[EDI] Ds
[EBP] SS
[ESP] Ss

Type of Memory Reference Implied (Default) Segment Use | Segment Override Prefixes Possible
Code Fetch CS None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, SS None
IRET, RET Instructions
Destination of STOS, MOVE, REP ES None

CS, SS, ES, FS, GS
CS, SS, ES, FS, GS
CS, SS, ES, FS,GS
CS, SS, ES, FS, GS
CS, SS, ES, FS, GS
CS, SS, ES, FS, GS
CS, DS, ES, FS, GS
CS, DS, ES, FS, GS

Combinations of these three components make up the
six additional addressing modes. There is no perform-
ance penalty for using any of these addressing
combinations, since the effective address calculation is
pipelined with the execution of other instructions. The
one exception is the simultaneous use of Base and
Index components which requires one additional clock.

As shown in Figure 4, the Effective Address (EA) of
an operand is calculated according to the following
formula:

EA = BaseRegister + (IndeXRegister X Scaling) + Displacement

1. Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16-, or 32-bit
displacement.

2. Register Indirect Mode: A Base register contains
the address of the operand.

3. Based Mode: A Base register’s contents are added
to a Displacement to form the operand’s offset.

4. Scaled Index Mode: An Index register's contents
are multiplied by a Scaling factor, and the result is
added to a Displacement to form the operand’s
offset.

5. Based Scaled Index Mode: The contents of an
Index register are multiplied by a Scaling factor, and
the result is added to the contents of a Base register
to obtain the operand’s offset.

6. Based Scaled Index Mode with Displacement:
The contents of an Index register are multiplied by a
Scaling factor, and the resultis added to the contents
of a Base register and a Displacement to form the
operand’s offset.

Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 8086
and the 80286, the Am386SX/SXL microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the
instructions it is executing by examining the D bit in a
Segment Descriptor. If the D bit is 0, then all operand
lengths and effective addresses are assumed to be
16-bits long. If the D bit is 1, then the default length for
operands and addresses is 32 bits. In Real Mode the
default size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386SX/SXL microprocessor is able
to execute either 16- or 32-bit instructions. This is
specified through the use of override prefixes. Two
prefixes, the Operand Length Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are
automatically added by assemblers.

The Operand Length and Address Length Prefixes can
be applied separately or in combination to any
instruction. The Address Length Prefix does not allow
addresses over 64 Kb to be accessed in Real Mode.
A memory address which exceeds OFFFFH will result
in a General Protection Fault. An Address Length Prefix
only allows the use of the additional Am386SX/SXL
CPU addressing modes.

When executing 32-bit code, the Am386SX/SXL CPU
uses either 8- or 32-bit displacements, and any register
canbe used as Base or Index registers. When executing
16-bit code, the displacements are either 8- or 16-bits,
and the Base and Index registers conform to the
80286 model. Table 4 illustrates the differences.

156 Am386 Microprocessors for Personal Computers

AMD a

Segment Registers

SS { Base Register I
GS
FSES r Index Register I
DS Selector
—>» CS
Scale
1,2,4,0r8
Displacement
(In Instruction)
Effective S t
Address / ?ﬂms 4
Descriptor Registers Linear \
Address
Access Rights SSj Target Address
Access Rights GS I
Access Rights FS | Selected
Access Rights ES I Segment
Access Rights DS |
Access Rights CS
Limit . _J
Base Address Segment Base Address
15021B-012
Figure 4. Addressing Mode Caiculations
Data Types Unsigned Quad Word: An unsigned 64-bit quantity.

The Am386SX/SXL microprocessor supports all of the
data types commonly used in high-level languages.

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits, which
spans a maximum of four bytes.

Bit String: A set of contiguous bits; on the Am386SX/
SXL microprocessor, bit strings can be up to 4 Gbits
long.

Byte: A signed 8-bit quantity.
Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Dword): A signed 32-bit quantity. All
operations assume a 2’s complement representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.

. Unsigned Long Integer (Dword): An unsigned 32-bit
quantity.

Signed Quad Word: A signed 64-bit quantity.

Pointer: A 16- or 32-bit offset-only quantity which
indirectly references another memory location.

Long Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII alphanumeric
or control character.

String: A contiguous sequence of bytes, Words, or
Dwords. A string may contain between 1 byte and 4 Gb.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the Am386SX/SXL microprocessor is coupled
with a 387SX math coprocessor, the following common
floating point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number

representation. Floating point numbers are supported
by 387SX-compatible math coprocessors.

Am386SX/SXL Microprocessor Data Sheet 157

:l AMD

Table 4. Base and Index Registers for 16- and
32-Bit Addresses

16-Bit 32-Bit
Addressing Addressing
Base Register | BX, BP Any 32-bit GP Register

Index Register | g, DI Any 32-bit GP Register

Except ESP
Scale Factor None 1,2,4,8
Displacement 0, 8, 16 bits 0, 8, 32 bits

Figure 5 illustrates the data types supported by
the Am386SX/SXL microprocessor and a 387SX-
compatible math coprocessor.

I/0 Space

The Am386SX/SXL CPU has two distinct physical
address spaces: physical memory and I/O. Generally,
peripherals are placed in /O space, although the
Am386SX/SXL CPU also supports memory-mapped
peripherals. The 1/O space consists of 64 Kb which can
be divided into 64K 8-bit ports or 32K 16-bit ports, or any
combination of ports which add up to no more than
64 Kb. The 64Kb 1/O address space refers to physical
addresses rather than linear addresses since I/O
instructions do not go through the segmentation or
paging hardware. The M/IO pin acts as an additional
address line, thus allowing the systemdesigner to easily
determine which address space the processor is
accessing.

The I/O ports are accessed by the In and Out
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the DX
register. All 8-bit and 16-bit port addresses are zero
extended on the upper address lines. The IO
instructions cause the M/IO pin to be driven Low. /O
port addresses 00F8H through 00FFH are reserved for
future use.

Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow in order to handle external events, report errors,

or report exceptional conditions. The difference be-

tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT n
instruction, the processor treats software interrupts as
exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the interrupt
handler is finished servicing the interrupt, execution
proceeds with the instruction immediately after the
interrupted instruction.

Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported and whether

or not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
Traps are exceptions that are reported immediately
after the execution of the instruction which caused the
problem. Aborts are exceptions that do not permit the
precise location of the instruction causing the exception
to be determined.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. Onthe
other hand, the return address from an exception fault
routine will aiways point to the instruction causing the
exception and will include any leading instruction
prefixes. Table 5 summarizes the possible interrupts for
the Am386SX/SXL microprocessor and shows where
the return address points.

The Am386SX/SXL CPU has the ability to handle up to
256 different interrupts/exceptions. In order to service
the interrupts, a table with up to 256 interrupt vectors
must be defined. The interrupt vectors are simply
pointers to the appropriate interrupt service routine. In
Real Mode, the vectors are 4-byte quantities, a Code
Segment plus a 16-bit offset; in Protected Mode,
the interrupt vectors are 8-byte quantities which are
put in an Interrupt Descriptor Table. Of the 256 possible
interrupts, 32 are reserved for future use and the re-
maining 224 are free to be used by the system designer.

Interrupt Processing

When an interrupt occurs, the following actions happen.
First, the current program address and Flags are saved
on the stack to allow resumption of the interrupted
program. Next, an 8-bit vector is supplied to the
Am386SX/SXL microprocessor which identifies the ap-
propriate entry in the interrupt table. The table contains
the starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is executed
the old processor state is restored and program
execution resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386SX/
SXL microprocessor in several different ways: excep-
tions supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maskable
hardware interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events. A
hardware interrupt occurs when the INTR is pulled High
and the Interrupt Flag bit (IF) is enabled. The processor
only responds to interrupts between instructions (string
instructions have an interrupt window between mem-
ory moves that allows interrupts during long string

158 Am386 Microprocessors for Personal Computers

AMD I‘J

. o +N +1 0
. Binary (L 7 0 (1]
Signed [TTTTTT Coded | TTTTTTT BRERERI ERRERRE
Byte Decimal b
W (BCD)
Sign Bit 1 | I BCD BCD BCD
Magnitude Digit N Digit 1 Digit 0
+N +1 0
. 7 7 7 07
UnSIgnedlllllll IIIII[I Illlllllllllll
Byte ASCII oo
I ASClI AscCll ASClI
Magnitude Charactern Character: Charactero
+1 0
15 14 87 0 , N, o
Signed [[TT]TTT FTrT TTT[TTT TTTJTTTRITT[ITT
Word Packed BCD see
Sign Bit -IIL MSB | l | L1
" Most Least
M tud v
agnituce Significant Significant
Digit Digit
+1 0 +N +1 0
) 15 0 7/15 7/15 0 7/15 0
Unsigned[TT T[T T T [TTTTTT Byte Ill|ll|.”ll TTTRITT[TTT
Word String
L 1
Magnitude
a1 +3 42 o 0 o +2 Gbits —2 Gbits
16 15 210
Signed T TTT T T T[T TT [TT T[T T T[T TT[TTT "
Double i ! l ! Bit } g
Word String
Sign Bit J[L MSB Bit 0
]
Magnitude
31 +3 +2 +1 0 0 31 +3 +2 +1 0 0
Unsigned [TT T[T T T [TTT[TTT[TTT[TTT[TTT[TTT Shot [TT V[TTV[TI T[T T [TTT[TTT[TTT[TT1T
Double 32-Bit
Word Pointer
L J L |
Magnitude Offset
+7 +6 +5 +4 +3 +2 +1 0 +5 +4 +3 +2 +1 0
63 48 47 32 31 1615 0 47 0
Signed Long llTllII IIIIIII III|III Illllll III|III lll||||
Quad 48-Bit
Word Pointer
sign Bit 4 L MsB
R | | | |
Magnitude Selector Offset
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 0
Floating
Point*
Sign Bit - l |
Exponent Magnitude
+5 +4 +3 +2 +1 0
32-Bit T[T I T[T [T T[T T I T[T [TTITTd v
Bit Field
le— Bit Field —
11032 Bits 15021B-013
*Supported by a 387SX-compatible math coprocessor
Figure 5. Am386SX/SXL Microprocessor Supported Data Types
Am386SX/SXL Microprocessor Data Sheet 159

n AMD

Table 5. Interrupt Vector Assignments

Interrupt Instruction Which Return Address Points

Function Number Can Cause Exception to Faulting Instruction Type
Divide Error 0 DIV, IDIV Yes FAULT
Debug Exception Any Instruction Yes TRAP*
NMI Interrupt 2 INT2 or NMI No NMI
One Byte Interrupt 3 INT No TRAP
Interrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-code 6 Any lllegal Instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fault 8 Qggei&?g:cﬁon that can generate an ABORT
Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 11 Segment Register Instructions Yes FAULT
Stack Fault 12 Stack References Yes FAULT
General Protection Fault 13 Any Memory Reference Yes FAULT
Page Fault 14 Any Memory Access or Code Fetch Yes FAULT
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-32
Two Byte Interrupt 0-255 INT n No TRAP

Note: Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.

moves). When an interrupt occurs the processor reads
an 8-bit vector supplied by the hardware which identifies
the source of the interrupt (one of 224 user defined
interrupts).

Interrupts through interrupt gates automatically reset IF
bit, disabling INTR requests. Interrupts through Trap
Gates leave the state of the IF bit unchanged. Interrupts
through a Task Gate change the IF bit according to the
image of the EFLAGS register in the task’s Task State
Segment (TSS). When an IRET instruction is executed,
the original state of the IF bit is restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing
very high priority interrupts. When the NMI input is
pulled High it causes an interrupt with an internally
supplied vector value of 2. Unlike a normal hardware
interrupt, no interrupt acknowledgment sequence is
performed for an NMI.

While executing the NMI servicing procedure, the
Am386SX/SXL microprocessor will not service any fur-
ther NMI request or INT requests until an Interrupt Re-
turn (IRET) instruction is executed or the processor is
reset. If NMI occurs while currently servicing an NM, its
presence will be saved for servicing after executing the
first IRET instruction. The IF bit is cleared at the begin-
ning of an NMl interrupt to inhibit further INTR interrupts.

Software Interrupts

Athird type of interrupt/exception for the Am386SX/SXL
CPU is the software interrupt. An INT n instruction

causes the processor to execute the interrupt service
routine pointed to by the nth vector in the interrupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3, or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in his program as a debugging tool.

A final type of software interrupt is the single-step
interrupt. It is discussed in section Single-Step Trap.

Interrupt and Exception Priorities

Interrupts are externally generated events. Mask-
able Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at instruc-
tion boundaries. When NM! and maskable INTR are
both recognized at the same instruction boundary, the
Am386SX/SXL microprocessor invokes the NMI
service routine first. If maskable interrupts are still
enabled after the NMI service routine has been invoked,
thenthe Am386SX/SXL CPU willinvoke the appropriate
interrupt service routine.

As the Am386SX/SXL microprocessor executes in-
structions, it follows a consistent cycle in checking for
exceptions, as shown in Table 6. This cycle is repeated
as each instruction is executed, and occurs in parallel
with instruction decoding and execution.

Instruction Restart

The Am386SX/SXL microprocessor fully supports re-
starting all instructions after Faults. If an exception is

160 Am386 Microprocessors for Personal Computers

AMD n

detected in the instruction to be executed (exception
categories 4 through 10 in Table 6), the Am386SX/SXL
microprocessor invokes the appropriate exception
service routine. The Am386SX/SXL microprocessor is
in a state that permits restart of the instruction, for all
cases by those given in Table 7. Note that all such
cases will be avoided by a properly designed operating
system.

Double Fault

A Double Fault (Exception 8) results when the
processor attempts to invoke an exception service
routine for the segment exceptions (10, 11, 12, or 13),
but in the process of doing so detects an exception other
than a Page Fault (Exception 14).

One other cause of generating a Double Fault is the
Am386SX/SXL CPU detecting any other exception
when it is attempting to invoke the Page Fault (Excep-
tion 14) service routine (e.g., if a Page Fault is detected
when the Am386SX/SXL microprocessor attempts to in-
voke the Page Fault service routine). Of course, in any
functional system, not only the Am386SX/SXL CPU-

based systems, the entire Page Fault service must
remain present in memory.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 8. The Am386SX/SXL
CPU will then start executing instructions near the
top of physical memory, at location OFFFFFOH. When
the firstintersegment Jump or Call is executed, address
lines A23—-A20 will drop Low for CS-relative memory
cycles, and the Am386SX/SXL CPU will only execute
instructions in the lower 1 Mb of physical memory. This
allows the systemdesigner to use a shadow ROM at the
top of physical memory to initialize the system and take
care of Resets.

Reset forces the Am386SX/SXL microprocessor to
terminate all execution and local bus activity. No
instruction execution or bus activity will occur as long as
Reset is active. Between 350- and 450-CLK2 periods
after Reset becomes inactive, the Am386SX/SXL mi-
croprocessor will start executing instructions at the top
of physical memory.

Table 6. Sequence of Exception Checking

Consider the case of the Am386SXL microprocessor having just completed an instruction. It then performs the following checks

before reaching the point where the next instruction is completed.

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data Breakpoints set in the

Debug Registers).
2. Check for external NMI and INTR.

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the Debug Registers for the next

instruction).

4. Check for Segmentation Faults that prevented fetching the entire next instruction (Exceptions 11 and 13).

o

Check for Page Faults that prevented fetching the entire next instruction (Exception 14).

6. Check for Faults decoding the next instruction (Exception 6 if illegal op-code; Exception 6 if in Real Mode or in Virtual 8086
Mode and attempting to execute an instruction for Protected Mode only; or Exception 13 if instruction is longer than 15 bytes, or
privilege violation in Protected Mode (i.e., not at IOPL or at CPL =0)).

7. If WAIT op-code, check if TS=1 and MP = 1(Exception 7 if both are 1).

®

If ESCape op-code for math coprocessor, check if EM=1 or TS=1 (Exception 7 if either are 1).

9. If WAIT op-code or ESCape op-code for math coprocessor, check ERROR input signal (Exception 16 if ERROR input is

asserted).

10. Check in the following order for each memory reference required by the instruction.

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (Exceptions 11, 12, and 13).
b. Check for Page Faults that prevent transferring the entire memory quantity (Exception 14).

Note: Segmentation exceptions are generated before paging exceptions.

Table 7. Conditions Preventing Instruction Restart

. An instruction causes a task switch to a task whose Task State Segment (TSS) is partially not present (an entire not present

TSS is restartable). Partially present TSSs can be avoided either by keeping the TSSs of such tasks present in memory, or by
aligning TSS segments to reside entirely within a single 4K page (for TSS segments of 4 Kb or less).

A coprocessor operand wraps around the top of a 64-Kb segment or a 4-Gb segment and spans three pages, and the page
holding the middle portion of the operand is not present. This condition can be avoided by starting at a page boundary any
segments containing coprocessor operands, if the segments are approximately 64K—200K bytes or larger (i.e., large enough
for wraparound of the coprocessor operand to possibly occur).

Note: These conditions are avoided by using the operating system designs mentioned in this table.

Am386SX/SXL Microprocessor Data Sheet 161

n AMD

Table 8. Register Values after Reset

. Flag Word (EFLAGS)
Machine Status Word (CRO)
Instruction Pointer (EIP)
Code Segment (CS)
Data Segment (DS)
Stack Segment (SS)
Extra Segment (ES)
Extra Segment (FS)
Extra Segment (GS)
EAX Register
EDX Register
All Other Registers

uuuu0002H Note 1
uuuuuu10H
0000FFFOH
FOOOH Note 2
0000H Note 3
0000H
0000H Note 3
0000H
0000H
0000H Note 4
Component and Stepping ID Note 5
Undefined Note 6

Notes: 1. EFLAGS Register. The upper 14 bits of the EFLAGS register are undefined; all defined flag bits are zero.
2. The Code Segment register (CS) will have its Base Address set to OFFFFOO00H and Limit set to OFFFFH.

The Data and Extra Segment registers (DS and ES) will have their Base Address set to 000000000H and Limit set to OFFFFH.

If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found, the self-test has detected a flaw in

the part.

3.
4.
5. EDX register always holds a component and stepping identifier.
6.

All undefined bits are reserved for future use and should not be used.

Testability

The Am386SX/SXL microprocessor, like the Am386DX/
DXL microprocessor, offers testability features that in-
clude a self-test and direct access to the page
translation cache.

Self-Test

The Am386SX/SXL microprocessor has the capability
to perform a self-test. The self-test checks the function
of all of the Control ROM and most of the non-random
logic of the part. Approximately one-half of the
Am386SX/SXL CPU can be tested during self-test.

Self-Test is initiated on the Am386SX/SXL micropro-
cessor when the Reset pin transitions from High to Low,
and the BUSY pin is Low. The self-test takes about 2%
clocks, or approximately 33 ms with a 16-MHz
Am386SX/SXL CPU. At the completion of self-test the
processor performs reset and begins normal operation.
The part has successfully passed selftest if the
contents of the EAX are zero. If the results of the EAX
are not zero, then the self-test has detected a flaw in
the part.

TLB Testing

The Am386SX/SXL microprocessor also provides a
mechanism for testing the Translation Look-Aside
Buffer (TLB), if desired. This particular mechanism may
not be continued in the same way in future processors.

There are two TLB testing operations: 1) writing entries
into the TLB; and, 2) performing TLB lookups. Two test
registers, shown in Figure 6 are provided for the
purpose of testing. TR6 is the test command register,
and TR7 is the test data register.

Debugging Support

The Am386SX/SXL microprocessor provides several
features which simplify the debugging process. The
three categories of on-chip debugging aids are:

1. The code execution breakpoint op-code (0CCH).

2. The single-step capability provided by the TF bit in
the flag register.

3. The code and data breakpoint capability provided by
the Debug Registers DR3-DRO0, DR6, and DR7.

Breakpoint Instruction

A single-byte software interrupt (INT 3) breakpoint
instruction is available for use by software debuggers.
The breakpoint op-code is 0CCH, and generates an
Exception 3 trap when executed.

Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAGS register
is found to be set at the end of an instruction, a
single-step exception occurs. The single-step exception
is auto-vectored to Exception 1.

Debug Registers

The Debug Registers are an advanced debugging
feature of the Am386SX/SXL microprocessor. They
allow data access breakpoints as well as code
execution breakpoints. Since the breakpoints are
indicated by on-chip registers, an instruction execution
breakpoint can be placed in ROM code or in code
shared by several tasks, neither of which can be
supported by the INT 3 breakpoint op-code.

The Am386SX/SXL microprocessor contains six De-
bug Registers, consisting of four breakpoint address

162 Am386 Microprocessors for Personal Computers

AMD
Table 9. Exceptions in Real Mode
Interrupt Related Return
Function Number Instructions Address Location
Interrupt table limit too smalll 8 INT vector is not within table limit Before
Instruction
CS, DS, ES, FS, GS 13 Word memory reference with Before
Segment Overrun exception offset=0FFFFH. An attempt to Instruction
execute past the end of CS segment.
SS Segment Overrun exception 12 Stack Reference Before
beyond offset = OFFFFH. Instruction

Command
Writable
User
Dirty
Valid
Test
[—_l —| _| Control
Linear Address V|ID|D|U|U{|W C | TR6
31 1211 10 9 8 7 6 5 0
Test
Status
1]
Physical Address REP TR7
i
31 12 4 3 2 0

Reserved for future use —do not use.

15022B-006

Figure 6. Test Registers

registers and two breakpoint control registers. Initially
after reset, breakpoints are in the disabled state;
therefore, no breakpoints will occur unless the Debug
Registers are programmed. Breakpoints set up in the
Debug Registers are auto-vectored to Exception 1.
Figure 7 shows the breakpoint status and control
registers.

REAL MODE ARCHITECTURE

When the processor is reset or powered up it is
initialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the 32-bit
register set of the Am386SX/SXL microprocessor. The
addressing mechanism, memory size, and interrupt
handling are all identical to the Real Mode onthe 80286.

The default operand size in Real Mode is 16 bits, as in
the 8086. In order to use the 32-bit registers and
addressing modes, override prefixes must be used. In
addition, the segment size on the Am386SX/SXL micro-
processor in Real Mode is 64 Kb, so 32-bit addresses
must have a value less than 0000FFFFH. The primary
purpose of Real Mode is to set up the processor for
Protected Mode operation.

Memory Addressing

In Real Mode the linear addresses are the same as
physical addresses (paging is not allowed). Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register which is
shifted left by four bits to an effective address. This
addition results in a 20-bit physical address or a 1-Mb
address space. Since segment registers are shifted left
by 4 bits, Real Mode segments always start on 16-byte
boundaries.

All segments in Real Mode are exactly 64-Kb long, and
may be read, written, or executed. The Am386SX/SXL
microprocessor will generate an Exception 13 if a data
operand or instruction fetch occurs past the end of a
segment.

Reserved Locations

There are two fixed areas in memory that are reserved
in Real Address Mode: the system initialization area
and the interrupt table area. Locations 00000H through
003FFH are reserved for interrupt vectors. Each
one of the 256 possible interrupts has a 4-byte jump

Am386SX/SXL Microprocessor Data Sheet

163

n AMD

vector reserved for it. Locations OFFFFFOH through
OFFFFFFH are reserved for system initialization.

Interrupts

Many of the exceptions discussed in section Interrupts
and Exceptions are not applicable to Real Mode
operation; in particular, Exceptions 10, 11, and 14 do
not occur in Real Mode. Other exceptions have slightly
different meanings in Real Mode; Table 9 identifies
these exceptions.

Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, FLT, INTR with interrupts enabled
(IF=1), or Reset will force the Am386SX/SXL micropro-
cessor out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode, shut-
down can occur under two conditions:

1. Aninterrupt or an exception occurs (Exceptions 8 or
13) and the interrupt vector is larger than the
Interrupt Descriptor Table.

2. A Call, INT, or Push instruction attempts to wrap
around the stack segment when SP is not even.

An NMl input can bring the processor out of shutdown if
the Interrupt Descriptor Table limit is large enough to
contain the NMl interrupt vector (atleast 000FH) and the
stack has enough room to contain the vector and flag in-
formation (i.e., SP is greater than 0005H). Otherwise,
shutdown can only be exited by a processor reset.

LOCK Operation

The LOCK prefix on the Am386SX/SXL microproces-
sor, even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Am386SX/SXL CPU in Protected Mode and Virtual
8086 Mode. The LOCK prefix is not supported during re-
peat string instructions.

The only instruction forms where the LOCK prefix is
legal on the Am386SX/SXL microprocessor are shown
in Table 10.

Table 10. Legal Instructions for the LOCK Prefix

Operands
Op-Code (Dest, Source)
BIT Test and Mem, Reg/Immed
SET/RESET/COMPLEMENT
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB Mem, Reg/immed
AND, SUB, XOR
NOT, NEG, INC, DEC Mem

An Exception 6 will be generated if a LOCK prefix is
placed before any instruction form or op-code not listed
above. The LOCK prefix allows indivisible read/modify/
write operations on memory operands using the instruc-
tions above.

The LOCK prefix is not IOPL-sensitive on the
Am386SX/SXL microprocessor. The LOCK prefix can
be used at any privilege level, but only on the instruction
forms listed in Table 10.

PROTECTED MODE ARCHITECTURE

The complete capabilities of the Am386SX/SXL micro-
processor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to 4 Gb (2% bytes), and allows the running of
virtual memory programs of almost unlimited size (64 tb
(2*¢ bytes)). In addition, Protected Mode allows the
Am386SX/SXL CPUto run all of the existing Am386DX/
DXL CPU (using only 16 Mb of physical memory),
80286, and 8086 CPU’s software, while providing a
sophisticated memory management and a hardware-
assisted protection mechanism. Protected Mode allows
the use of additional instructions specially optimized for
supporting multitasking operating systems. The base
architecture of the Am386SX/SXL microprocessor
remains the same; the registers, instructions, and
addressing modes described in the previous sections
are retained. The main difference between Protected
Mode and Real Mode from a programmer’s viewpoint is
the increased address space and a different addressing
mechanism.

Addressing Mechanism

Like Real Mode, Protected Mode uses two components
to form the logical address: a 16-bit selector is used to
determine the linear base address of a segment, the
base address is added to a 32-bit effective address to
form a 32-bit linear address. The linear address is then
either used as a 24-bit physical address, or if paging is
enabled, the paging mechanism maps the 32-bit linear
address into a 24-bit physical address.

The difference between the two modes lies in
calculating the base address. In Protected Mode, the
selector is used to specify an index into an operating
system defined table (see Figure 8). The table contains
the 32-bit base address of a given segment. The
physical address is formed by adding the base address
obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Am386SX/SXL microprocessor, as
paging operates beneath segmentation. The page
mechanism translates the protected linear address
which comes from the segmentation unit into a physical
address. Figure 9 shows the complete Am386SX/SXL
CPU addressing mechanism with paging enabled.

164 Am386 Microprocessors for Personal Computers

AMD n

Breakpoint 0 Debug Fault/Trap

Breakpoint 1 Debug Fault/Trap

Breakpoint 2 Debug Fault/Trap

Breakpoint 3 Debug Fault/Trap

Register Access Fault
Single-Step Debug Trap

Debug

Task Switch Debug Trap

Status

111

Control

Gi: Global Breakpoint Enable i 7]

Li: Local Breakpoint Enable i J

Local Exact Breakpoint Match
Global Exact Breakpoint Match

Global Debug Register Access Detect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TIBS'BDI B3|82|B1|Bol DR6
15 14 13 3 2 10
Breakpoint
Control
T 1

T T T T T T T T
I LE'Na rRWS I LEIN2 | R\{Vz I LEIN1 | R\{V1 I LEINO | R\‘VO |

L2]
1GE|LE|G3|L3|G2|L2|G1|L1|G0|L0 DR7

Reserved for future use —do not use.

9 8 7 6 5 4 3 2 10

[” LENi: Breakpoint Length i
L RWi: Memory Access Qualifier i

15022B-007

Figure 7. Debug Registers

Segmentation

Segmentation is one method of memory management.
It provides the basis for software protection and is used
to encapsulate regions of memory that have common
attributes. For example, all of the code of a given
program could be contained in a segment, or an
operating system table may reside in a segment. All
information about each segment is stored in an 8-byte
data structure called a descriptor. All of the descriptors
in a system are contained in descriptor tables which are
recognized by hardware.

Terminology

The following terms are used throughout the discussion
of descriptors, privilege levels, and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged
level and level 3 is the least privileged.

Requestor Privilege Level —The privilege level
of the original supplier of the selector. RPL is
determined by the least two significant bits of a
selector.

Descriptor Privilege Level—This is the least
privileged level at which a task may access that
descriptor (and the segment associated with that
descriptor). Descriptor Privilege Level is deter-
mined by bits 6:5 in the Access Right Byte of a
descriptor.

RPL:

DPL:

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals
the privilege level of the code segment being
executed. CPL can also be determined by
examining the lowest 2 bits of the CS register,
except for conforming code segments.

Effective Privilege Level—The effective privilege
level is the least privileged of the RPL and the
DPL. EPL is the numerical maximum of RPL and
DPL. '

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

EPL:

Descriptor Tables

The descriptor tables define all of the segments which
are used in an Am386SX/SXL microprocessor system.
There are three types of tables which hold descriptors:
the Global Descriptor Table, Local Descriptor Table,
and Interrupt Descriptor Table. All of the tables are
variable length memory arrays and can vary in size
from 8 bytes to 64 Kb. Each table can hold up to 8192
8-byte descriptors. The upper 13 bits of a selector are
used as an index into the descriptor table. The tables
have registers associated with them which hold the
32-bit linear base address and the 16-bit limit of each
table.

Am386SX/SXL Microprocessor Data Sheet 165

n AMD

48/32 Bit Pointer

Selector Offset

/ Segment Limit

47/31 31/156 0

Memory Operand

f

16 Mb w/o Paging

or Selected
Access Rights 4 Gb with Paging Segment
Limit l
»| Base Address
Segment Segment Base
Descriptor Address
15021B-018
Figure 8. Protected Mode Addressing
48 Bit Pointer Physical Address
yd 4Kb
Selector Offset
4 Kb
15 0 31 0
Access Rights Paging Physical 4o
P Mechanism Address .
Limit Memory Operand || Physical Page
_'> Base Address iPage Frame 4Kb
Segment 52 Linear b] Address Kb
Descriptor Address 4
4 Kb
4 Kb
15022B-005
Figure 9. Paging and Segmentation
T 5 o !
15 0! [LDT Limit !
LDTR | LDT DESCR Selector | [LDT Base Linear Address .
v 3 :
15 0 Program Invisible 1
I IDT Limit . Automatically Loaded .
IDTR | IDT Base Linear Address ' From LDT Descriptor ‘:
31 0
15 0
| GDT Limit
GDTR | GDT Base Linear Address
81 0 15021B-020

Figure 10. Descriptor Table Registers

166

Am386 Microprocessors for Personal Computers

AMD n

Each of the tables has a register associated with it:
GDTR, LDTR, and IDTR (see Figure 1). The LGDT,
LLDT, and LIDT instructions load the base and limit of
the Giobal, Local, and Interrupt Descriptor Tables into
the appropriate register. The SGDT, SLDT, and SIDT
store the base and limit values. These are privileged
instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains descriptors
which are available to all of the tasks in a system. The
GDT can contain any type of segment descriptor except
for interrupt and trap descriptors. Every Am386SX/SXL
CPU system contains a GDT.

The first slot of the Global Descriptor Table corresponds
to the null selector and is not used. The null selector
defines a null pointer value.

Local Descriptor Table

LDTs contain descriptors which are associated with a
given task. Generally, operating systems are designed
so that each task has a separate LDT. The LDT may
contain only code, data, stack, task gate, and call gate
descriptors. LDTs provide a mechanism for isolating a
giventask’s code and data segments fromthe rest of the
operating system, while the GDT contains descriptors
for segments which are common to all tasks. A segment
cannot be accessed by a task if its segment descriptor
does not exist in either the current LDT orthe GDT. This
provides both isolation and protection for a task’s seg-
ments while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain a
base address and limit, the visible portion of the LDT
register contains only a 16-bit selector. This selector
refers to a Local Descriptor Table descriptor inthe GDT
(see Figure 1).

Interrupt Descriptor Table

The third table needed for Am386SX/SXL microproces-
sor systems is the Interrupt Descriptor Table. The IDT
contains the descriptors which point to the location of
the up to 256 interrupt service routines. The IDT may
contain only task gates, interrupt gates, and trap gates.

The IDT should be at least 256 bytes in size in order to
hold the descriptors for the 32 interrupts reserved for fu-
ture use. Every interrupt usedby a system must have an
entry in the IDT. The IDT entries are referenced by INT
instructions, external interrupt vectors, and exceptions.

Descriptors

The object to which the segment selector points to is
called a descriptor. Descriptors are eight byte quantities
which contain attributes about a given region of linear
address space. These attributes include the 32-bit base
linear address of the segment, the 20-bit length and
granularity of the segment, the protection level, read,
write, or execute privileges, the defaulit size of the oper-
ands (16 bit or 32 bit), and the type of segment. All of
the attribute information about a segment is contained
in 12 bits in the segment descriptor. Figure 11 shows
the general format of a descriptor. All segments on the
Am386SX/SXL microprocessor have three attribute
fields in common: the P bit, the DPL bit, and the S bit.
The P (Present) Bit is 1 if the segment is loaded in
physical memory. If P=0, then any attempt to access
this segment causes a Not Present exception (number
11). The Descriptor Privilege Level (DPL) is a two bit
field which specifies the protection level, 0-3,
associated with a segment.

The Am386SX/SXL microprocessor has two main
categories of segments: system segments and non-
system segments (for code and data). The segment bit
(S) determines if a given segment is a system segment
or a code or data segment. If the S bit is 1, then the
segment is either a code or data segment; if it is 0, then
the segment is a system segment.

Code and Data Descriptors (S=1)

Figure 12 shows the general format of a code and data
descriptor, and Table 11 illustrates how the bits in the
Access Right Byte are interpreted.

Code and data segments have several descriptor fields
in common. The accessed bit (A) is set whenever
the processor accesses a descriptor. The granularity
bit (G) specifies if a segment length is byte-granular or
page-granular.

31 0 Byte Address
Segment Base 15-0 Segment Limit 15-0 0
Limit Base

Base 31-24 G|D|o| AVL 10-16 P Df’L S '!'yptla A 2316 +4
Base Base Address of the segment A Accessed Bit
Limit The length of the segment G Granularity Bit (1 =Segment length is page-granular,
P Present Bit (1 =Present, 0 =Not Present) 0=Segment length is byte-granular)
DPL Descriptor Privilege Level 0-3 Default Operation Size (recognized in code segment
S Segment Descriptor (0 = System Descriptor, descriptors only; 1 =32-bit segment, 0 = 16-bit segment)

1=Code or Data Segment Descriptor) Bit must be zero for compatibility with future processors
Type Type of Segment AVL Available field for user or OS

. 15021B-022
Figure 11. Segment Descriptors
Am386SX/SXL Microprocessor Data Sheet 167

u AMD

31 0 Byte Address
Segment Base 15-0 Segment Limit 15-0 0
Limit . Base
Base 31-24 G|D|o| AVL 19-16 Access Rights Bytes 2316 +4
D/B 1=Default Instruction Attributes are 32 bits G Granularity Bit 1=Segment length is page-granular
0 =Default Instruction Attributes are 16 bits 0=Segment length is byte-granular
AVL Available field for user or OS 0 Bit must be zero for compatibility with future processors
15021B-023
Figure 12. Code and Data Descriptors
31 0 Byte Address
Segment Base 15-0 Segment Limit 15-0 0
e Limit Base
Base 31-24 G|Djo|o 19-16 P DII”L 0 lTylpel 2316 +4
Type Definition Type Definition
0 Invalid 8 Invalid
1 Available 80286 TSS 9 Available TSS
2 LDT A Undefined (Reserved)
3 Busy 80286 TSS B Busy TSS
4 80286 Call Gate C Am386SX/SXL CPU Call Gate
5 Task Gate (for 80286 or Am386SX/SXL CPU Task) D Undefined (Reserved)
6 80286 Interrupt Gate E Am386SX/SXL CPU Interrupt Gate
7 80286 Trap Gate F Am386SX/SXL CPU Trap Gate
15021B-024
Figure 13. System Descriptors
Table 11. Access Rights Byte Definition for Code and Data Descriptors
Bit
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists, Base and Limit are
not used.
6-5 Descriptor Privilege Levels (DPL) Segment privilege attribute used in privilege tests.
4 Segment Descriptor (S) S=1 Code or Data (includes stacks) Segment Descriptor.
S=0 System Segment Descriptor or Gate Descriptor.
Executable (E) E=0 Descriptor type is data segment: If Data
Expansion Direction (ED) ED=0 Expand up segment, offsets must be < limit. Segment
ED=1 Expand down segment, offsets must be > limit. 4 (S=1
1 Writeable (W) W=0 Data segment may not be written into. E=0)
W=1 Data segment may be written into.)
3 Executable (E) E=1 Descriptor type is code segment:) I God
0
2 Conforming (C) C=1 Code segment may only be executed when Se m:nt
CPL>DPL and CPL remains unchanged. y s g 1
1 Readable (R) R=0 Code segment may not be read. E=1)’
R=1 Code segment may be read.)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

168 Am386 Microprocessors for Personal Computers

AMD n

System Descriptor Formats (S=0)

System segments describe information about operating
system tables, task, and gates. Figure 13 shows the
general format of system segment descriptors, and the
various types of system segments. Am386SX/SXL CPU
system descriptors (which are the same as Am386DX/
DXL CPU system descriptors) contain a 32-bit base lin-
ear address and a 20-bit segment limit. 80286 system
descriptors have a 24-bit base address and a 16-bit
segment limit. 80286 system descriptors are identified
by the upper 16 bits being all zero.

Differences Between Am386SX/SXL Microproces-
sor and 80286 Descriptors

In order to provide operating system compatibility with
the 80286, the Am386SX/SXL CPU supports all of the
80286 segment descriptors. The 80286 system
segment descriptors contain a 24-bit base address and
16-bit limit, while the Am386SX/SXL CPU system
segment descriptors have a 32-bit base address, a
20-bit limit field, and a granularity bit. The word count
field specifies the number of 16-bit quantities to copy for
80286 call gates and 32-bit quantities for Am386SX/
SXL CPU call gates.

Selector Fields

A selector in Protected Mode has three fields: Local or
Global Descriptor Table Indicator (Tl), Descriptor Entry
Index (Index), and Requestor (the selector’s) Privilege
Level (RPL), as shown in Figure 14. The Tl bit selects
either the Global Descriptor Table or the Local
Descriptor Table. The Index selects one of 8K descrip-
tors in the appropriate descriptor table. The RPL bits
allow high speed testing of the selector's privilege
attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register
has a segment descriptor cache register associated
with it. Whenever a segment register’'s contents are
changed, the 8-byte descriptor associated with the
selector is automatically loaded (cached) on the chip.
Once loaded, all references to that segment use the
cached descriptor information instead of reaccessing
the descriptor. The contents of the descriptor cache are
not visible to the programmer. Since descriptor caches
only change when a segment register is changed,
programs which modify the descriptor tables must
reload the appropriate segment registers after changing
a descriptor’s value.

Protection

The Am386SX/SXL microprocessor has four levels of
protection which are optimized to support a multitasking
operating system and to isolate and protect user
programs from each other and the operating system.
The privilege levels control the use of privileged
instructions, 1/O instructions, and access to segments
and segment descriptors. The Am386SX/SXL micro-
processor also offers an additional type of protection on
a page basis when paging is enabled.

The four-level hierarchical privilege system is an
extension of the user/supervisor privilege mode
commonly used by minicomputers. The user/supervisor
mode is fully supported by the Am386SX/SXL micropro-
cessor paging mechanism. The Privilege Levels (PL)
are numbered 0 through 3. Level 0 is the most privileged
level.

Selictor
25 4 3 2 1 ﬁO
Segment TI|RPL
Register |0] 0=-=-----~- ojof1]1]1] |
= ~ ~ | Table
Index Indicator
Tl=1 TI=0
N v N v
I / Descriptor |/1 I
1/1 Number /I
6 6
5 5
4 4
3 Descriptor 3
2 2
1 1
0 0 Null

Local Descriptor Table

Gilobal Descriptor Table 15021B-027

Figure 14. Example Descriptor Selection

Am386SX/SXL Microprocessor Data Sheet 169

a AMD

Table 12. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT
Interrupt within task may change CPL - Interrupt Instruction, Trap or Interrupt IDT

Exception, External Gate

Interrupt
Intersegment to a lower privilege level RET, IRET* Code Segment GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

CALL, JMP Task Gate GDT/LDT
Task Switch IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task bit of flag register) = 1

Rules of Privilege

The Am386SX/SXL microprocessor controls access to
both data and procedures between levels of a task,
according to the following rules:

—Data stored in a segment with privilege level p can be
accessed only by code executing at a privilege level at
least as privileged as p.

—A code segment/procedure with privilege level p can
only be called by a task executing at the same or
lesser privilege level than p.

Privilege Levels

At any point in time, a task on the Am386SX/SXL micro-
processor always executes at one of the four privilege
levels. The Current Privilege Level (CPL) specifies what
the task’s privilege level is. A task’s CPL may only be
changed by control transfers through gate descriptors to
a code segment with a different privilege level. Thus, an
application program running at PL=3 may call an
operating system routine at PL=1 (via a gate) which
would cause the task's CPL to be set to 1 until the
operating system routine was finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL
field. The selector's RPL is only used to establish aless
trusted privilege level than the current privilege level of
the task for the use of a segment. This level is called the
task's Effective Privilege Level (EPL). The EPL is
defined as being the least privileged (numerically larger)
level of a task’s CPL and a selector's RPL. The RPL is
most commonly used to verify that pointers passedto an
operating system procedure do not access data that is

of higher privilege than the procedure that originated the
pointer. Since the originator of a selector can specify
any RPL value, the Adjust RPL (ARPL) instruction is
provided to force the RPL bits to the originator's CPL.

1/O Privilege

The /O Privilege Level (IOPL) lets the operating system
code executing at CPL =0 define the least privileged
level at which 1/O instructions can be used. An
Exception 13 (General Protection Violation) is gen-
erated if an I/O instruction is attempted when the CPL of
the task is less privileged then the IOPL. The IOPL is
stored in bits 13 and 14 of the EFLAGS register. The
following instructions cause an Exception 13 if the CPL
is greater than IOPL: IN, INS, OUT, OUTS, ST, CLlI,
and LOCK prefix.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control trans-
fers, and those involving data accesses. Determining
the ability of a task to access a segment involves the
type of segment to be accessed, the instruction used,
the type of descriptor used, and CPL, RPL, and DPL as
described above.

Any time an instruction loads a data segment register
(DS, ES, FS, GS) the Am386SX/SXL CPU makes pro-
tection validation checks. Selectors loaded in the DS,
ES, FS, GS registers must refer only to data segment or
readable code segments.

Finally, the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is more
privileged than the CPL, an Exception 13 (General
Protection Fault) is generated.

170 Am386 Microprocessors for Personal Computers

AMD n

31 16 15 0 =3
0000000000000000 l Back Link 0
ESPO a)
0000000000000000 I SS0 8
ESP1 c | Stk "
0000000000000000 | SS1 10 [oCTLz
ESP2 14 7
0000000000000000 | ss2 18 J’
CR3 iC
EIP 20
EFLAGS 24
EAX 28
ECX 2C
EDX 30
EBX 34
ESP ag | Current
EBP 3C | state
ESI| 40
EDI 44
0000000000000000 ES 48
0000000000000000 Ccs 4C
0000000000000000 SS 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 GS 5C
0000000000000000 LDT 60 J
BIT._MAP_OFFSET(15:0) 0000000000000000 IS {Debug
A, Available \ 68 Tr;p
" System Status, etc. A Y Bit
in TSS
31 24 |23 16 | 15 8|7 LN
63 56 | 55 48 | 47 40| 39 32| BIT_MAP_OFFSET
95 88 | 87 80 | 79 72| 71 64
96| OFFSET+C
oot o- T OFFSET + 10
1|Access| TSS |1
!/ Rights | Limit_ 2 ~
1 ' . 4 2
: BASE - 65407 1/O Permission Bitmap OFFSET + 1FEC
' 31program 0! 65439 (One Bit per Byte /0 OFFSET + 1FFO0
L ERE 65471 Part. Bitmap may be OFFSET + 1FF4
Task Register 55503 truncated using TSS Limit.) 55472 | OFFSET+1FF8
TR | Selector | 65535 l 65504 | OFFSET+1FFC
15 0 “FFH” OFFSET +2000
* TSS Limit = OFFSET +2000H
31 TSS Descriptor (in GDT) 0 ‘
. Segment Base 15-0 Segment Limit 15-0 |
>
Base31-24 [aG|1|o|of Umt p DIP'- ol | Tyfe | Dase.

Type=9: Available TSS.
Type=B: Busy TSS.

Figure 15. TSS and TSS Registers

15022B-006

Am386SX/SXL Microprocessor Data Sheet

171

a AMD

313029282726 25 24 23 22 21 20 19 18 17 16 151413 12111098 7 6 5 4 3 21 0
311111011 0/00001111]01001100/000000°11
e3lo o1t o001 1|11 001019011111 10011111001
/1111111 111111111111 1111111111111
12710 0 0 0 OO O 0OfO O O O O O 0 0|0 O O 0O O OO|OOOOOOOO

11111111
N N
(¥} N

1/O Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

15022B-032b

Figure 16. Sample I/O Permission Bit Map

The rules regarding the stack segment are slightly differ-
ent than those involving data segments. Instructions
that load selectors into SS must refer to data segment
descriptors for writeable data segments. The DPL and
RPL must equalthe CPL of all other descriptortypesora
privilege level violation will cause an Exception 13. A
stack not present fault causes an Exception 12.

Privilege Level Transfers

Inter-segment control transfers occur when a selector is
loaded in the CS register. For a typical system most of
these transfers are simply the result of a call or a jump to
another routine. There are five types of control transfers
which are summarized in Table 12. Many of these
transfers result in a privilege level transfer. Changing
privilege levels is done only by control transfers, using
gates, task switches, and interrupt or trap gates.

Control transfers can only occur if the operation which
loaded the selector references the correct descriptor
type. Any violation of these descriptor usage rules will
cause an Exception 13.

CALL Gates

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can ensure
that all gates only allow entry into a few trusted
procedures.

Task Switching

A very important attribute of any multitasking/multi-user
operating system is its ability to rapidly switch between
tasks or processes. The Am386SX/SXL microproces-
sor directly supports this operation by providing a task
switch instruction in hardware. The task switch oper-
ation saves the entire state of the machine (all of the
registers, address space, and a link to the previous
task), loads a new execution state, performs protection
checks, and commences execution inthe new task. Like
transfer of control by gates, the task switch operation is
invoked by executing an intersegment JMP or CALL
instruction which refers to a Task State Segment (TSS),
or a task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may

also invoke the task switch operation if there is a task
gate descriptor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure 15)
containing the entire execution state. A task gate
descriptor contains a TSS selector. The Am386SX/SXL
microprocessor supports both 80286 and Am386SX/
SXL CPU TSSs. The limit of an Am386SX/SXL CPU
TSS must be greater than 64H (2BH for a 80286 TSS),
and can be as large as 16 Mb. In the additional TSS
space, the operating system is free to store additional
information such as the reason the task is inactive, the
time the task has spent running, or open files belonging
to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Am386SX/SXL microprocessor called the Task State
Segment Register (TR). This register contains a
selector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TSS descriptor are loaded
whenever TR is loaded with a new selector. Returning
from a task is accomplished by the IRET instruction.
When IRET is executed, control is returned to the task
which was interrupted. The currently executing task’s
state is saved in the TSS and the old task state is
restored from its TSS.

Several bits in the flag register and machine status word
(CRO) give information about the state of atask which is
useful to the operating system. The Nested Task bit
(NT) controls the function of the IRET instruction. If
NT = 0, the IRET instruction performs the regular return.
If NT =1, IRET performs a task switch operation base to
the previous task. The NT bit is set or reset in the
following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that
does not cause a task switch will clear NT (the NT
bit will be restored after execution of the interrupt
handler). NT may also be set or cleared by POPF
or IRET instructions.

172

Am386 Microprocessors for Personal Computers

AMD u

The Am386SX/SXL microprocessor task state seg-
ment is marked busy by changing the descriptor type
field from Type 9to Type 0BH. An 80286 TSS is marked
busy by changing the descriptor type field from Type 1
to Type 3. Use of a selector that references a busy task
state segment causes an Exception 13.

The VM (Virtual Mode) bit is usedto indicate if ataskis a
Virtual 8086 task. If VM = 1 then the tasks will use the
Real Mode addressing mechanism. The Virtual 8086
environment is only entered and exited by a task switch.

The coprocessor’s state is not automatically saved
when a task switch occurs. The Task Switched Bit (TS)
in the CRO register helps deal with the coprocessor’s
state in a multitasking environment. Whenever the
Am386SX/SXL microprocessor switches tasks, it sets
the TS bit. The Am386SX/SXL CPU detects the firstuse
of a processor extension instruction after a task switch
and causes the processor extension Not Available
Exception 7. The exception handler for Exception 7
may then decide whether to save the state of the
COprocessor.

The T bit in the Am386SX/SXL microprocessor TSS
indicates that the processor should generate a debug
exception when switching to a task. If T=1, then
upon entry to a new task a debug Exception 1 will be
generated.

Initialization and Transition To Protected Mode

Since the Am386SX/SXL microprocessor begins
executing in Real Mode immediately after RESET, it is
necessary to initialize the system tables and registers
with the appropriate values. The GDT and IDT registers
must refer to a valid GDT and IDT. The IDT should be at
least 256 bytes long, and the GDT must contain
descriptors for the initial code and data segments.

Protected Mode is enabled by loading CRO with PE bit
set. This can be accomplished by using the MOV CRO,
R/M instruction. After enabling Protected Mode, the

next instruction should execute an intersegment JMP
to load the CS register and flush the instruction decode
queue. The final step is to load all of the data segment
registers with the initial selector values.

An alternate approach to entering Protected Mode is to
use the built in task-switch to load all of the registers. In
this case the GDT would contain two TSS descriptors in
addition to the code and data descriptors needed for the
first task. The first JMP instruction in Protected Mode
would jump to the TSS causing a task switch and load-
ing all of the registers with the values stored inthe TSS.
The Task State Segment Register should be initialized
to point to a valid TSS descriptor.

Paging

Paging is another type of memory management useful
for virtual memory multitasking operating systems. Un-
like segmentation, which modularizes programs and
data into variable length segments, paging divides pro-
grams into multiple uniform size pages. Pages bear no
direct relation to the logical structure of a program.
While segment selectors can be considered the logical
name of a program module or data structure, a page
most likely corresponds to only a portion of a module or
data structure.

Page Organization

The Am386SX/SXL microprocessor uses two levels of
tables to translate the linear address (from the segmen-
tation unit) into a physical address. There are three
components to the paging mechanism of the Am386SX/
SXL CPU: the Page Directory, the Page Tables, andthe
page itself (Page Frame). All memory-resident ele-
ments of the Am386SX/SXL microprocessor paging
mechanism are the same size, namely 4 Kb. A uniform
size for all of the elements simplifies memory allocation
and reallocation schemes, since there is no problem
with memory fragmentation. Figure 17 shows how the
paging mechanism works.

Two Level Paging Scheme

31 22 12 0
——————p| Directory Table | Offset User Memor
Linear Address l I | 12, 2 OFFFFFFH
10/ 10 7
31 9 Address

31 0 31 0
CRO I + »
CR1 qp N 0
CR2 " Page Table
CR3 Root > -

Directory
Control Registers 15022B-036
Figure 17. Paging Mechanism
Am386SX/SXL Microprocessor Data Sheet 173

n AMD

31

1211 10 9

8 7 6 5 4 3

Page Table Address 31-12

System
Software
Definable

oOJo|D|A}JO]O

wic|mr
S

15022B-037

Figure 18. Page Directory Entry (Points to Page Table)

31

12 11

10 9 8 7 6 5 4 3

Page Frame Address 31-12

System
Software
Definable

OjoyDJAjO]O

wic|mn

SI1D;|=
)

15022B-038

Figure 19. Page Table Entry (Points to Page)

Page Fault Register

CR2 is the Page Fault Linear Address register. It holds
the 32-bit linear address which caused the last Page
Fault detected.

Page Descriptor Base Register

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of the
Page Directory (this value is truncated to a 24-bit value
associated with the Am386SX/SXL CPU’s 16-Mb
physical memory limitation). The lower 12 bits of CR3
are always zero to ensure that the Page Directory is
always page aligned. Loading it with a MOV CR3, reg
instruction causes the Page Table entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO.

Page Directory

The Page Directory is 4-Kb long and allows up to 1024
Page Directory entries. Each Page Directory entry
contains information about the Page Table and the
address of the next level of tables, the Page Tables. The
contents of a Page Directory entry are shown in Figure
18. The upper 10 bits of the linear address (A31-A22)
are used as anindex to select the correct Page Directory
entry.

The Page Table address contains the upper 20 bits of a
32-bit physical address that is used as the base address
for the next set of tables, the Page Tables. The lower
12 bits of the Page Table addresses appear on 4-Kb
boundaries. For an Am386DX/DXL CPU system, the
upper 20 bits will select one of 2%° Page Tables, but for
an Am386SX/SXL microprocessor system, the upper
20 bits only select one of 2'2 Page Tables. Again, this is
because the Am386SX/SXL CPU is limited to a 24-bit
physical address, and the upper 8 bits (A31-A24) are
truncated when the address is output on its 24 address
pins.

Page Tables

Each Page Table is 4-Kb long and allows up to 1024
Page Table entries. Each Page Table entry contains in-
formation about the Page Frame and its address. The

contents of a Page Table entry are shown in Figure
19. The middle 10 bits of the linear address (A21-A12)

are used as an index to select the correct Page Table
entry.

The Page Frame address contains the upper 20 bits of
a 32-bit physical address which is used as the base
address for the Page Frame. The lower 12 bits of the
Page Frame address are zero so that the Page Frame
addresses appear on 4-Kb boundaries. For an
Am386DX/DXL CPU system, the upper 20 bits will se-
lect one of 22 Page Frames, but for an Am386SX/
SXL microprocessor system, the upper 20 bits only
select one of 2'2 Page Frames. Again, this is because
the Am386SX/SXL CPU is limited to a 24-bit physical
address space, and the upper 8 bits (A31-A24) are
truncated when the address is output on its 24 address
pins.

Page Directory/Table Entries

The lower 12 bits of the Page Table entries and Page Di-
rectory entries contain statistical information about
pages and Page Tables, respectively. The P (Present)
bit indicates if a Page Directory or Page Table entry can
be used in address translation. If P = 1, the entry can be
used for address translation. If P = 0, the entry cannot
be used fortranslation. All of the other bits, are available
for use by the software. For example, the remaining 31
bits could be used to indicate where on disk the page is
stored.

The A (Accessed) bit is set by the Am386SX/SXL CPU
for both types of entries before a read or write access
occurs to an address covered by the entry. The D (Dirty)
bit is set to 1 before a write to an address covered by that
Page Table entry occurs. The D bitis undefined for Page
Directory entries. When the P, A, and D bits are updated
by the Am386SX/SXL CPU, the processor generates a
Read-Modify-Write cycle which locks the bus and pre-
vents conflicts with other processors or peripherals.
Software which modifies these bits should use the
LOCK prefix to ensure the integrity of the Page Tables in
multi-master systems.

The 3 bits marked system software definable (in Figures
18 and 19) are software definable. System software
writers are free to use these bits for whatever purpose
they wish.

174

Am386 Microprocessors for Personal Computers

AMD n

Page Level Protection (R/W, U/S Bits)

The Am386SX/SXL microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of
protection: User, which corresponds to level 3 of the
segmentation based protection; and Supervisor, which
encompasses all of the other protection levels (0, 1,
and 2). Programs executing at Level 0, 1, or 2 bypass
the page protection, although segmentation-based
protection is still enforced by the hardware.

The U/S and R/W bits are used to provide User/
Supervisor and Read/Write protection for individual
pages, or for all pages covered by a Page Table
Directory entry. The U/S and R/W bits in the second
level Page Table entry apply only to the page described
by that entry. The U/S and R/W bits in the first level Page
Directory Table apply to all pages described by the Page
Table pointed to by that directory entry. The U/S and
R/W bits for a given page are obtained by taking the
most restrictive of the U/S and R/W bits from the Page
Directory Table entries and using these bits to address
the page.

Translation Look-Aside Buffer

The Am386SX/SXL microprocessor paging hardware is
designed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processorwas required to access two
levels of tables for every memory reference. To solve
this problem, the Am386SX/SXL CPU keeps a cache of
the most recently accessed pages; this cache is called
the Translation Look-Aside Buffer (TLB). The TLB is
a four-way set associative 32-entry Page Table cache.
It automatically keeps the most commonly used Page
Table entries in the processor. The 32-entry TLB
coupled with a 4K page size results in coverage of 128
Kb of memory addresses. For many common multitask-
ing systems, the TLB will have a hit rate of greater than
98%. This means that the processor will only have to
access the two-level page structure for less than 2% of
all memory references.

Paging Operation

The paging hardware operates in the following fashion.
The paging unit hardware receives a 32-bit linear
address fromthe segmentation unit. The upper 20 linear
address bits are compared with all 32 entries inthe TLB
to determine if there is a match. If there is a match (i.e., a

TLB hit), then the 24-bit physical address is calculated
and is placed on the address bus.

If the Page Table entry is not in the TLB, the Am386SX/
SXL microprocessor will read the appropriate Page
Directory entry. If P =1 onthe Page Directory entry, indi-
cating that the Page Table is in memory, then the
Am386SX/SXL CPU will read the appropriate Page
Table entry and set the Access bit. If P = 1 on the
Page Table entry, indicating that the page is in memory,
the Am386SX/SXL microprocessor will update the
Access and Dirty bits as needed and fetch the operand.
The upper 20 bits of the linear address, read from the

Page Table, will be stored in the TLB for future
accesses. If P =0 for either the Page Directory entry or
the Page Table entry, then the processor willgenerate a
Page Fault (Exception 14).

The processor will also generate a Page Fault
(Exception 14) if the memory reference violated the
page protection attributes. CR2 will hold the linear
address which caused the Page Fault. Since Exception
14 is classified as a fault, CS:EIP will point to the
instruction causing the Page Fault. The 16-bit error
code, pushed as part of the Page Fault handler, will
contain status bits which indicate the cause of the Page
Fault.

The 16-bit error code is used by the operating system to
determine how to handle the Page Fault. Figure 20
shows the format of the Page Fault error code and the
interpretation of the bits. Even though the bits in the
error code (U/S, W/R, and P) have similar names as the
bits in the Page Directory/Table Entries, the interpreta-
tion of the error code bits is different. Figure 21 indicates
what type of access caused the Page Fault.

U/S: The U/S bit indicates whether the access causing
the fault occurred when the processor was executing in
User Mode (U/S = 1) or in Supervisor mode (U/S = 0).

WI/R: The W/R bit indicates whether the access causing
the fault was a Read (W/R = 0) or a Write (W/R = 1).

P: The P bit indicates whether a Page Fault was caused
by a not-present page (P = 0), or by a page level protec-
tion violation (P=1).

U = Undefined

15 3

ujujujfuiujujujujujujujutlu

wic|m
DIS|=

Figure 20. Page Fault Error Code Format

u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program is
executing at level 3.

Figure 21. Type of Access Causing Page Fault

Operating System Responsibilities

Whenthe operating system enters or exits paging mode
(by setting or resetting bit 31 in the CRO register), a
short JMP must be executed to flush the Am386SX/SXL
microprocessor’s prefetch queue. This ensures that all
instructions executed after the address mode change
will generate correct addresses.

The Am386SX/SXL microprocessor takes care of the
page address translation process, relieving the burden

Am386SX/SXL Microprocessor Data Sheet 175

a AMD

from an operating system in a demand-paged system.
The operating system is responsible for setting up the
initial Page Tables and handling any Page Faults. The
operating system is also required to invalidate (i.e.,
flush) the TLB when any changes are made to any of the
Page Table entries. The operating system must reload
CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading CR3
with the address of the Page Directory, and allocating
space for the Page Directory and the Page Tables. The
primary responsibility of the operating system is to
implement a swapping policy and handle all of the
Page Faults.

A final concern of the operating system is to ensure that
the TLB cache matches the information in the paging
tables. Inparticular, any time the operating systems sets
the P (Present) bit of Page Table entry to zero, the TLB
must be flushed by reloading CR3. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group of
tasks its own set of Page Tables.

Virtual 8086 Environment

The Am386SX/SXL microprocessor allows the execu-
tion of 8086 application programs in both Real Mode
and in Virtual 8086 Mode. The Virtual 8086 Mode allows
the execution of 8086 applications, while still allowing
the system designer to take full advantage of the
Am386SX/SXL CPU'’s protection mechanism.

Virtual 8086 Addressing Mechanism

One of the major differences between Am386SX/SXL
CPU Real and Protected modes is how the segment
selectors are interpreted. When the processor is
executing in Virtual 8086 Mode, the segment registers
are used in a fashion identical to Real Mode. The
contents of the segment register are shifted left four
bits and added to the offset to form the segment base
linear address.

The Am386SX/SXL microprocessor allows the oper-
ating system to specify which programs use the 8086
address mechanism and which programs use Protected
Mode addressing on a per task basis. Through the use
of paging, the 1-Mb address space of the Virtual Mode
task can be mapped to anywhere in the 4-Gb linear
address space of the Am386SX/SXL CPU. Like Real
Mode, Virtual Mode addresses that exceed 1 Mb will
cause an Exception 13. However, these restrictions
should not prove to be important, because most tasks
running in Virtual 8086 Mode will simply be existing
8086 application programs.

Paging in Virtual Mode

The paging hardware allows the concurrent running of
multiple Virtual Mode tasks, and provides protection and
operating system isolation. Although it is not strictly
necessary to have the paging hardware enabled to run
Virtual Mode tasks, it is needed in order to run multiple
Virtual Mode tasks or to relocate the address space of a

Virtual Mode task to physical address space greater
than 1 Mb.

The paging hardware allows the 20-bit linear address
produced by a Virtual Mode program to be divided into
as many as 256 pages. Each one of the pages can be
located anywhere within the maximum 16-Mb physical
address space of the Am386SX/SXL microprocessor. In
addition, since CR3 (the Page Directory Base Register)
is loaded by a task switch, each Virtuai Mode task can
use a different mapping scheme to map pages to
different physical locations. Finally, the paging
hardware allows the sharing of the 8086 operating
system code between multiple 8086 applications.

Protection and I/O Permission Bit Map

All Virtual Mode programs execute at privilege level 3.
As such, Virtual Mode programs are subject to all of the
protection checks defined in Protected Mode. This
is different from Real Mode, which implicitly is executing
at privilege level 0. Thus, an attempt to execute a
privileged instruction in Virtual Mode will cause an
Exception 13 fault.

The following are privileged instructions, which may be
executed only at Privilege level 0. Attempting to execute
these instructions in Virtual 8086 Mode (or anytime
CPL > 0) causes an Exception 13 fault:

LIDT; MOV DRn, REG; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn, reg; MOV reg,CRn;
CLTS;
HLT;

Several instructions, particularly those applying to the
multitasking and the protection model, are available
only in Protected Mode. Therefore, attempting to exe-
cute the following instructions in Real Mode or in Virtual
8086 Mode generates an Exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR;
LSL; VERW;
ARPL;

The instructions which are IOPL sensitive in Protected
Mode are:

IN; STI;
ouT; CLI
INS;

ouUTS;

REP INS;

REP OUTS;

In Virtual 8086 Mode the following instructions are IOPL
sensitive:

INT n; STI;
PUSHF; CLI;
POPF'; IRET;

176 Am386 Microprocessors for Personal Computers

AMD a

The PUSHF, POPF, and IRET instructions are IOPL
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag to be virtualized to the virtual 8086
Mode program. The INT n software interrupt instruction
is also IOPL sensitive in Virtual 8086 Mode. Note that
the INT 3, INTO, and BOUND instructions are not IOPL
sensitive in Virtual 8086 Mode.

The 1/O instructions that directly refer to addresses in
the processor’s /O space are IN, INS, OUT, and OUTS.
The Am386SX/SXL microprocessor has the ability to
selectively trap references to specific /0O addresses.
The structure that enables selective trapping is the /O
Permission Bit Map inthe TSS segment (see Figures 15
and 16). The I/O permission map is a bit vector. The size
of the map and its location in the TSS segment are
variable. The processor locates the 1/O permission map
by means of the I/O map base field in the fixed portion of
the TSS. The /0O map base field is 16-bits wide and
contains the offset of the beginning of the I/O permission
map.

In protected mode, when an /O instruction (IN, INS,
OUT, or OUTS) is encountered, the processor first
checks whether CPL < IOPL. If this condition is true, the
I/0 operation may proceed. If not true, the processor
checks the 1/0 permission map (in Virtual 8086 Mode,
the processor consults the map without regard for the
IOPL).

Each bit in the map corresponds to an 1/O port byte
address; for example, the bit for port 41 is found at I/0
map base +5, bit offset 1. The processor tests all the bits
that correspond to the /O addresses spanned by an I/O
operation; for example, a Dword operation tests four
bits corresponding to four adjacent byte addresses. If
any tested bit is set, the processor signals a general
protection exception. If all the tested bits are zero, the
1/0 operations may proceed.

It is not necessary for the I/O permission map to
represent all the I/O addresses. I/O addresses not
spanned by the map are treated as if they had one-bits in
the map. The I/O map base should be at least one byte
less than the TSS limit; the last byte beyond the /O
mapping information must contain all 1s.

Because the I/O permission map is inthe TSS segment,
different tasks can have different maps. Thus, the
operating system can allocate ports to a task by
changing the 1/O permission map in the task’s TSS.

Important Implementation Note: Beyond the last byte
of /0 mapping information in the 1/0 permission bit map
must be a byte containing all 1s. The byte of all 1s must
be within the limit of the Am386SX/SXL CPU TSS
segment (see Figure 15).

Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are handled in
a unique fashion. When running in Virtual Mode all
interrupts and exceptions involve a privilege change
back to the host Am386SX/SXL microprocessor

operating system. The Am386SX/SXL CPU operating
system deter-mines if the interrupt comes from a
Protected Mode application, or from a Virtual Mode
program, by examining the VM bit in the EFLAGS image
stored on the stack.

When a Virtual Mode program is interrupted, and
execution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in the
EFLAGS image on the stack.

The Am386SX/SXL microprocessor operating system
in turn handles the exception or interrupt and then
returns control to the 8086 program. The Am386SX/
SXL microprocessor operating system may choose to
let the 8086 operating system handle the interrupt, or it
may emulate the function of the interrupt handler. For
example, many 8086 operating system calls are
accessed by PUSHing parameters on the stack, and
then executing an INT ninstruction. If the IOPL is set to
0, then all INT n instructions will be intercepted by the
Am386SX/SXL CPU operating system.

An Am386SX/SXL microprocessor operating system
can provide a Virtual 8086 environment which is totally
transparent to the application software by intercepting
and then emulating 8086 operating system’s calls, and
intercepting IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 Mode is entered by executing a 32-bit IRET
instruction at CPL = 0, where the stack has a 1 inthe VM
bit of its EFLAGS image, or a Task Switch (at any CPL)
to an Am386SX/SXL microprocessor task whose
Am386SX/SXL CPU TSS has an EFLAGS image
containing a 1 in the VM bit position, while the processor
is executing in the Protected Mode. POPF does not
affectthe VM bit, but a PUSHF always pushes a 0 in the
VM bit.

The transition out of Virtual 8086 Mode to Protected
Mode occurs only on receipt of an interrupt or exception.
In Virtual 8086 Mode, all interrupts and exceptions
vector through the Protected Mode IDT, and enter an
interrupt handler in Protected Mode. As part of the
interrupt processing the VM bit is cleared.

Because the matching IRET must occur from Level 0,
Interrupt or Trap Gates used to field an interrupt or
exception out of Virtual 8086 Mode must perform an
inter-level interrupt only to Level 0. Interrupt or Trap
Gates through conforming segments, or through
segments with DPL > 0, will raise a GP fault with the CS
selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 Mode must be
described by a TSS with the Am386SX/SXL CPU for-
mat (Type 9 or 11 descriptor). A task switch out of
Virtual 8086 Mode will operate exactly the same as any
other task switch out of a task with an Am386SX/SXL
CPU TSS. All of the programmer visible state, including
the EFLAGS register with the VM bit set to 1, is stored in
the TSS. The segment registers in the TSS will contain
8086 segment base values rather than selectors.

Am386SX/SXL Microprocessor Data Sheet 177

n AMD

Atask switch into a task described by an Am386SX/SXL
CPU TSS will have an additional check to determine if
the incoming task should be resumed in Virtual 8086
Mode. Tasks described by 80286 format TSSs cannot
be resumed in Virtual 8086 Mode, so no check is re-
quired there (the FLAGS image in 80286 format TSS
has only the low-order 16 FLAGS bits). Before loading
the segment register images from an Am386SX/SXL
CPU TSS, the FLAGS image is loaded, so that the
segment registers are loaded from the TSS image as
8086 segment base values. The task is now ready to
resume in Virtual 8086 Mode.

;ggr_;_sitions Through Trap and Interrupt Gates, and
A task switch is one way to enter or exit Virtual 8086
Mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and to
enter as part of executing an IRET instruction. The
transition out must use an Am386SX/SXL CPU Trap
Gate (Type 14), or Am386SX/SXL CPU Interrupt Gate
(Type 15), which must pointto a non-conforming Level 0
segment (DPL = 0) in order to permit the trap handler to
IRET back to the Virtual 8086 program. The Gate must
point to a non-conforming Level 0 segment to perform a
level switch to Level 0 so that the matching IRET can
change the VM bit. Am386SX/SXL CPU gates must be
used since 80286 gates save only the lower 16 bits of
the EFLAGS register (the VM bit will not be saved). Also,
the 16-bit IRET used to terminate the 80286 interrupt
handler will pop only the lower 16 bits from FLAGS, and
will not affect the VM bit. The action taken for an
Am386SX/SXL CPU Trap or Interrupt gate, if an
interrupt occurs while the task is executing in Virtual
8086 Mode, is given by the following sequence:

1. Save the FLAGS register in a temp to push later.
Turn off the VM, TF, and IF bits.

2. Interrupt and Trap gates must perform a level switch
from 3 (where the Virtual 8086 Mode program
executes) to 0 (so IRET can return).

3. Pushthe 8086 segment register values onto the new
stack, in this order: GS, FS, DS, and ES. These are
pushed as 32-bit quantities. Then load these 4
registers with null selectors (0).

4. Push the old 8086 stack pointer onto the new stack
by pushing the SS register (as 32 bits), then pushing
the 32-bit ESP register saved above.

5. Push the 32-bit EFLAGS register saved in step 1.

6. Push the old 8086 instruction onto the new stack by
pushingthe CS register (as 32 bits), then pushing the
32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine in
protected mode.

The transition out of Virtual 8086 Mode performs a level
change and stack switch, in addition to changing back to
protected mode. Also, all of the 8086 segment register
images are stored on the stack (behind the SS:ESP

image), and then loaded with null (0) selectors before
entering the interrupt handler. This will permit the
handler to safely save and restore the DS, ES, FS, and
GS registers as 80286 selectors. This is needed so that
interrupt handlers, which do not care about the mode of
the interrupted program, can use the same prologue
and epilogue code for state saving, regardless of
whether or not a native mode or Virtual 8086 Mode
program was interrupted. Restoring null selectors to
these registers before executing the IRET will cause a
trap in the interrupt handler. Interrupt routines which
expect or return values in the segment registers will
have to dbtain/return values from the 8086 register
images pushed onto the new stack. They will need
to know the mode of the interrupted program in order to
know where to find/return segment registers, and also
to know how to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended IRET instruction
(operand size = 32) can be used, and must be executed
at Level 0, to change the VM bit to 1.

1. Ifthe NT bit inthe FLAGS register is On, an intertask
return is performed. The current state is stored inthe
current TSS, and the link field in the current TSS is
used to locate the TSS for the interrupted task which
is to be resumed. Otherwise, continue with the
following sequence.

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value active
in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is pop-
pedfirst, then a 32-bit word is popped which contains
the CS value in the lower 16 bits. If VM = 0, this CS
load is done as a protected mode segment load. If
VM = 1, this will be done as an 8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was popped in step 1.

5. If VM = 1, load segment registers ES, DS, FS, and
GS from memory locations SS:[ESP + 8], SS:[ESP +
12], SS[ESP + 16}, and SS:[ESP = 20], respectively,
where the new value of ESP stored in step 4 is used.
Since VM = 1, these are done as 8086 segment
register loads.

Else if VM =0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routines. Null
out invalid selectors to trap, if an attempt is made to
access through them.

6. If RPL (CS) > CPL, pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32 bits containing SS in the lower 16
bits. If VM = 0, SS is loaded as a protected mode
segment register load. If VM = 1, an 8086 segment
register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) determines
whether the processor resumes the interrupted
routine in Protected Mode or Virtual 8086 Mode.

178 Am386 Microprocessors for Personal Computers

AMD u

FUNCTIONAL DATA

The Am386SX/SXL microprocessor features a straight-
forward functional interface to the external hardware.
The Am386SX/SXL CPU has separate parallel buses
for data and address. The data bus is 16-bits in width,
and bidirectional. The address bus outputs 24-bit
address values using 23 address lines and two Byte
Enable signals.

The Am386SX/SXL microprocessor has two selectable
address bus cycles: address pipelined and non-address
pipelined. The address pipelining option allows as much
time as possible for data access by starting the pending
bus cycle before the present bus cycle is finished. A
non-pipelined bus cycle gives the highest bus
performance by executing every bus cycle in two
processor CLK cycles. For maximum design flexibility,
the address pipelining option is selectable on a
cycle-by-cycle basis.

The processor’s bus cycle is the basic mechanism for
information transfer, either from system to processor, or
from processor to system. The Am386SX/SXL micro-
processor bus cycles perform data transfer in a
minimum of only two clock periods. The maximum
transfer band-width at 16 MHz is therefore 16 Mb/s.
However, any bus cycle will be extended for more than
two clock periods if external hardware withholds ac-
knowledgment of the cycle.

The Am386SX/SXL microprocessor can relinquish
control of its local buses to allow mastership by other
devices, such as Direct Memory Access (DMA)

channels. When relinquished, HLDA is the only output
pin driven by the Am386SX/SXL microprocessor,
providing near complete isolation of the processor from
its system (all other output pins are in a float condition).

Signal Description Overview

Below is a brief description of the Am386SX/SXL micro-
processor input and output signals arranged by
functional groups.

Example signal: M/[0O—High voltage indicates memory
selected

—Low voltage
selected

The signal descriptions sometimes refer to Switching
timing parameters, such as t25 Reset Setup Time and
t26 Reset Hold Time. The values of these parameters
can be found in the Switching Characteristics table.

Clock (CLK2)

CLK2 provides the fundamental timing for the
Am386SX/SXL microprocessor. It is divided by two in-
ternally to generate the internal processor clock used
forinstruction execution. The internal clock is comprised
of two phases, phase one and phase two. Each CLK2
period is a phase of the internai clock. Figure 23
illustrates the relationship. If desired, the phase of the
internal processor clock can be synchronized to a
known phase by ensuring the falling edge of the RESET
signal meets the applicable setup and hold times, 125
and 126.

indicates /O

2x Clock{ —Cli2 Address Bus) A23-Af
BHE 24-Bit Address
' | BHE
16:Bit Data{ D15-D0 — Byte
___p Enables
ADS
— ————P
Bus Control NA ———'—'PD/C
us Control § ————¥ Am386SX/SXL _—
— MO it
__.E.E_ADL. Microprocessor |—————> Bus Cycle Definition
LOCK
HOLD PEREQ
Bus Arbitration 1—-——HLDA 1———BUSY Math Coprocessor Signaling
¢—ERROR
—_INTR)] ¢ Ve
NMI Vss } Power Connections
Interrupts —
RESET R LT
4—} Float
15022B-010
Figure 22. Functional Signal Groups
Am386SX/SXL Microprocessor Data Sheet 179

n AMD

otz [2vzE N2V \2Vz

Internal
Processor Clock

\ / \

Processor Clock
Period

CLK2 Period | CLK2 Period
o1 02

|

<& >

CLK2 Period
61

¢

62.5 ns Min (16 MHz Max)
50 ns Min (20 MHz Max)
40 ns Min (25 MHz Max)

- \2vs

Processor Clock
Period

02

CLK2 Period
F\2v7

)

[

15022B-011

Figure 23. CLK2 Signal and Internal Processor Clock

Data Bus (D15-D0)

These three-state, bidirectional signals provide the
general purpose data path between the Am386SX/SXL
microprocessor and other devices. The data bus
outputs are active High and will float during Bus Hold
Acknowledge. Data bus reads require that read-data
setup and hold times (21 and t22) be met relative to
CLK2 for correct operation.

Address Bus (A23-A1, BHE, BLE)

These three-state outputs provide physical memory
addresses or I/O port addresses. A23—A16 are Low
during I/0 transfers, except for I/O transfers automati-
cally generated by coprocessor instructions. During
coprocessor /O transfers, A22—A16 are driven Low and
A23 is driven High, so that this address line canbe used
by external logic to generate the coprocessor select
signal. Thus, the I/O address driven by the Am386SX/
SXL microprocessor for coprocessor commands is
8000F8H, the I/O addresses driven by the Am386SX/
SXL CPU for coprocessor data are 8000FCH or
8000FEH or cycles to a 387SX math coprocessor.

The address bus is capable of addressing 16 Mb of
physical memory space (000000H through FFFFFFH),
and 64 Kb of I/O address space (000000H through
00FFFFH) for programmed I/O. The address bus is
active High and will float during Bus Hold Acknowledge.

The Byte Enable outputs, BHE and BLE, directly
indicate which bytes of the 16-bit data bus are involved
with the current transfer. BHE applies to D15-D8 and
BLE applies to D7-D0. If both BHE and BLE are
asserted, then 16 bits of data are being transferred. See
Table 13 for a complete decoding of these signals. The
Byte Enables are active Low and will float during Bus
Hold Acknowledge.

Bus Cycle Definition Signals (W/R, D/C, M/O,
LOCK)

These three-state outputs define the type of bus cycle
being performed: W/R distinguishes between write and
read cycles; D/C distinguishes between data and
control cycles; M/IO distinguishes between memory and
1/0 cycles; and, LOCK distinguishes between locked
and unlocked bus cycles. All of these signals are active
Low and will float during Bus Acknowledge.

The primary bus cycle definition signals are W/R, D/C,
and M/IO, since these are the signals driven valid as
ADS (Address Status output) becomes active. The
LOCK is driven valid at the same time the bus cycle be-
gins, which, due to address pipelining, could be after
ADS becomes active. Exact bus cycle definitions, as a
function of W/R, D/C, and M/IO, are given in Table 14.

Table 13. Byte Enable Definitions

BHE BLE Function
0 0 Word Transfer
0 1 Byte transfer on upper byte
of the data bus, D15-D8
1 0 Byte transfer on lower byte
of the data bus, D7-D0
1 1 Never occurs

LOCK indicates that other system bus masters are not
to gain control of the system bus while it is active. LOCK
is activated on the CLK2 edge that begins the first
locked bus cycle (i.e., itis not active at the same time as
the other bus cycle definition pins) and is deactivated
when READY is returned at the end of the last bus cycle

180 Am386 Microprocessors for Personal Computers

AMD a

Table 14. Bus Cycle Definition

M/10 D/C W/R Bus Cycle Type Locked?
0 0 0 Interrupt Acknowledge Yes
0 0 1 Does not occur —
0 1 0 I/0O Data Read No
0 1 1 I/O Data Write No
1 0 0 Memory Code Read No
1 0 1 Halt: Shutdown: No
Address = 2 Address =0
BHE =1 BHE =1
BLE =0 BLE =0
1 1 0 Memory Data Read Some Cycles
1 1 1 Memory Data Write Some Cycles

which is to be locked. The beginning of a bus cycle is
determined when READY is returned in a previous bus
cycle and another is pending (ADS is active), or the
clock in which ADS is driven active if the bus was idle.
This means that it follows more closely with the write
data rules when it is valid, but may cause the bus to
be locked longer than desired. The LOCK signal may
be explicitly activated by the LOCK prefix on certain
instructions.

LOCK is always asserted when executing the XCHG
instruction, during descriptor updates, and during the
interrupt acknowledge sequence.

Bus Control Signals (ADS, READY, NA)

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS)
This three-state output indicates that a valid bus cycle

definition and address (W/R, D/C, M/I0, BHE, BLE, and
A23-A1) are being driven at the Am386SX/SXL micro-
processor pins. ADS is an active Low output. Once ADS
is driven active, valid address, Byte Enables, and defini-
tion signals will not change. In addition, ADS will remain
active until its associated bus cycle begins (when
READY is returned for the previous bus cycle when
running pipelined bus cycles). When address pipe-
lining is utilized, maximum throughput is achieved by
initiating bus cycles when ADS and READY are active in
the same clock cycle. ADS will float during Bus Hold
Acknowledge. See sections Non-Pipelined Address
and Pipelined Address for additional information on how
ADS is asserted for different bus states.

Transfer Acknowledge (READY)

This input indicates the current bus cycle is complete,
and the active bytes indicated by BHE and BLE are
accepted or provided. When READY is sampled active
during a read cycle or interrupt acknowledge cycle, the
Am386SX/SXL microprocessor latches the input data
and terminates the cycle. When READY is sampled
active during a write cycle, the processor terminates the
bus cycle.

READY is ignored on the first bus state of all bus cycles,
and sampled each bus state thereafter until asserted.
READY must eventually be asserted to acknowledge
every bus cycle, including Halt Indication and Shutdown
Indication bus cycles. When being sampled, READY
must always meet setup and hold times (t19 and t20)
for correct operation.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the system is prepared to accept new values
of BHE, BLE, A23-A1, W/R, D/C, and M/IO from the
Am386SX/SXL CPU even if the end of the current cycle
is not being acknowledged on READY. If this input is
active when sampled, the next address is driven onto
the bus, provided the next bus request is already
pending internally. NA is ignored in CLK cycles in which
ADS or READY is activated. This signal is active Low
and must satisfy setup and hold times (15 and t16) for
correct operation. See sections Read and Write Cycles
and Pipelined Address for additional information.

Bus Arbitration Signals (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes control of its local buses when
requested by another bus master device. See section
Entering and Exiting Hold Acknowledge for additional
information.

Am386SX/SXL Microprocessor Data Sheet 181

u AMD

Bus Hold Request (HOLD)

This input indicates some device other than the
Am386SX/SXL microprocessor requires bus master-
ship. When control is granted, the Am386SX/SXL CPU
floats A23-A1, BHE, BLE, D15-D0, LOCK, M/10, D/C,
W/R, and ADS, and then activates HLDA, thus entering
the Bus Hold Acknowledge state. The local bus will
remain granted to the requesting master untii HOLD
becomes inactive. When HOLD becomes inactive, the
Am386SX/SXL microprocessor will deactivate HLDA
and drive the local bus (at the same time), thus
terminating the Hold Acknowledge condition.

HOLD must remain asserted as long as any other
device is a local bus master. External pull-up resistors
may be required when inthe Hold Acknowledge (HLDA)
state, since none of the Am386SX/SXL microprocessor
floated outputs have internal pull-up resistors. See sec-
tion Resistor Recommendations for additional infor-
mation. HOLD is not recognized while RESET is active.
If RESET is asserted while HOLD is asserted, RESET
has priority and places the bus into an idle state, rather
than the Hold Acknowledge (high impedance) state.

HOLD is a level-sensitive, active High, synchronous
input. HOLD signals must always meet setup and hold
times (t23 and t24) for correct operation.

Bus Hold Acknowledge (HLDA)

When active (High), this output indicates the Am386SX/
SXL microprocessor has relinquished control of its local
bus in response to an asserted HOLD signal, and is in
the Bus Hold Acknowledge state.

The Bus Hold Acknowledge state offers near complete
signal isolation. In the HLDA state is the only signal
being driven by the Am386SX/SXL microprocessor.
The other output or bidirectional signals (D15-D0, BHE,
BLE, A23-A1, W/R, D/C, M/10, LOCK, and ADS) are in
a high-impedance state so the requesting bus master
may control them. These pins remain Off throughout the
time that HLDA remains active (see Table 15). Pull-up
resistors may be desired on several signals to avoid
spurious activity when no bus master is driving them.
See section Resistor Recommendations for additional
information.

When the HOLD signal is made inactive, the Am386SX/
SXL microprocessor will deactivate HLDA and drive the
bus. One rising edge on the NMI input is remembered
for processing after the HOLD input is negated.

Table 15. Output Pin State During HOLD

Pin Value Pin Names

1 HLDA

Float LOCK, MAG, D/C, W/R, ADS,
A23-A1, BHE, BLE, D15-D0

In addition to the normal usage of Hold Acknowledge
with DMA controllers or master peripherals, the near
complete isolation has particular attractiveness during

system test when test equipment drives the system, and
in hardware fault-tolerant applications.

HOLD Latencies

The maximum possible HOLD latency depends on the
software being executed. The actual HOLD latency at
any time depends on the current bus activity, the state of
the LOCK signal (internal to the CPU) activated by the
LOCK prefix, and interrupts. The Am386SX/SXL micro-
processor will not honor a HOLD request until the
current bus operation is complete.

The Am386SX/SXL microprocessor breaks 32-bit data
or I/O accesses into 2 internally locked 16-bit bus
cycles; the LOCK signalis not asserted. The Am386SX/
SXL microprocessor breaks unaligned 16-bit or 32-bit
data or I/0 accesses into 2 or 3 internally locked 16-bit
bus cycles. Again, the LOCK signal is not asserted but a
HOLD request will not be recognized until the end of the
entire transfer.

Wait states affect HOLD latency. The Am386SX/SXL
microprocessor will not honor a HOLD request until the
end of the current bus operation, no matter how many
wait states are required. Systems with DMA where data
transfer is critical must insure that READY returns
promptly.

Coprocessor Interface Signals (PEREQ, BUSY,
ERROR)

In the following sections are descriptions of signals
dedicated to the math coprocessor interface. In addition
to the data bus, address bus, and bus cycle definition
signals, the following signals control communication
between the Am386SX/SXL microprocessor and its
387SX math coprocessor extension.

Coprocessor Request (PEREQ)

When asserted (High), this input signal indicates a
coprocessor request for a data operand to be
transterred to/from memory by the Am386SX/SXL Mi-
croprocessor. In response, the Am386SX/SXL micro-
processor transfers information between the math
coprocessor and memory. Because the Am386SX/SXL
CPU has internally stored the math coprocessor op-
code being executed, it performs the requested data
transfer with the correct direction and memory address.

PEREQ is level-sensitive active High asynchronous
signal. Setup and hold times (t29 and t30) relative to
the CLK2 signal must be met to guarantee recognition
at a particular clock edge. This signal is provided with a
weak internal pull-down resistor of around 20 Kohms to
Ground so that it will not float active when left
unconnected.

Coprocessor Busy (BUSY)

When asserted Low, this input indicates that the
coprocessor is still executing an instruction, and is not
yet able to accept another. Whenthe Am386SX/SXL mi-
croprocessor encounters any coprocessor instruction
which operates on the numerics stack (e.g., load, pop,
or arithmetic operation), or the WAIT instruction, this

182 Am386 Microprocessors for Personal Computers

AMD n

input is first automatically sampled until it is seen to be
inactive. This sampling of the BUSY input prevents
overrunning the execution of a previous coprocessor
instruction.

The FNINIT, FNSTENV, FNSAVE, FNSTSW,
FNSTCW, and FNCLEX coprocessor instructions are
allowed to execute even if BUSY is active, since these
instructions are used for coprocessor initialization and
exception-clearing.

BUSY is an active Low, level-sensitive, asynchronous
signal. Setup and hold times (t29 and t30), relative to
the CLK2 signal, must be met to guarantee recognition
at a particular clock edge. This pin is provided with
a weak internal pull-up resistor of around 20 Kohms to
Vee s0 that it will not float active when left unconnected.

BUSY serves an additional function. If BUSY is sampled
Low at the falling edge of RESET, the Am386SX/SXL
microprocessor performs an internal self-test (see sec-
tion Bus Activity During and Following Reset). If BUSY is
sampled High, no self-test is performed.

Coprocessor Error (ERROR)

When asserted Low, this input signal indicates that
the previous coprocessor instruction generated a
coprocessor error of a type not masked by the
coprocessor’s control register. This input is auto-
matically sampled by the Am386SX/SXL microproces-
sor when a coprocessor instruction is encountered, and
if active, the Am386SX/SXL CPU generates Exception
16 to access the error-handling software.

Several coprocessor instructions, generally those which
clear the numeric error flags in the coprocessor or save
coprocessor state, do execute without the Am386SX/
SXL CPU generating Exception 16 even if ERROR is
active. These instructions are FNINIT, FNCLEX,
FNSTSW, FNSTSWAX, FNSTCW, FNSTENV, and
FNSAVE.

ERROR is an active Low, level-sensitive, asynchronous
signal. Setup and hold times (t29 and t30), relative to
the CLK2 signal, must be met to guarantee recognition
at a particular clock edge. This pin is provided with a
weak internal pull-up resistor of around 20 Kohms to Vec
so that it will not float active when left unconnected.

Interrupt Signals (INTR, NMI, RESET)

The following descriptions cover inputs that can
interrupt or suspend execution of the processor's
current instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for
interrupt service, which can be masked by the
Am386SX/SXL microprocessor Flag Register IF bit.
Whenthe Am386SX/SXL CPU responds to the INTR in-
put, it performs two interrupt acknowledge bus cycles
and, at the end of the second, latches an 8-bit interrupt
vector on D7-DO0 to identify the source of the interrupt.

INTR is an active High, level-sensitive, asynchronous
signal. Setup and hold times (t27 and t28), relative to
the CLK2 signal, must be met to guarantee recognition
at a particular clock edge. To assure recognition of an
INTR request, INTR should remain active until the first
interrupt acknowledge bus cycle begins. INTR is
sampled at the beginning of every instruction in the
Am386SX/SXL microprocessor’'s Execution Unit. In
order to be recognized at a particular instruction
boundary, INTR mustbe active at least eight CLK2 clock
periods before the beginning of the instruction. If
recognized, the Am386SX/SXL CPU will begin
execution of the interrupt.

Non-Maskable Interrupt Request (NMI)

This input indicates a request for interrupt service which
cannot be masked by software. The non-maskable
interrupt request is always processed according to the
pointer or gate in slot 2 of the interrupt table. Because of
the fixed NMI slot assignment, no interrupt acknowledge
cycles are performed when processing NMI.

NMI is an active High, rising edge-sensitive, asyn-
chronous signal. Setup and hold times (127 and t28),
relative to the CLK2 signal, must be met to guarantee
recognition at a particular clock edge. To assure
recognition of NMI, it must be inactive for at least eight
CLK2 periods, and then be active for at least eight CLK2
periods before the beginning of the instruction boundary
in the Am386SX/SXL microprocessor’'s Execution Unit.

Once NMI processing has begun, no additional NMI's
are processed until after the next IRET instruction,
which is typically the end of the NMI service routine. If
NMl s re-asserted prior to that time, however, one rising
edge on NMI will be remembered for processing after
executing the next IRET instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to several
factors. This delay must be taken into account by the
interrupt source. Any of the following factors can affect
interrupt latency:

1. Ifinterrupts are masked, an INTR request will not be
recognized until interrupts are re-enabled.

2. If an NMI is currently being serviced, an incoming
NMI request will not be recognized until the
Am386SX/SXL microprocessor encounters the
IRET instruction.

3. An interrupt request is recognized only on an in-
struction boundary of the Am386SX/SXL
microprocessor's Execution Unit except for the
following cases:

— Repeat string instructions can be interrupted after
each iteration.

—If the instruction loads the Stack Segment
register, an interrupt is not processed until after

Am386SX/SXL Microprocessor Data Sheet 183

a AMD

the following instruction, which should be an ESP.
This allows the entire stack pointer to be loaded
without interruption.

—If an instruction sets the interrupt flag (enabling
interrupts), an interrupt is not processed until after
the next instruction.

The longest latency occurs when the interrupt
request arrives while the Am386SX/SXL micropro-
cessor is executing a long instruction such as
multiplication, division, or a task switch in the Pro-
tected Mode. :

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers
that are not automatically saved by the Am386SX/
SXL microprocessor.

Reset

This input signal suspends any operation in progress
and places the Am386SX/SXL microprocessor in a
known reset state. The Am386SX/SXL CPU is reset by
asserting RESET for 15 or more CLK2 periods (80 or
more CLK2 periods before requesting self-test). When
RESET is active, all other input pins, except FLT, are
ignored, and all other bus pins are driven to an Idle Bus
state, as shown in Table 16. If RESET and HOLD are
both active at a point in time, RESET takes priority even
if the Am386SX/SXL microprocessor was in a Hold Ac-
knowledge state prior to RESET active.

Reset is an active High, level-sensitive, synchronous
signal. Setup and hold times (t25 and t26) must be met
in order to assure proper operation of the Am386SX/
SXL microprocessor.

Bus Transfer Mechanism

All data transfers occur as a result of one or more bus
cycles. Logical data operands of byte and word lengths
may be transferred without restrictions on physical
address alignment. Any byte boundary may be used,
although two physical bus cycles are performed as
required for unaligned operand transfers.

The Am386SX/SXL microprocessor address signals
are designed to simplify external system hardware.
Higher-order address bits are provided by A23-A1.
BHE and BLE provide linear selects for the two bytes of
the 16-bit data bus.

Byte Enable outputs BHE and BLE are asserted when
their associated data bus bytes are involved with the
present bus cycle, as listed in Table 17.

Each bus cycle is composed of at least two bus states.
Each bus state requires one processor clock period.
Additional bus states added to a single bus cycle are
called wait states. See section Bus Functional
Description.

Table 16. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset
ADS 1

D15-Do Float

BHE, BLE 0

A23-A1 1

W/R 0

D/C 1

M/ 0

LOCK 1

HLDA 0

Table 17. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Signal| Associated Data Bus Signals
BLE D7-D0 (Byte 0—least significant)
BHE D15-D8 (Byte 1—most significant)

Memory and I/O Spaces

Bus cycles may access physical memory space or I/O
space. Peripheral devices in the system may either be
memory-mapped, /O-mapped, or both. As shown in
Figure 24, physical memory addresses range from
000000H to OFFFFFFH (16 Mb) and I/O addresses from
000000H to 00FFFFH (64 Kb). Note the 1/0 addresses
used by the automatic I/O cycles for coprocessor
communication are 8000F8H to 8000FFH, beyond the
address range of programmed /O, to allow easy
generation of a coprocessor chip select signal using the
A23 and M/1O signals.

Bus Functional Description

The Am386SX/SXL microprocessor has separate, par-
allel buses for data and address. The data bus is 16-bits
in width, and bidirectional. The address bus provides a
24-bit value using 23 signals for the 23 upper-order
address bits and 23 Byte Enable signals to directly indi-
cate the active bytes. These buses are interpreted and
controlled by several definition signals.

184 Am386 Microprocessors for Personal Computers

AMD a

FFFFFFH

Physi

000000H

ical Memory 8000FFH

Not
Accessible

16 Mb 8000F8H

(Note)

OOFFFFH

000000H

Physical

Memory Space

<+——— Coprocessor

Accessible
64 Kb Programmed
I/O Space
1/O Space

Note: Since A23 is High during automatic communication with coprocessor, A23 High and M/IO Low can be used to easily generate a
coprocessor select signal.

15022B-012
Figure 24. Physical Memory and I/O Spaces
Cycle 1 Cycle 2 Cycle 3
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Read) (Read)
T1 T2 Ti T2 T T2
o1 | 02| o1 | o2 | o1 o2 | et o2 fot|oz| o1]ez]| o1
CLK2
s A I 1 I I
BHE, BLE, A23-Af1, —
o, 05,WR [DX Valid 1 Valid 2 Valid 3
(Output)]
ot —"""T1N~~" N
NA
(Input) [
READY I:_J_X_/_K_/—____/
(Input)
[oek [7] Valid 1 Valid 2 Valid 3
(Output) [—X
D15-Do [_In —_——t—— In1 —_———— In2 —_————— In3
(Input during Read)
Fastest non-pipelined bus cycles consist of T1 and T2
15022B-013

Figure 25. Fastest Read Cycles with Non-Pipelined Address Timing

Am386SX/SXL Microprocessor Data Sheet

185

a AMD

The definition of each bus cycle is given by three
signals: M/10, W/R, and D/C. At the same time, a valid
address is present on the Byte Enable signals, BHE
and BLE, and the other address signals, A23-A1. A
status signal, ADS, indicates when the Am386SX/SXL
microprocessor issues a new bus cycle definition and
address.

Collectively, the address bus, data bus, and all assoc-
iated control signals are referred to simply as the bus.
When active, the bus performs one of the bus cycles
below:

1. Read from memory space;

Locked read from memory space;

Write to memory space;

Locked write to memory space;

Read from 1/O space (or math coprocessor);
Write to 1/O space (or math coprocessor);
Interrupt acknowledge (always locked);
Indicate halt, or indicate shutdown.

©® N OA WD

Table 14 shows the encoding of the bus cycle definition
signals for each bus cycle. See section Bus Cycle Defi-
nition Signals for additional information.

When the Am386SX/SXL microprocessor bus is not
per-forming one of the activities listed above, itis either
idle or in the Hold Acknowledge state, which may be
detected externally. The idle state can be identified by
the Am386SX/SXL CPU giving no further assertions on
its address strobe output (ADS) since the beginning of
its most recent cycle, and the most recent bus cycle
having been terminated. The Hold Acknowledge state is
identified by the Am386SX/SXL microprocessor assert-
ing its Hold Acknowledge (HLDA) output.

Bus Functional Description

The Am386SX/SXL microprocessor has separate,
parallel buses for data and address. The data bus is
16-bits in width, and bidirectional. The address bus
provides a 24-bit value using 23 signals for the 23
upper-order address bits and 2 Byte Enable signals to
directly indicate the active bytes. These buses are
interpreted and controlled by several definition signals.

Cycle 1 Cycle 2 Cycle 3
Pipelined Pipelined Pipelined
(Read) (Read) (Read)
TP T2P T1P T2P T1P T2P
ot loz2fot oz lot]oz2|or|oz|or|o2]|01]e2
CLK2
cco 3 I 1 1 A I I I
BHE, BLE, A23-A1, - - 3 "
/15, DIC, W/R Valid 1 Valid 2 Valid 3 Valid 4
(Outputs)
ADS
(Output) — \— L ____/
NA —
(Input)
F‘(‘i";% _._/__K_/—_——_/_____/
LOCK H T "
(Output) Valid 1 Valid 2 Valid 3

D15-D0
(Input during Read)

Fastest pipelined bus cycles consist of T1P and T2P

Figure 26. Fastest Read Cycles with Pipelined Address Timing

15022B-014

186

Am386 Microprocessors for Personal Computers

AMD I‘J

The shortest time unit of bus activity is a bus state. Abus
state is one processor clock period (two CLK2 periods)
in duration. A complete data transfer occurs during a
bus cycle, composed of two or more bus states.

The fastest Am386SX/SXL microprocessor bus cycle
requires only two bus states. For example, three
consecutive bus read cycles, each consisting of two bus
states, are shown in Figure 25. The bus states in each
cycle are named T1 and T2. Any memory or I/O address
may be accessed by such a two-state bus cycle, if the
external hardware is fast enough.

Every bus cycle continues until it is acknowledged by
the external system hardware, using the Am386SX/SXL
microprocessor READY input. Acknowledging the bus
cycle at the end of the first T2 results in the shortest bus
cycle, requiring only T1 and T2. If READY is not
immediately asserted however, T2 states are repeated
indefinitely until the READY input is sampled active.

The address pipelining option provides a choice of bus
cycle timings. Pipelined or non-pipelined address timing
is selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When address pipelining is selected, the address (BHE,
BLE, and A23-A1) and definition (W/R, D/C, M/IO, and
LOCK) of the next cycle are available before the end of
the current cycle. To signal their availability, the
Am386SX/SXL microprocessor address status output
(ADS) is asserted. Figure 26 illustrates the fastest read
cycles with pipelined address timing.

Note from Figure 26 the fastest bus cycles using
pipelined address require only two bus states, named
T1P and T2P. Therefore, cycles with pipelined address
timing allow the same data bandwidth as non-pipelined
cycles, but address-to-data access time is increased by
one T-state time compared to that of a non-pipelined
cycle.

Idle Cycle 1 Cycle 2 Cycle 3 Idle Cycle 4 Idle
Non-Pipelined Non-Pipelined Non-Pipelined Non-Pipelined
(Write) (Read) (Write) (Read)
Ti T1 T2 T1 T2 T1 T2 Ti T T2 Ti
otk [ipiigiigigigipigipipipigipigipipipiys
Processor LK [NN NN NSNS
BHE, BLE,
7\233&5, Valid 1 Valid 2 Valid 3 Valid 4
M/io, D/C
W[
Aos NV NV NV /
W[
READY |
End Cycle 1 End Cycle 2 End Cycle 3 End Cycle 4
Valid 2 Valid 3 Valid 4

D15-Do [

ook [m Valid 1
P

Out

1D« o

-___J___G,ID__4,

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active bus cycle
can immediately follow the write cycle.

15022B-015

Figure 27. Various Bus Cycles with Non-Pipelined Address (Zero Wait States)

Am386SX/SXL Microprocessor Data Sheet 187

n AMD

Read and Write Cycles

Data transfers occur as a result of bus cycles, classified
as read or write cycles. During read cycles, data is
transferred from an external device to the processor.
During write cycles, data is transferred from the
processor to an external device.

Two choices of address timing are dynamicaily
selectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipelined address
timing. However, the NA (Next Address) input may be
asserted to select pipelined address timing for the next
bus cycle. When pipelining is selected and the
Am386SX/SXL microprocessor has a bus request
pending internally, the address and definition of the next
cycle is made available even before the current bus
cycle is acknowledged by READY.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor
inserts wait states into the bus cycle, to allow adjustment

forthe speed of any external device. External hardware,
which has decoded the address and bus cycle type,
asserts the READY input at the appropriate time.

At the end of the second bus state within the bus cycle,
READY is sampled. At that time, if external hardware
acknowledges the bus cycle by asserting READY, the
bus cycle terminates as shown in Figure 27. If READY is
negated, as in Figure 28, the Am386SX/SXL micropro-
cessor executes another bus state (a wait state) and
READY is sampled again at the end of that state. This
continues indefinitely until the cycle is acknowledged by
READY asserted.

When the current cycle is acknowledged, the
Am386SX/SXL microprocessor terminates it. When a
read cycle is acknowledged, the Am386SX/SXL CPU
latches the information present at its data pins. When a
write cycle is acknowledged, the Am386SX/SXL
microprocessor’s write data remains valid throughout
phase one of the next bus state, to provide write data
hold time.

Idle Cycle 1 Cycle 2 Idle Cycle 3 Idle
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Write) (Read)
Ti T1 T2 T T2 T3 Ti T1 T2 T3 Ti
oke [Uy Uy oy ey
BHE, BLE,
A23-A1, Valid 1 Valid 2 Valid 3
M/G, D/C
wR [
aos [AN N /
w[XXXXXXXX
READY |
End Cycle 1 End Cycle 3
ook [Valid 1 Valid 2 Valid 3
Di5-Do [—f——— ———-—Qb—(Out S —Gb—-
| [|

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active bus cycle

can immediately follow the write cycle.

15022B-016

Figure 28. Various Bus Cycles with Non-Pipelined Address (Various Number of Wait States)

188

Am386 Microprocessors for Personal Computers

AMD n

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 27 shows a mixture
of read and write cycles with non-pipelined address
timing. Figure 27 shows that the fastest possible cycles
with non-pipelined address have two bus states per bus
cycle. The states are named T1 and T2. In phase one of
T1, the address signals and bus cycle definition signals
are driven valid and, to signal their availability, address
strobe (ADS) is simultaneously asserted.

During read or write cycles the data bus behaves
as follows. If the cycle is a read, the Am386SX/SXL mi-
croprocessor floats its data signal to allow driving by the
external device being addressed. The Am386SX/SXL
microprocessor requires that all data bus pins be at a
valid logic state (High or Low) at the end of each read
cycle, when READY is asserted. The system must be
designed to meet this requirement. If the cycle is a write,
data signals are driven by the Am386SX/SXL CPU
beginning in phase two of T1 until phase one of the bus
state following cycle acknowledgment.

Figure 28 illustrates non-pipelined bus cycles with one
wait state added to Cycles 2 and 3. READY is sampled
inactive at the end of the first T2 in Cycles 2 and 3.
Therefore, Cycles 2 and 3 have T2 repeated again. At
the end of the second T2, READY is sampled active.

When address pipelining is not used, the address and
bus cycle definition remain valid during all wait states.
When wait states are added, and it is desirable to
maintain non-pipelined address timing, itis necessary to
negate NA during each T2 state, except the last one, as
shown in Figure 28, Cycles 2 and 3. If NA is sampled
active during a T2 other than the last one, the next state
would be T2! or T2P instead of another T2.

The bus states and transitions, when address pipelining
is not used, are completely illustrated by Figure 29. The
bus transitions between four possible states, T1, T2, Ti,
and Th. Bus cycles consist of T1 and T2, with T2 being
repeated for wait states. Otherwise the bus may be idle,
Ti, or in the Hold Acknowledge state Th.

HOLD Negated e No Request

HOLD Negated o

HOLD Asserted

HOLD Asserted

READY Asserted e HOLD Negated ¢ No Request

>

HOLD Negated o
Request Pending

No Request Request Pending e

HOLD Negated

RESET
Asserted

Bus States:

READY Asserted e HOLD Asserted

ALWAYS

4

READY Asserted o
HOLD Negated
Request Pending

READY Negated o
NA Negated

T1— First clock of a non-pipelined bus cycle (Am386SX/SXL CPU drives new address and asserts ADS).
T2— Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

Ti — Idle state.

Th— Hold Acknowledge state (Am386SX/SXL CPU asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.

Four basic bus states describe bus operation when not using pipelined address.

15022B-017

Figure 29. Bus States (Not Using Pipelined Address)

Am386SX/SXL Microprocessor Data Sheet 189

a AMD

Bus cycles always beginwith T1. T1 always leads to T2.
If a bus cycle is not acknowledged during T2 and NA is
inactive, T2 is repeated. When a cycle is acknowledged
during T2, the following state will be T1 of the next bus
cycle, if a bus request is pending internally, or Ti, if there
is no bus request pending, or Th, if the HOLD input is
being asserted.

Use of pipelined address allows the Am386SX/SXL mi-
croprocessor to enter three additional bus states not
shown in Figure 29. Figure 33 is the complete bus state
diagram, including pipelined address cycles.
Pipelined Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next

internally pending bus cycle before the current bus
cycle is acknowledged with READY asserted. ADS is
asserted by the Am386SX/SXL microprocessor when
the next address is issued. The address pipelining op-
tion is controlled on a cycle-by-cycle basis with the NA
input signal.

Once a bus cycle is in progress and the current address
has been valid for at least one entire bus state, the NA
input is sampled at the end of every phase one until the
bus cycle is acknowledged. During non-pipelined bus
cycles, NA is sampled at the end of phase one in every
T2. An example is Cycle 2 in Figure 30, during which
NA is sampled at the end of phase one of every T2
(it was asserted once during the first T2 and has no
further effect during that bus cycle).

Idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

Ti

Processor CLK [

2

anhhhhhhhhhhhiihGhhhhhhi
VaVaVaVaVaVaVaVaVaVa

T2P T1P T2I

W/ﬁ[XlXXXXV / //

XIXXXX

AL AN AR

Valid 2

Valid 3

e

Out

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA is only sampled during
wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined

cycle with at least one wait state (Cycle 2 above).

15022B-018

Figure 30. Transitioning to Pipelined Address During Burst of Bus Cycles

190

Am386 Microprocessors for Personal Computers

AMD u

If NA is sampled active, the Am386SX/SXL micropro-
cessor is free to drive the address and bus cycle
definition of the next bus cycle, and assert ADS, as soon
as it has a bus request internally pending. It may drive
the next address as early as the next bus state, whether
the current bus cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the
Am386SX/SXL CPU has the following characteristics:

1. The next address may appear as early as the bus
state after NA was sampled active (see Figures 30
and 31). In that case, state T2P is entered immed-
iately. However, when there is not an internal bus 3
request already pending, the next address will not be
available immediately after NA is asserted and T2l is
entered instead of T2P (see Figure 32, Cycle 3).

Provided the current bus cycle is not yet acknow-
ledged by READY asserted, T2P will be entered as
soon as the Am386SX/SXL microprocessor does
drive the next address. External hardware should
therefore observe the ADS output as confirmation
the next address is actually being driven on the bus.

. Any address which is validated by a pulse on the

ADS output will remain stable on the address pins
for at least two processor clock periods. The
Am386SX/SXL CPU cannot produce a new address
more frequently than every two processor clock
periods (see Figures 30, 31, and 32).

. Only the address and bus cycle definition of the very

next bus cycle is available. The pipelining capability
cannot look further than one bus cycle ahead (see
Figure 32, Cycle 1).

Idle Cycle 1 Cycle 2
Non-Pipelined Pipelined
(Write) (Read)

Cycle 3 Cycle 4 Idle
Pipelined Pipelined
(Write) (Read)

Ti

ave [_LMULMLTLLL
prcoser [N/ N/

T2 T2P T1P T2P

T1P T2P T1P T2l T2i

Valid 3 Valid 4

BHE, BLE, -
A23-A1, [XBXXXF(Valid 1 Valid 2
vy

M/G, D/C ol

wA [

XPOXXIXXXXXXY

Valid 1 Valid 2

Valid 3 Valid 4

Out)———— In Out
|

Y

__GID____

Note: Following any idle bus state (Ti) the address is always non-pipelined and NA is only sampled during wait states. To start
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

15022B-019

Figure 31. Fastest Transition to Pipelined Address Following Idle Bus State

Am386SX/SXL Microprocessor Data Sheet 191

l"'l AMD

The complete bus state transition diagram, including The fastest bus cycle with pipelined address consists of
operation with pipelined address, is given in Figure 33. just two bus states, T1IP and T2P (recall for non-
Note thatit is a superset of the diagram for non-pipelined pipelined address it is T1 and T2). T1P is the first bus
address only, and the three additional bus states for state of a pipelined cycle.

pipelined address are drawn in bold.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Pipelined Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)
TIP| T2P T2P TP T2 T2P T1P T2l T2P T1P

L
/"]

e[MU UYUUyuyuyuyuyuL
Processor CLK [_J\/__\/_—\/_\/—\/_\/—\/—\/— \-/—

BHE, BLE,
A23-A1, Valid 1 Valid 2 Valid 3 Valid 4

M/S, DS » » - L 1
ADS is asserted as soon
as the CPU has another
bus cycle to perform, which
is not always immediately
after NA is asserted.

wa [{ / !

sos [/ T

"@———‘ i Y
ﬂote:/\os'is asserted / As long as the CPU enters the T2P

in every T2P state. state during Cycle 3, address pipelining
is maintained in Cycle 4.

Na [X\

v
Asserting NA more than NA could have been asserted in
once during any cycle] T1P if desired. Assertion now is
has no additional the latest time possible to allow
effects. the CPU to enter T2P state to
maintain pipelining in Cycle 3.

reRDY [XA | AXX X | AXX AV

ook [Valid 1 Valid 2 Valid 3 Valid 4
p1s-Do [_out X Out >—t———1 -—-Grll__)—-(Out D
| | |
15022A-020

Figure 32. Details of Address Pipelining During Cycles with Wait States

192 Am386 Microprocessors for Personal Computers

AMD

u

HOLD Asserted

HOLD Negated e
No Request

HOLD Negated o
Request Pending

HOLD
Asserted

RESET
Assen:ted
.

A

READY Assertede
HOLD Negated e
No Request

A

~

Always

READY Asserted o
HOLD Asserted

READY Asserted
HOLD Asserted

(No Request +
HOLD Asserted) .
NA Asserted o NA Asserted o
READY Negated (HOLD Asserted +
No Request)

~

Request Pending o
HOLD Negated

HOLD Negated
No Request

READY Asserted o
HOLD Negated
Request Pending

READY Asserted o
HOLD Negated
Request Pending

READY Negatede
NA Negated

READY Negated o
NA Asserted o

HOLD Negated o
Request Pending

READY Asserted e HOLD Negated ¢ No Request

Bus States:

T1 — First clock of a non-pipelined bus cycle (Am386SX/SXL CPU drives new
address and asserts ADS).

T2 — Subsequent clocks of a bus cycle when NA has notbeen sampled asserted
in the current bus cycle.

T2l— Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle but there is not yet an internal bus request pending
(Am386SX/SXL CPU will not drive new address or assert ADS).

T2P—Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle and there is an internal bus request pending
(Am386SX/SXL CPU drives new address and asserts ADS).

T1P—First clock of a pipelined bus cycle.

Ti — Idle state.

Th — Hold Acknowledge state (Am386SX/SXL CPU asserts HLDA).

Asserting NA for pipelined address gives access to three more bus states: T2l,
T2P, and T1P.

Using pipelined address, the fastest bus cycle consists of T1P and T2P.

READY Negated o
(No Request +
HOLD Asserted)

READY Negatede
Request Pending e
HOLD Negated

NA Asserted o
HOLD Negated o
Request Pending

READY Asserted

READY Negated

15022B-021

Figure 33. Complete Bus States (Including Pipelined Address)

Am386SX/SXL Microprocessor Data Sheet

193

ﬂ AMD

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 33, observe the
transitions from an idle state (Ti) to the beginning of a
pipelined bus cycle (T1P). Froman idle state (Ti) the first
bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA is asserted and the
first bus cycle ends in a T2P state (the address for the
next bus cycle is driven during T2P). The fastest path
from anidle state to a bus cycle with pipelined address is
shown in bold below:

Ti, Ti, Ti, T1-T2-T2P, T1P-T2P,

Idle Non-Pipelined
States Cycle

Pipelined
Cycle

T1-T2-T2P are the states of the bus cycle that establish
address pipelining for the next bus cycle, which begins
with T1P. The same is true after a bus hold state, shown
below:

Th, Th, Th, T1-T2-T2P, T1P-T2P,

Hold Acknowledge Non-Pipelined Pipelined
States Cycle Cycle

The transitionto pipelined address is shown functionally
by Figure 31, Cycle 1. Note that Cycle 1 is used to
transition into pipelined address timing for the
subsequent Cycles 2, 3, and 4, which are pipelined. The
NA input is asserted at the appropriate time to select
address pipelining for Cycle 2, 3, and 4.

Once abus cycle is in progress and the current address
has been valid for one entire bus state, the NA input is
sampled at the end of every phase one until the bus
cycle is acknowledged. Sampling begins in T2 during
Cycle 1in Figure 31. Once NA is sampled active during
the current cycle, the Am386SX/SXL microprocessor is
free to drive a new address and bus cycle definition on
the bus as early as the next bus state. In Figure 31, Cy-
cle 1 forexample, the next address is driven during state
T2P. Thus, Cycle 1 makes the transition to pipelined
address timing, since it begins with T1 but ends with
T2P. Because the address for Cycle 2 is available
before Cycle 2 begins, Cycle 2 is called a pipelined bus
cycle, and it begins with T1P. Cycle 2 begins as soon as
READY asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 31, Cycle 1
and Figure 30, Cycle 2. Figure 31 shows transition
during the very first cycle after an idle bus state, which is
the fastest possible transition into address pipelining.
Figure 30, Cycle 2 shows a transition cycle occurring
during a burst of bus cycles. In any case, a transition
cycle is the same whenever it occurs: it consists at least
of T1, T2 (NA is asserted at that time), and T2P
(provided the Am386SX/SXL microprocessor has an
internal bus request already pending, which it almost
always has). T2P states are repeated if wait states are
added to the cycle.

Note that only three states (T1, T2, and T2P) are
required in a bus cycle performing a transition from

non-pipelined address into pipelined address timing
(e.g., Figure 31, Cycle 1). Figure 31, Cycles 2, 3, and 4
show that address pipelining can be maintained with
two-state bus cycles consisting only of T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting NA
and detecting that the Am386SX/SXL microprocessor
enters T2P during the currentbus cycle. The current bus
cycle must end in state T2P for pipelining to be main-
tainedinthe nextcycle. T2P is identified by the assertion
of ADS. Figures 30 and 31, however, each show pipelin-
ing ending after Cycle 4, because Cycle 4 ends in T2I.
This indicates the Am386SX/SXL CPU did not have an
internal bus request prior to the acknowledgment of
Cycle 4. If a cycle ends with a T2 or T2I, the next cycle
will not be pipelined.

Realistically, address pipelining is almost always
maintained as long as NA is sampled asserted. This is
so because in the absence of any other request, a code
prefetch request is always internally pending until the
instruction decoder and code prefetch queue are
completely full. Therefore, address pipelining is main-
tained for long bursts of bus cycles, if the bus is available
(i.e., HOLD inactive), and NA is sampled active in each
of the bus cycles.

Interrupt Acknowledge (INTA) Cycles

In response to an interrupt request on the INTR input
when interrupts are enabled, the Am386SX/SXL micro-
processor performs two interrupt acknowledge cycles.
These bus cycles are similar to read cycles in that bus
definition signals define the type of bus activity taking
place, and each cycle continues until acknowledged by
READY sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address driven
during the first interrupt acknowledge cycle is 4
(A23-A3, A1, BLE Low, A2 and BHE High). The byte
address driven during the second interrupt acknow-
ledge cycle is 0 (A23—A1, BLE Low, and BHE High).

The LOCK output is asserted from the beginning of
the first interrupt acknowledge cycle until the end of
the second interrupt acknowledge cycle. Four idle bus
states (Ti) are inserted by the Am386SX/SXL micropro-
cessor between the two interrupt acknowledge cycles
forcompatibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D15-D0
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second interrupt
acknowledge cycle, the Am386SX/SXL microprocessor
will read an external interrupt vector from D7-D0 of the
data bus. The vector indicates the specific interrupt
number (from 0-255) requiring service.

Halt Indication Cycle

The execution unit halts as a result of executing a HLT
instruction. Signaling its entrance into the halt state, a

194 Am386 Microprocessors for Personal Computers

AMD a

halt indication cycle is performed. The halt indication Definition Signals and an address of 0. The shutdown
cycle is identified by the state of the bus definition indication cycle must be acknowledged by READY as-
signals shownonpage 39, Bus Cycle Definition Signals, serted. A shut-down Am386SX/SXL microprocessor

and an address of 2. The halt indication cycle must resumes execution when NMI or RESET is asserted.
be acknowledged by READY asserted. A halted
Am386SX/SXL CPU resumes execution when INTR (if

Entering and Exiting Hold Acknowledge

interrupts are enabled), NMI, or RESET is asserted. The Bus Hold Acknowledge state (Th) is entered in
Indicati I response to the HOLD input being asserted. In the Bus
Shutdown Indication Cycle Hold Acknowledge state, the Am386SX/SXL micropro-

The Am386SX/SXL microprocessor shuts down as a cessor floats all outputs or bidirectional signals, except
result of a protection fault while attempting to process a for HLDA. HLDA is asserted as long as the Am386SX/
double fault. Signaling its entrance into the shutdown SXL CPU remains in the Bus Hold Acknowledge state.
state, a shutdown indication cycle is performed. The In the Bus Hold Acknowledge state, all inputs except
shutdown indication cycle is identified by the state of the HOLD, FLT, and RESET are ignored.

bus definition signals shown in section Bus Cycle

Previous Interrupt Idle Interrupt Idle
Cycle Acknowledge (4 Bus States) Acknowledge
Cycle 1 Cycle 2
T2 T2 T2 Ti Ti Ti Ti T T2 T2l

CLK2 |:

=

V2 Va2 Va Va VaVa Ya Ve Vava

rocessor CLK [

e [

BLE, A23-A3, /
A1, M/iO,
D/C, WR

A
READY | R
¥
Ignored Vector
p7-Do [—— - - —
Ignored Ignored
o1s-08 [D - G-

Interrupt Vector (0-255) is read on D7-DO at end of second Interrupt Acknowledge bus cycle. Because each Interrupt Acknowledge bus cycle is
followed by idle bus states, asserting NA has no practical effect. Choose the approach which is simplest for your system hardware design.

15022B-022
Figure 34. Interrupt Acknowledge Cycles

Am386SX/SXL Microprocessor Data Sheet 195

n AMD

Th may be entered from a bus idle state, as in Figure 37,
or after the acknowledgment of the current physical bus
cycle, if the LOCK signal is not asserted, as in Figures
38 and 39.

Th is exited in response to the HOLD input being
negated. The following state will be Ti if no bus request
is pending, as in Figure 37. The following bus state will
be T1 if abus request is internally pending, as in Figures
38 and 39. Th is exited in response to RESET being
asserted.

If a rising edge occurs on the edge-triggered NMI in-
put while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exited,
unless the Am386SX/SXL microprocessor is reset
before Th is exited.

Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD being
asserted. If RESET is asserted while HOLD remains
asserted, the Am386SX/SXL microprocessor drives its
pins to defined states during reset, as in Table 16 (Pin

State During Reset), and performs internal reset activity
as usual.

If HOLD remains asserted when RESET is inactive, the
Am386SX/SXL CPU enters the Hold Acknowledge
state before performing its first bus cycle, provided
HOLD is still asserted when the Am386SX/SXL micro-
processor would otherwise perform its first bus cycle.

FLOAT

Activating the FLT input floats all Am386SX/SXL micro-
processor bidirectional and output signals, including
HLDA. Asserting FLT isolates the Am386SX/SXL mi-
croprocessor from the surrounding circuitry.

As the Am386SX/SXL microprocessor is packaged in a
surface mount PQFP, it cannot be removed from the
motherboard when In-Circuit Emulation (ICE) is
needed. The FLT input allows the Am386SX/SXL CPU
to be electrically isolated from the surrounding circuitry.
This allows connection of an emulator to the Am386SX/
SXL microprocessor PQFP without removing it from the
PCB. This method of emulation is referred to as ON-
Circuit Emulation (ONCE).

Cycle 1 Cycle 2
Non-Pipelined Non-Pipelined
(Write) (Halt)

/NN

CLK2

.

Processor Clock

Idle

Ti Ti Ti Ti

— Am386SX/SXL CPU remains halted
| until INTR, NMI, or RESET is as-
serted.

| |
[— Am386SX/SXL CPU responds to
| HOLD input while in the Halt state.

M%EWA/E [Valid 1
B;fé_'i’g [Valid 1
ms [N_Y N_V

XXXXXXXX

KXXXXXXXXXXXXXXX

the cycle if desired.

AXXPON L

Note: Halt cycle must be acknowledged by
READY asserted. Wait states may be added to

AXN

RRXXXXXIXKRX

Valid 1 Valid 2

D15-Do

Out1 X

[X |

Undefine)d;)— (FIIoating)- -
|

15022B-023

Figure 35. Example Halt Indication Cycle from Non-Pipelined Cycle

196

Am386 Microprocessors for Personal Computers

AMD n

Entering and Exiting FLOAT

FLT is an asynchronous, active Low input. It is recog-
nized on the rising edge of CLK2. When recognized, it
aborts the current bus cycle and floats the outputs of
the Am386SX/SXL microprocessor (Figure 41). FLT
must be held Low for a minimum of 16-CLK2 cycles.
Reset should be asserted and held asserted until after
FLT is deasserted. This will ensure that the Am386SX/
SXL CPU will exit FLOAT in a valid state.

Asserting the FLT input unconditionally aborts the
current bus cycle and forces the Am386SX/SXL CPU
into the FLOAT mode. Since activating FLT
unconditionally forces the Am386SX/SXL CPU into
FLOAT mode, the Am386SX/SXL microprocessor is not
guaranteed to enter FLOAT in a valid state. After
deactivating FLT, the Am386SX/SXL CPU is not
guaranteed to exit FLOAT mode in a valid state. This is
not a problem, as the FLT pin is meant to be used only
during ONCE. After exiting FLOAT, the Am386SX/SXL
microprocessor must be reset to returnit to a valid state.
Reset should be asserted before FLT is deasserted.

This will ensure that the Am386SX/SXL CPU will exit
FLOAT in a valid state.

FLT has an internal pull-up resistor, and if it is not used it
should be unconnected.

Bus Activity During and Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is asserted.
A bus cycle in progress can be aborted at any stage, or
idle states and Bus Hold Acknowledge states discon-
tinued, so that the reset state is established.

RESET should remain asserted for at least 15-CLK2
periods to ensure it is recognized throughout the
Am386SX/SXL microprocessor, and at least 80-CLK2
periods if self-test is going to be requested at the falling
edge. RESET asserted pulses less than 15-CLK2
periods may not be recognized. RESET pulses less
than 80-CLK2 periods followed by a self-test may cause
the self-test to report a failure when no true failure
exists.

Cycle 1 Cycle 2 Idle
Pipelined Pipelined
(Read) (Shutdown)
TP T2P T1P T2l Ti Ti Ti Ti

cwe [ML LY
Processor CLK |: __/—-_/___/i
Am386SX/SXL CPU remains

__BHE, [Valid 1 |~ shutdown until NMI or RESET
M/O, WR Y is asserted.

BLE is Low for

[LIL
N\

BLE, Shutdown Cycle| —
_ = Valid 1 Am386SX/SXL
A23-A1, DIC [— CPU responds to
HOLD input while
— in the Shutdown
Aps [/ state.
w [X
READY [

Note: Shutdown cycle must be acknowledged
by READY asserted. Wait states may be added
to the cycle if desired.

Valid 1 Valid 2

D15-Do [Ger——--—— In 1)y~ [Undefined)- (Flloating) -

Figure 36. Example Shutdown Indication Cycle from Non-Pipelined Cycle

15022B-024

Am386SX/SXL Microprocessor Data Sheet 197

n AMD

Provided the RESET falling edge meets setup and hold
times (t25 and t26), the internal processor clock phase is
defined at that time as illustrated by Figure 40 and
Figure 48.

A self-test may be requested at the time RESET goes
inactive by having the BUSY input at a Low level, as
shown in Figure 40. The self-test requires approxi-
mately (22° + 60) CLK2 periods to complete. The self-
test duration is not affected by the test results. Even
if the self-test indicates a problem, the Am386SX/SXL
microprocessor attempts to proceed with the reset
sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested), the Am386SX/SXL microprocessor
performs an internal initialization sequence for approx-
imately 350- to 450-CLK2 periods.

Self-Test Signature

Upon completion of self-test (if self-test was requested
by driving BUSY Low at the falling edge of RESET) the
EAX register will contain a signature of 00000000H,

indicating the Am386SX/SXL microprocessor passed
its self-test of microcode and major PLA contents with
no problems detected. The passing signature in EAX,
00000000H, applies to all revision levels. Any non-zero
signature indicates the unit is faulty.

Component and Revision Identifiers

To assist users the Am386SX/SXL microprocessor,
after reset, holds a component identifier and revision
identifier in its DX register. The upper 8 bits of DX hold
23H as identification of the Am386SX/SXL CPU (the
lower nibble, 03H, refers to the Am386DX/DXL micro-
processor architecture. The upper nibble, 02H, refers to
the second member of the Am386DX/DXL microproces-
sor Family). The lower 8 bits of DX hold an 8-bit
unsigned binary number related to the component
revision level. The revision identifier will, in general,
chronologically track those component steppings which
are intended to have certain improvements or distinction
from previous steppings. The Am386SX/SXL micropro-
cessor revision identifier will track that of the Am386DX/
DXL CPU where possible.

| Idle '|:
[_
[~

Th
CLK2

Processor CLK

(L
/"]

Hold Acknowledge _| Idle |
»

Th Th

UL LL
N NS

g

X

HOLD

[_

R

HLDA |:

BFE, BLE,
A23-A1, M/IO,
D/C, WR

AD

2]

Z|
>
1 1 1 ri

READY
LOCK I: >"—- (I|=Ioating) ————<XXZ§
p15-D0 [—fF———f—— (Ilzloating) ————————

—= (Floating) --————m

\)
\-—= (Floating) +——=—- r

Note: For maximum design flexibility the Am386SX/SXL CPU has no internal pull-up resistors on its outputs. The design may re-
quire an external pull-up on ADS and other outputs to keep them negated during float periods.

15022B-025

Figure 37. Requesting Hold from Idle Bus

198

Am386 Microprocessors for Personal Computers

AMD n

Cycle 1 Hold Cycle 2
Non-Pipelined Acknowledge Non-Pipelined
(Read) (Write)

cike [|

(o

T2 T2 u T__lh u Tl_l‘ B T|—|2
N NN N N N
HOLD [S 2 HOLD asserted no later™

than READY asserted

Processor CLK [_

HLDA [

BHE, BLE, (Floating)

A23-A1, [] Valid1 | | |- pmm-----1 K Valid 2
M/iG, DS, WR ~]

J— — (Floating)
aos [I\ L/ O o i SN]

X

(Negated, or Last-Locked Cycle
Valid 1 e el EEEEEEEY K Valid 2

I T G- A I e (Floating) | ___ ¢ o
[(Floating)

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24)
requirements are met. This waveform is useful for determining Hold Acknowledge latency.

D15-Do

-
O’
Q
A

i i i

15022B-026

Figure 38. Requesting Hold from Active Bus (NA Inactive)

Am386SX/SXL Microprocessor Data Sheet 199

u AMD

CLK2

Processor CLK

HOLD

HLDA

BHE, BLE,
A23-A1,
MAG, D/C, W/R

ADS

READY

D15-Do

T1P

L L
N |

Cycle 1

Pipelined

(Write)

T2l

L

N |

T2l

LI L

N |

Th

LI L

N |

Hold
Acknowledge

Th

LI L
N |

XX &

HOLD asserted in same bus

state as NA asserted

L L

Cyc

(Re

T

N |

Non-Pipelined

1
N |

le 2

ad)

(Floating)
valid |1 DX D> ------p-------1 4 Valid 2
(Floating)
/ [/
b4
(Negated, or Last-Locked Cycle)
Floatin
Valid 1 oo Toateg) K Valid 2
(Floating)

[X

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24)

Out

requirements are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 39. Requesting Hold from Idle Bus (NA Active)

<

15022B-027

200

Am386 Microprocessors for Personal Computers

AMD n

CLK2

RESET

CLK (Internal)

Processor CLK

A23-A1,
D/C, LOCK

>
[

NA

READY

D15-Do

Notes:

[
L Low
L

1 2 3

[MU

17 18 |19

j&—— Reset Internai —— ¥ Cycle 1
> 15 CLK2 duration if not Initialization
going to request self-test. Non-Pipelined
> 80 CLK2 duration before If self-test is performed, add (Read)
requesting self-test. (2% 4+ 60* to these numbers T1 T2

[395* 1396* 397" (398*

*

Approximately

[V
[o2To1 o2

[XXX X S
[XY /NSNS S

No self-test

01] 02

o5t

o1] 02

S

_

02
-
A\ Y-

[(Note 1)

f— §§—»| Low to begin self-test (Note 2)

Up to 30 CLK2—

AXXXX

During Reset

Up to 30 CLK2—»

Valid 1

XXXXX

During Reset

Valid 1

Up to 30 CLK2—}

During Reset

N

1. BUSY should be held stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.
2. If self-test is requested, the outputs remain in their reset state as shown here.

Figure 40. Bus Activity from Reset Until First Code Fetch

15022B-028

CLK2

FLT

Data

Address

C
C
Control [
C
C
C

Reset

Figure 41. Entering and Exiting FLT

15022B-029

Am386SX/SXL Microprocessor Data Sheet

201

a AMD

The revision identifier is intended to assist users to a
practical extent. However, the revision identifier value is
not guaranteed to change with every stepping revision,
or to follow a completely uniform numerical sequence,
depending on the type or intention of revision, or
manufacturing materials required to be changed.

Table 18. Component and Revision

the custom interface is 1/0O-mapped, protection of the
interface can be provided with the IOPL (I/O Privilege
Level) mechanism.

A 387SX math coprocessor interface is 1/0O mapped as
shownin Table 19. Note that a 387SX math coprocessor
interface addresses are beyond the OH-0FFFFH range
for programmed 1/0. When the Am386SX/SXL micro-

Identifier History processor supports the 387SX math coprocessor, the
Am386SX/SXL CPU automatically generates bus
Am386SXL cycles to the coprocessor interface addresses.
Intel i386SX| Microprocessor
Stepping Revision Revision Identifier Table 19. Math Coprocessor Port Address
B A1 05H Address in Am386SXL 387SX-Compatible Math
(e} B 08H CPU I/O Space Coprocessor Register
8000F8H Op-code Register
Coprocessor Interfacing 8000FCH/8000FEH* Operand Register

The Am386SX/SXL microprocessor provides an
automatic interface for a 387SX math coprocessor. A
387SX math coprocessor uses an I/O mapped interface
driven automatically by the Am386SX/SXL CPU and
assisted by three dedicated signals: BUSY, ERROR,
and PEREQ.

As the Am386SX/SXL microprocessor begins
supporting a math coprocessor instruction, it tests the
BUSY and ERROR signals to determine if the copro-
cessor can accept its next instruction. Thus, the BUSY
and ERROR inputs eliminate the need for any preamble
bus cycles for communication between processor and
math coprocessor. A 387SX math coprocessor can be
given its command op-code immediately. The dedicated
signals provide instruction synchronization and elimi-
nate the need of using the WAIT op-code (9BH) for
387SX math coprocessor instruction synchronization
(the WAIT opcode was required when the 8086 or 8088
was used with the 8087 math coprocessor).

Custom math coprocessors can be included in
Am386SX/SXL microprocessor based systems by
memory-mapped or I/0O-mapped interfaces. Such math
coprocessor interfaces allow a completely custom
protocol, and are not limited to a set of math coproces-
sor protocol primitives. Instead, memory-mapped or
1/O-mapped interfaces may use all applicable instruc-
tions for high-speed math coprocessor communication.
The BUSY and ERROR inputs of the Am386SX/SXL mi-
croprocessor may also be used for the custom math
coprocessor interface, if such hardware assist is
desired. These signals can be tested by the WAIT op-
code (9BH). The WAIT instruction will wait until the
BUSY input is inactive (interruptable by an NMI or
enabled INTR input), but generates an Exception 16
fault if the ERROR pin is active when the BUSY goes (or
is) inactive. If the custom math coprocessor interface is
memory-mapped, protection of the addresses used for
the interface can be provided with the Am386SX/SXL
CPU’s on-chip paging or segmentation mechanisms. if

*Generated as 2nd bus cycle during Dword transfer.

To correctly map a 387SX math coprocessor registers
to the appropriate /0O addresses, connect the CMDO
and CMD1 lines of a 387SX math coprocessor, as
listed in Table 20.

Table 20. Connections for CMDO
and CMD{ Inputs for a 387SX

Signal | Connection

CMDO | Connected directly to Am386SXL CPU A2 signal.
CMD1 | Connect to ground.

Software Testing for Math Coprocessor Presence

When software is used to test for math coprocessor
(387SX) presence, it should use only the following math
coprocessor op-codes: FINIT, FNINIT, FSTCW mem,
FSTSW mem, and FSTSW AX. To use other math
coprocessor op-codes when a math coprocessor is
known to be not present, first set EM = 1 in the
Am386SX/SXL CPU’'s CRO register.

PACKAGE THERMAL SPECIFICATIONS

The Am386SX/SXL microprocessor is specified for
operation when case temperature is within the range of
0°C-100°C. The case temperature may be measured in
any environment to determine whether the Am386SX/
SXL CPU is within specified operating range. The case
temperature should be measured at the center of the top
surface opposite the pins.

The ambient temperature is guaranteed as long as Tc is
not violated. The ambient temperature can be calcu-
lated from the 6jc and 0ja from the following equations:

Tj=Tc+Pebjc
Ta=Tj—Pebja
Tc = Ta+P e[6ja—0jc]

202 Am386 Microprocessors for Personal Computers

AMD a

ELECTRICAL SPECIFICATIONS

The following sections describe recommended electri-
cal connections for the Am386SX/SXL microprocessor,
and its electrical specifications.

Power and Grounding

The Am386SX/SXL CPU has modest power
requirements. However, its high clock frequency and 47
output buffers (address, data, control, and HLDA) can
cause power surges as multiple output buffers drive new
signal levels simultaneously. For clean on-chip power
distribution at high frequency, 14 Vcc and 18 Vss pins
separately feed functional units of the Am386SX/SXL
microprocessor.

Power and ground connections must be made to all
external Vec and Vss pins of the Am386SX/SXL micro-
processor. On the circuit board, all Vec pins should
be connected on a Ve plane, and Vss pins should be
connected on a GND plane.

Power Decoupling Recommendations

Liberal decoupling capacitors should be placed nearthe
Am386SX/SXL microprocessor. The Am386SX/SXL
CPU driving its 24-bit address bus and 16-bit data bus at
high frequencies can cause transient power surges,
particularly when driving large capacitive loads. Low
inductance capacitors and interconnects are recom-
mended for best high frequency electrical performance.
Inductance can be reduced by shortening circuit board
traces between the Am386SX/SXL microprocessor and
decoupling capacitors as much as possible.

Resistor Recommendations

The ERROR, FLT, and BUSY inputs have internal pull-
up resistors of approximately 20 Kohms, and the
PEREQ input has an internal pull-down resistor of
approximately 20 Kohms, built into the Am386SX/SXL
microprocessor to keep these signals inactive when a
387SX-compatible math coprocessor is not present in
the system (or temporarily removed from its socket).

In typical designs, the external pull-up resistors shown
in Table 21 are recommended. However, a particular
design may have reason to adjust the resistor values
recommended here, or alter the use of pull-up resistors
in other ways.

Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. NC pins should always re-
main unconnected. Connection of NC pins to Vccor Vss
will result in component malfunction or incompatibility
with future steppings of the Am386SX/SXL CPU.

Particularly when not using the interrupts or bus hold (as
when first prototyping), prevent any chance of spurious
activity by connecting these associated inputs to GND.

Pin Signal
40 INTR
38 NMI

4 HOLD

If not using address pipelining, connect pin 6 (NA)
through a pull-up in the range of 20 Kohms to Vcc.

Table 21. Recommended Resistor Pull-Ups to Vcc

Pin Signal Pull-Up Value Purpose

16 ADS 20 Kohms +10% Lightly pull ADS inactive during Am386SX/SXL
CPU Hold Acknowledge states.

26 COCK 20 Kohms +10% Lightly pull LOCK inactive during Am386SX/SXL
CPU Hold Acknowledge states.

Am386SX/SXL Microprocessor Data Sheet 203

n AMD

ABSOLUTE MAXIMUM RATINGS
Ambient Temperature under bias -65to0 125°C
Storage Temperature —-65to 150°C

Stresses above those listed may cause permanent
damage to the device. Exposure to absolute maximum
rating conditions for extended periods of time may affect
device reliability.

OPERATING RANGES
Supply Voltage with respectto Vss -0.5Vto7V
Voltage on otherpins -0.5Vto (Veec + 0.5)V

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges
Voc=5 V £10%; Tease = 0°C to +100°C (16, 20, 25, and 33 MHz)

Vee=5 V £5%; Tcase = 0°C to +100°C (40 MHz)

Symbol | Parameter Description Notes Min Max Unit
Vi Input Low Voltage (Note 1) -0.3 +0.8 \
Viu Input High Voltage 2.0 Vec+ 0.3 \']
Vic CLK2 Input Low Voltage (Note 1) -0.3 +0.8 \
Vine CLK2 Input High Voltage 2.7 Vee+0.3 Vv
Vou Output Low Voltage

loo. = 4 mA: A23-A1, D15-D0 0.45 Y
lo. = 5 mA: BHE, BLE, W/R, 0.45 \"
D/C, M/iQ, LOCK,
ADS, HLDA
Vou Output High Voltage
lon = 1.0mA: A23-At1, D15-D0 2.4 \"
lon = 0.2mA: A23-A1, D15-D0 Vec —0.5 \%
lon = 0.9 mA: BHE, BLE, W/R, 2.4 \'
D/C, M/, LOCK,
ADS, HLDA
lov = 0.18 mA: BHE, BLE, W/R, Vee —0.5
D/C, M/IO, LOCK,
ADS, HLDA
lu Input Leakage Current (for all pins ex- | 0 V< Vi< Vee +15 pA
cept PEREQ, BUSY, FLT, and ERROR)
™ Input Leakage Current (PEREQ pin) Vin = 2.4V (Note 2) 200 pA
I Input Leakage Current Vi = 0.45V (Note 3) —400 A
(BUSY, ERROR, and FLT pins)
lo Output Leakage Current 0.45 V < Vour < Veo +15 pA
lec Supply Current Vee=5.0V
CLK2 = 32 MHz: with —16* lec Typ = mA
CLK2 = 40 MHz: with —-20 lec Typ = 130 mA 155 mA
CLK2 = 50 MHz: with —25 lec Typ = 160 mA 190 mA
CLK2 = 66 MHz: with —33 lec Typ = 210 mA 245 mA
CLK2 = 80 MHz: with —40 lec Typ = 255 mA 295 mA
lecss Standby Current (Am386SXL CPU) lecss Typ = 20 pA (Note 5) 150 pA
Cn Input Capacitance Fe = 1 MHz (Note 4) 10 pF
Cour Output or I/O Capacitance Fe = 1 MHz (Note 4) 12 pF
Cewx CLK2 Capacitance Fc = 1 MHz (Note 4) 20 pF

Notes: Tested at the minimum operating frequency of the part.

*Contact AMD for 16-MHz availability.

1.
2.
3.

4.

The Min value, —0.3, is not 100% tested.
PEREQ input has an internal pull-down resistor.

BUSY High, and FLT High.

BUSY, FLT, and ERROR inputs each have an internal

pull-up resistor.
Not 100% tested.

5. Inputs at rails, outputs unloaded, PEREQ Low, ERROR High,

204

Am386 Microprocessors for Personal Computers

AMD a

SWITCHING CHARACTERISTICS

The switching characteristics given consist of output de-
lays, input setup requirements, and input hold require-
ments. All switching characteristics are relative to the
CLK2 rising edge crossing the 2.0 V level.

Switching characteristic measurement is defined by
Figure 42. Inputs must be driven to the voltage levels
indicated by Figure 42 when switching characteristics
are measured. Output delays are specified with
minimum and maximum limits measured, as shown.
The minimum delay times are hold times provided to
external circuitry. Input setup and hold times are

specified as minimums, defining the smallest accept-
able sampling window. Within the sampling window, a
synchronous input signal must be stable for correct
operation.

Outputs ADS, W/R, D/C, MO, LOCK, BHE, BLE,
A23-A1, and HLDA only change at the beginning of
phase one. D15-D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ, FLT, and D15-D0 (read cycles)
inputs are sampled at the beginning of phase one. The
NA, INTR, and NMI inputs are sampled at the beginning
of phase two.

Tx

e [27 %%r

Max

Valid

ADS, M/iG, D/C, Output n

15V

A23-A1, BHE, BLE, |:

15V o

tput n+1

W/R, LOCK, HLDA

D15-Do I:

Valid
Output n

Valid
tput n+1

NA, INTR, NMI I:

FLT, ERROR, BUSY,

READY, HOLD, [
PEREQ, D15-D0

Legend: A—Maximum Output Delay Characteristic
B—Minimum Output Delay Characteristic
C—Minimum Input Setup Characteristic
D —Minimum Input Hold Characteristic

15022B-030

Figure 42. Drive Levels and Measurement Points for Switching Characteristics

Am386SX/SXL Microprocessor Data Sheet 205

n AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges
Switching Characteristics at 40 MHz (Am386SX Microprocessor Only): Vec = 5 V+5%; Touse = 0°C to 100°C

Ref.
Symbol| Parameter Description Notes Figure Min Max Unit
Operating Frequency Half CLK2 frequency 2 40 MHz
1 CLK2 Period 44 125 250 ns
2 CLK2 High Time at2.7V 44 4.5 ns
3 CLK2 Low Time at 0.8V 44 4.5 ns
4 CLK2 Fall Time 27Vt 08V (Note 3) 44 4 ns
5 CLK2 Rise Time 08Vto27V (Note 3) 44 4 ns
6 A23-A1 Valid Delay C. = 50 pF 47 4 13 ns
7 A23-A1 Float Delay (Note 1) 51 4 20 ns
8 BHE, BLE, LOCK Valid Delay C. = 50 pF 47 4 13 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 20 ns
10 M/AQ, D/C, W/R, ADS Valid Delay C. = 50 pF a7 4 13 ns
11 W/R, MAIO, D/C, ADS Float Delay (Note 1) 51 4 20 ns
12 D15-D0 Write Data Valid Delay C. = 50 pF (Note 4) 47 7 18 ns
12a | D15-D0 Write Data Hold Time C. = 50 pF 49 2 ns
13 D15-D0 Write Data Float Delay (Note 1) 51 4 17 ns
14 | HLDA Valid Delay C. = 50 pF 51 4 17 ns
14f | HLDA Float Delay 51 4 17 ns
15" | NA Setup Time 46 5 ns
16 NA Hold Time 46 2 ns
19 READY Setup Time 46 7 ns
20 READY Hold Time 46 4 ns
21 D15-D0 Read Data Setup Time 46 4 ns
22 D15-D0 Read Data Hold Time 46 3 ns
23 HOLD Setup Time 46 4 ns
24 HOLD Hold Time 46 2 ns
25 RESET Setup Time 52 4 ns
26 RESET Hold Time 52 2 ns
27 NMI, INTR Setup Time (Note 2) 46 5 ns
28 NMI, INTR Hold Time (Note 2) 46 5 ns
29 PEREQ, ERROR, BUSY, FLT* Setup Time (Note 2) 46 5 ns
30 PEREQ, ERROR, BUSY, FLT* Hold Time (Note 2) 46 4 ns

Notes: *Float feature is available in Rev. BO and later.
1. Float condition occurs when maximum output current becomes less than .o in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes to
assure recognition within a specific CLK2 period.

3. Rise and Fall times are not tested. They are guaranteed by design characterization.

4.

Min time is not 100% tested.

206

Am386 Microprocessors for Personal Computers

AMD l‘.l

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges
Switching Characteristics at 33 MHz: Voo = 5 V+10%; Tease = 0°C to 100°C

Ref.
Symbol] Parameter Description Notes Figure Min Max Unit
Operating Frequency: Am386SX CPU Half CLK2 freq. 2 33 MHz
Am386SXL CPU Half CLK2 freq. 0 33 MHz
1 CLK2 Period: Am386SX CPU 43 15 ns
Am386SXL CPU 43 15 ns
2a CLK2 High Time at2Vv 43 6.25 ns
2b CLK2 High Time at3.7V 43 4 ns
3a CLK2 Low Time at2Vv 43 6.25 ns
3b CLK2 Low Time at0.8V 43 4.5 ns
4 CLK2 Fall Time 37Vt 0.8V (Note 3) 43 4 ns
5 CLK2 Rise Time 08Vto 3.7V (Note 3) 43 4 ns
6 A23-A1 Valid Delay C. = 50 pF 47 4 15 ns
7 A23-A1 Float Delay (Note 1) 51 4 20 ns
8 BHE, BLE, LOCK Valid Delay C. = 50 pF 47 4 15 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 20 ns i
10 M/IQ, D/C, W/R, ADS Valid Delay C. = 50 pF 47 4 15 ns ;
11 W/R, M/iO, D/C, ADS Float Delay (Note 1) 51 4 20 ns |
12 D15-D0 Write Data Valid Delay C. = 50 pF (Note 4) 47 7 23 ns ‘
12a | D15-D0 Write Data Hold Time C. = 50 pF 49 2 ns |
13 D15-D0 Write Data Float Delay (Note 1) 51 4 17 ns
14 HLDA Valid Delay C. = 50 pF 47 4 20 ns
14f HLDA Float Delay 51 4 20 ns
15 NA Setup Time 46 5 ns
16 NA Hold Time 46 2 ns
19 READY Setup Time 46 7 ns
20 READY Hold Time 46 4 ns
21 D15-D0 Read Data Setup Time 46 5 ns
22 D15-D0 Read Data Hold Time 46 3 ns
23 HOLD Setup Time 46 9 ns
24 HOLD Hold Time 46 2 ns
25 RESET Setup Time 52 5 ns
26 RESET Hold Time 52 2 ns
27 NMI, INTR Setup Time (Note 2) 46 5 ns
28 NMI, INTR Hold Time (Note 2) 46 5 ns
29 PEREQ, ERROR, BUSY Setup Time (Note 2) 46 5 ns
30 PEREQ, ERROR, BUSY Hold Time (Note 2) 46 4 ns

Notes: 1. Float condition occurs when maximum output current becomes less than l.o in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes to
assure recognition within a specific CLK2 period.

3. Rise and Fall times are not tested. They are guaranteed by design characterization.

4. Min time is not 100% tested.

Am386SX/SXL Microprocessor Data Sheet

207 ;

a AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Switching Characteristics at 25 MHz: Vo = 5 V£10%; Tease = 0°C to 100°C

Ref.

Symbol| Parameter Description Notes Figure Min Max Unit

Operating Frequency: Am386SX CPU Half CLK2 freq. 2 25 MHz

Am386SXL CPU Half CLK2 freq. 0 25 MHz
1 CLK2 Period: Am386SX CPU 43 20 ns
Am386SXL CPU 43 20 ns
2a CLK2 High Time at2V 43 7 ns
2b CLK2 High Time at (Vec—0.8 V) 43 4 ns
3a CLK2 Low Time at2V 43 7 ns
3b CLK2 Low Time at 0.8V 43 5 ns
4 CLK2 Fall Time (Vec—0.8 V) t0 0.8 V (Note 3) 43 7 ns
5 CLK2 Rise Time 0.8 Vto (Vec—0.8 V) (Note 3) 43 7 ns
6 A23—-A1 Valid Delay C. = 50 pF 47 4 17 ns
7 A23-A1 Float Delay (Note 1) 51 4 30 ns
8 BHE, BLE, LOCK Valid Delay C. = 50 pF 47 4 17 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 30 ns
10 MAG, D/C, W/R, ADS Valid Delay C. = 50 pF 47 4 17 ns
11 W/R, M/1O, D/C, ADS Float Delay (Note 1) 51 4 30 ns
12 D15-D0 Write Data Valid Delay C. = 50 pF 47 7 23 ns
12a D15-D0 Write Data Hold Time C. = 50 pF 49 2 ns
13 D15-D0 Write Data Float Delay (Note 1) 51 4 22 ns
14 HLDA Valid Delay C. = 50 pF 47 4 22 ns
14f HLDA Float Delay 51 4 22 ns
15 NA Setup Time 46 5 ns
16 NA Hold Time 46 3 ns
19 READY Setup Time 46 9 ns
20 READY Hold Time 46 4 ns
21 D15-D0 Read Data Setup Time 46 7 ns
22 D15-D0 Read Data Hold Time 46 5 ns
23 HOLD Setup Time 46 9 ns
24 HOLD Hold Time 46 3 ns
25 RESET Setup Time 52 8 ns
26 RESET Hold Time 52 3 ns
27 NMI, INTR Setup Time (Note 2) 46 6 ns
28 NMI, INTR Hold Time (Note 2) 46 6 ns
29 PEREQ, ERROR, BUSY, FLT Setup Time (Note 2) 46 6 ns
30 PEREQ, ERROR, BUSY, FLT Hold Time (Note 2) 46 5 ns

Notes: 1. Float condition occurs when maximum output current becomes less than Iio in magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to

assure recognition within a specific CLK2 period.

3. These are not tested. They are guaranteed by design characterization.

208

Am386 Microprocessors for Personal Computers

AMD a

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges
Switching Characteristics at 20 MHz: Ve = 5 V£10%; Tease = 0°C to 100°C

Ref.

Symbol| Parameter Description Notes Figure Min Max Unit

Operating Frequency: Am386SX CPU Half CLK2 freq. 2 20 MHz

Am386SXL CPU Half CLK2 freq. 0 20 MHz
1 CLK2 Period: Am386SX CPU 43 25 ns
Am386SXL CPU 43 25 ns
2a CLK2 High Time at2Vv 43 8 ns
2b | CLK2 High Time at (Voo—0.8 V) 43 5 ns
3a CLK2 Low Time at2Vv 43 8 ns
3b CLK2 Low Time at0.8Vv 43 6 ns
4 CLK2 Fall Time (Vec—0.8 V) to 0.8 V (Note 3) 43 8 ns
5 CLK2 Rise Time 0.8 Vto (Vec—0.8 V) (Note 3) 43 ns
6 A23-A1 Valid Delay C. = 120 pF (Note 4) 47 4 30 ns
7 A23-A1 Float Delay (Note 1) 51 4 32 ns
8 BHE, BLE, LOCK Valid Delay C. = 75pF (Note 4) 47 4 30 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 32 ns
10a | M/IO, D/C Valid Delay C. = 75pF (Note 4) 47 4 28 ns
10b | W/R, ADS Valid Delay C. = 75pF (Note 4) 47 4 26 ns
11 W/R, M/iQ, D/C, ADS Float Delay (Note 1) 51 6 30 ns
12 D15-D0 Write Data Valid Delay C.=120p (Note 4) 47 4 38 ns
13 D15-D0 Write Data Float Delay (Note 1) 51 4 27 ns
14 | HLDA Valid Delay C. = 75pF (Note 4) | 47 4 28 ns
14f HLDA Float Delay 51 4 28 ns
16 NA Setup Time 46 5 ns
16 NA Hold Time 46 12 ns
19 READY Setup Time 46 12 ns
20 READY Hold Time 46 4 ns
21 D15-D0 Read Data Setup Time 46 9 ns
22 D15-D0 Read Data Hold Time 46 6 ns
23 HOLD Setup Time 46 17 ns
24 HOLD Hold Time 46 5 ns
25 RESET Setup Time 52 12 ns
26 RESET Hold Time 52 4 ns
27 NMI, INTR Setup Time (Note 2) 46 16 ns
28 NMI, INTR Hold Time (Note 2) 46 16 ns
29 PEREQ, ERROR, BUSY, FLT Setup Time (Note 2) 46 14 ns
30 PEREQ, ERROR, BUSY, FLT Hold Time (Note 2) 46 5 ns

Notes: 1. Float condition occurs when maximum output current becomes less than Io in magnitude. Float delay is not 100% tested.

These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to

assure recognition within a specific CLK2 period.

These are not tested. They are guaranteed by design charactenzatlon.

. Tested with C. set at 50 pF and derated to support the indicated distributed capacitive load. See Figures 53 and 54 for the
capacitive derating curve.

N

~>w

Am386SX/SXL Microprocessor Data Sheet 209

a AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Switching Characteristics at 16 MHz*: Vcc =5 V+£10%,; Tease = 0°C to 100°C

Ref.

Symbol| Parameter Description Notes Figure Min Max Unit

Operating Frequency: Am386SX CPU Half CLK2 freq. 2 16 MHz

Am386SXL CPU Half CLK2 freq. 0 16 MHz
1 CLK2 Period: Am386SX CPU 43 31 ns
Am386SXL CPU 43 31 ns
2a CLK2 High Time at2Vv 43 9 ns
2b CLK2 High Time at (Vec—0.8 V) 43 5 ns
3a CLK2 Low Time at2Vv 43 9 ns
3b CLK2 Low Time at 0.8V 43 7 ns
4 CLK2 Fall Time (Vec—0.8 V) to 0.8 V (Note 3) 43 8 ns
5 CLK2 Rise Time 0.8 Vto (Vec—0.8 V) (Note 3) 43 8 ns
6 A23-A1 Valid Delay C. = 120 pF (Note 4) 47 4 36 ns
7 A23-A1 Float Delay (Note 1) 51 4 40 ns
8 BHE, BLE, LOCK Valid Delay C. = 75 pF (Note 4) 47 4 36 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 40 ns
10 W/R, MAIO, D/C, ADS Valid Delay C. = 75 pF (Note 4) 47 4 33 ns
11 W/R, MG, D/C, ADS Float Delay (Note 1) 51 6 35 ns
12 D15-D0 Write Data Valid Delay C. = 120 pF (Note 4) 47 4 40 ns
13 D15-D0 Write Data Float Delay (Note 1) 51 4 35 ns
14 HLDA Valid Delay C. = 75 pF (Note 4) 47 4 33 ns
14f HLDA Float Delay 51 4 33 ns
15 NA Setup Time 46 5 ns
16 NA Hold Time 46 21 ns
19 READY Setup Time 46 19 ns
20 READY Hold Time 46 4 ns
21 D15-D0 Read Data Setup Time 46 9 ns
22 D15-D0 Read Data Hold Time 46 6 ns
23 HOLD Setup Time 46 26 ns
24 HOLD Hold Time 46 5 ns
25 RESET Setup Time 52 13 ns
26 RESET Hold Time 52 4 ns
27 NMI, INTR Setup Time (Note 2) 46 16 ns
28 NMI, INTR Hold Time (Note 2) 46 16 ns
29 PEREQ, ERROR, BUSY, FLT Setup Time (Note 2) 46 16 ns
30 PEREQ, ERROR, BUSY, FLT Hold Time (Note 2) 46 5 ns

Notes: *Contact AMD for 16-MHz availability.

1.
2.

3.
4.

Float condition occurs when maximum output current becomes less than .o in magnitude. Float delay is not 100% tested.

These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to

assure recognition within a specific CLK2 period.

These are not tested. They are guaranteed by design characterization.

Tested with C. set at 50 pF and derated to support the indicated distributed capacitive load. See Figures 53 and 54 for the

capacitive derating curve.

210

Am386 Microprocessors for Personal Computers

AMD u

t

t2a R -
b
Voo —0.8 V \
CLK2 20V
08V
— t4
15022B-031
Figure 43. CLK2 Timing (16, 20, 25, and 33 MHz)
e t1 Al
t2
Voc —0.8V
CLK2 20V
08V
t5 t4
15022B-031a
Figure 44. CLK2 Timing (40 MHz)
Am386SXL CPU Output 01
Co.
15022B-032

Figure 45. AC Test Circuit

Am386SX/SXL Microprocessor Data Sheet 211

u AMD

SWITCHING WAVEFORMS

CLK2

READY

HOLD

D15-DO
(Inputs)

BUSY, ERROR
PEREQ, FLT

INTR, NMI

127

128

15022B-033

Figure 46. Input Setup and Hold Timing

CLK2

r
o
Q
A

W/R, M/iG,
D/C, ADS

A23—-A1

D15-DO

(Outputs)

HLDA

[| 1 T 1 [T 1 T 1

02 01 Tx 02 01

N\ f

N A

i Max
X Valid n+1

al
Min
Valid n

|

_ Max
X Valid n+1

Max

M
X
=I .
Valid n i

(Valid n+1

I
12

»l
| Min__ Max

Valid n

Valid n+1

15022B-034

Figure 47. Output Valid Delay Timing

212

Am386 Microprocessors for Personal Computers

AMD u

SWITCHING WAVEFORMS (continued)

o1 T 02
o2 Nt L
W/R
D15-D0O
15021B-076
Figure 48. Write Data Valid Delay Timing (20 and 25 MHz)
o1 T1 02
oLz A S
W/R
Min
t12a
D15-Do Valid n >
15021B-077
Figure 49. Write Data Hold Timing
T1
o1 42
oLz N S
W/R /
12 Min, Max
D15-D0 Valid n < Valid n+1
15021B-078
Figure 50. Write Data Valid Delay Timing (20 MHz2)
Am386SX/SXL Microprocessor Data Sheet 213

n AMD

Th TiorT1
92 ¢ 1 92 o1 o2
ok [FNA A 7
9 —¢ 18 —j&—»
! Min Max Min Max
HE,'éEE,I: I I S PR I
LOCK (High 2)
t Min Ma)(t10 Min Max
W/Z“'E[]
D/C, ADS (High 2)
7 Min Max 16 Min Max
A23-A1 I: — — T (H_Ighz— — — —T —
13 Min || Max "2 Min Max
D15-D0 I: ———'—"-("ﬁgh?—‘—'—"—
t13—Also applies to data float when write
t14f cycle is followed by read or idle.
t14
Min Max Min Max
4 \
o [2 R
15022B-035
Figure 51. Output Float Delay and HLDA Valid Delay Timing
» RESET Initialization Sequence N
o2 or o1 o2 or 1 02 o1
CLK2 I:
26
RESET I: N
t25
15022B-036

Figure 52. RESET Setup and Hold Timing and Internal Phase

214

Am386 Microprocessors for Personal Computers

AMD n

nom + 6 I T
nom + 3 |— —

Output nom

Valid
Delay

(ns) nom -3

nom —6

25 150

nom -9 I I
50 75 100

C. (picofarads)

|
|
|
|
|
|
|
|
|
|
]
1

15022B-037

Figure 53. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C. =120 pF)

nom + 9 [T T
nom + 6

Output nom+3

Valid
Delay

(ns) nom

nom -3

nom —6 | |
75 100 125 150
C. (picofarads)

15022B-038

Figure 54. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C.=75 pF)

nom +9 [~

nom + 6 —

Output
Valid

Delay (ns) "°™ +3 =

nom

nom -3 |— | [|

50 75 100 125 150
C. (picofarads)
Figure 55. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (CL=50 pF)

Rise Time (ns) ~ |
0.8VvV-2.0V

B | I I

50 75 100 125 150
C. (picofarads)

Figure 56. Typical Output Rise Time Versus Load
Capacitance at Maximum Operating Temperature

DIFFERENCES BETWEEN THE Am386SX/
SXL CPU AND THE Am386DX/DXL CPU

The following are the major differences between the
Am386SX/SXL CPU and the Am386DX/DXL CPU:

1. The Am386SX/SXL CPU generates byte selects on
BHE and BLE (like the 8086 and 80286) to
distinguish the upper and lower bytes on its 16-bit
data bus. The Am386DX/DXL CPU uses four byte

selects, BE3-BEO, to distinguish between the
different bytes on its 32-bit bus.

2. The Am386SX/SXL CPU has no bus sizing option.
The Am386DX/DXL CPU can select between either
a 32-bit bus or a 16-bit bus by use of the BS16 input.
The Am386SX/SXL CPU has a 16-bit bus size.

3. The NA pin operation in the Am386SX/SXL CPU is
identical to that of the NA pin on the Am386DX/DXL

Am386SX/SXL Microprocessor Data Sheet 215

n AMD

CPU with one exception: the Am386DX/DXL CPU
NA pin cannot be activated on 16-bit bus cycles
(where BS16 is Low in the Am386DX/DXL CPU
case), whereas NA can be activated on any
Am386SX/SXL CPU bus cycle.

4. The contents of all Am386SX/SXL CPU registers at
reset are identical to the contents of the Am386DX/
DXL CPU registers at reset, except the DX register.
The DX register contains a component-stepping
identifier at reset, that is,
in Am386DX/DXL CPU, after reset

DH =3 indicates Am386DX/DXL CPU
DI =revision number;

in Am386SX/SXL CPU, after reset

DH =23H indicates Am386SX/SXL CPU
DL =revision number.

5. The Am386DX/DXL CPU uses A31 and M/IO as
selects for the math coprocessor. The Am386SX/
SXL CPU uses A23 and M/IO as selects.

6. The Am386DX/DXL CPU prefetch unit fetches code
in four-byte units. The Am386SX/SXL CPU prefetch
unit reads two bytes as one unit (like the 80286). In
BS16 mode, the Am386DX/DXL CPU takes two
consecutive bus cycles to complete a prefetch
request. If there is a data read or write request after
the prefetch starts, the Am386DX/DXL CPU will
fetch all four bytes before addressing the new
request.

7. Both Am386DX/DXL CPU and Am386SX/SXL CPU
have the same logical address space. The only
difference is that the Am386DX/DXL CPU has a
32-bit physical address space and the Am386SX/
SXL CPU has a 24-bit physical address space. The
Am386SX/SXL CPU has a physical memory
address space of up to 16 Mb instead of the 4 Gb
available to the Am386DX/DXL CPU. Therefore, in
AmM386SX/SXL CPU systems, the operating system
must be aware of this physical memory limit and
should allocate memory for applications programs
within this limit. If an Am386DX/DXL CPU system
uses only the lower 16 Mb of physical address, then
there will be no extra effort required to migrate
Am386DX/DXL CPU software to the Am386SX/SXL
CPU. Any application which uses more than 16 Mb of
memory can run on the Am386SX/SXL CPU, if the
operating system utilizes the Am386SX/SXL CPU’s
paging mechanism. In spite of this difference in
physical address space, the Am386SX/SXL. CPU
and Am386DX/DXL CPU can run the same
operating systems and applications within their
respective physical memory constraints.

8. The Am386SX/SXL CPU has an input called FLT
which three-states all bi-directional and output pins,
including HLDA, when asserted. It is used with ON-
Circuit Emulation (ONCE).

INSTRUCTION SET

This section describes the instruction set. The Instruc-
tion Set Clock Count Summary lists all instructions

along with instruction encoding diagrams and clock
counts. Further details of the instruction encoding are
then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within instructions.

The Am386SX/SXL CPU Instruction
Encoding and Clock Count Summary

To calculate elapsed time for an instruction, multiply the
instruction clock count, as listed in the Instruction Set
Clock Count Summary, by the processor clock period
(e.g., 40 ns for a 25-MHz, 50 ns for a 20-MHz, and
62.5 ns for a 16-MHz Am386SX/SXL microprocessor).
The actual clock count of an Am386SX/SXL CPU
program will average 5% more than the calculated ciock
count due to instruction sequences which execute faster
than they can be fetched from memory.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and
is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction
execution.

5. If an effective address is calculated, it does not use
two general register components. One register,
scaling and displacement can be used within the
clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand.

2. n=number of times repeated.

3. m = number of components in the next instruction
executed, where the entire displacement (if any)
counts as one component, the entire immediate data
(if any) counts as one component, and all other bytes
of the instruction and prefix(es) each count as one
component.

Misaligned or 32-Bit Operand Accesses

— If instructions access a misaligned 16-bit operand or
32-bit operand on even address add:

2x clocks for read or write
4 x clocks for read and write

—If instructions access a 32-bit operand on odd
address add:

4 x clocks for read or write
8 x clocks for read and write
Wait States

Wait states add 1 clock per wait state to instruction
execution for each data access.

216 Am386 Microprocessors for Personal Computers

AMD l"l

Am386SX/SXL Instruction Set Clock Count Summary

Clock Count Notes
Real
ol ermd Bl ey
Instruction Format m‘;‘s".';.f'.,. Ams W‘éi:a:ld, A‘:,:::s
GENERAL DATA TRANSFER
MOV =Move:
Register to Register/Memory |1 0o00100w I mod-reg r/m | 2/2 22 b h
Register/Memory to Register m 00101w I mod reg r/m I 2/4 2/4* b h
Immediate to Register/Memory ll 100011w I mod0 0 0 r/m I immediate data 22 272" b h
Immediate to Register (short form) immediate data 2 2
Memory to Accumulator (short form) full displacement 4* 4* b h
Accumulator to Memory (short form) full displacement 2" 2* b h
Register/Memory to Segment Register '1 0001110 I mod sreg3 r/m | 2/5 22/23 b h,i,j
Segment Register to Register/Memory | 10001100 I mod sreg r/m | 2/2 2/2 b h
MOVSX =Move with Sign Extension
Register from Register/Memory ‘0 0001111]1 011111 wI mod reg r/m l 3/6* 3/6* b h
MOVZX =Move with Zero Extension
Register from Register/Memory IO 0001111 | 1011011 W| mod reg r/m] 3/6* 3/6* b h
PUSH=Push:
Register/Memory I1 1111111 Imod1 10 r/rd 57 7/9* b h
Register (short form) 2 4 b h
Seg'rnem Register (ES,CS,SS, or DS) (short form) 2 4 b h
Segr;wm Register (ES, CS, SS, DS, FS, or GS) |0 0001111 I 10 sreg 3 000 2 4 b h
Immediate immediate data 2 4 b h
PUSHA =Push All 18 34 b h
POP =Pop
Register/Memory |1 0001111 lmod 000 ©/m 5/7 7/9 b h
Register (short form) 6 6 b h
Segment Register (ES, CS, SS, or DS) 7 25 b h,i,j
Segment Register (ES, CS, SS, DS, FS, or GS) |0 0001111 | 10 sreg 3 001 7 25 b h,i,j
POPA=Pop All 24 40 b h
XCHG=Exchange
Register/Memory with Register |1 000011w I mod reg /m 3/5* 3/5* b, f f,h
Register with Accumulator (short form) 3 3
IN=Input From: Vim?alL }éc?a%u:/}ode
Fixed Port I 1110010w I port number 28*** 12" 6%/26* sit,m
Variable Port 27+ 13* 727" sit,m
*1fCPLLIOPL **IfCPL>IOPL ***Clock count shown applies if /O permission allows I/O to the port in Virtual 8086 Mode. If I/O bit map
denies permission Exception 13 fault occurs; refer to clock counts for INT3 instruction.
Am386SX/SXL Microprocessor Data Sheet 217

n AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
iarsss | Pl | Aireme | Mo

Instruction Format w‘;sml:'de “f;':' soxionu":do A‘l’n‘:::s
OUT =Output To: vm‘%’g&%um .

Fixed Port |1 11001 1w I port number 24** 10* 4%24* sit,m
Variable Port 25" 1* 5*25* sit,m
LEA =Load EA to Register [to001101][modreg m] 2 2

SEGMENT CONTROL

LDS =Load Pointer to DS F 1000101 I mod reg r/m] 7* 26*/28* b hij
LES =Load Pointer to ES [11000100]modreg wm 7 26+/28* b hi,j
LFS=Load Pointer to FS Io 0001111 I1 0110100 I mod reg /m 7 26*/28* b h,i,j
LGS=Load Pointer to GS [oooo1111 10110101 mogreg wm|| 7 26+/28* b hij
LSS =Load Pointer to SS I00001 111 I1 011001 Olmodreg r/ml 7* 26/28* b h,i,j
FLAG CONTROL

CLC=Clear Carry Flag 2 2

CLD =Clear Direction Flag 2 2

CLI=Clear Interrupt Enable Flag 8 8 m
CLTS=Clear Task Switched Flag lﬂo 01111 | 0000011 0] 5 5 c |
CMC =Complement Carry Flag 2 2

LAHF =Load AH into Flag 2 2

POPF = Pop Flags 5 5 b h,n
PUSHF = Push Flags 4 4 b h
SAHF = Store AH into Flags 3 3

STC=Set Carry Flag 2 2

STD =Set Direction Flag

STl=Set Interrupt Enable Flag 8 8 m
ARITHMETIC

ADD=Add

Register to Register |0 00000dw [mod reg /m I 2 2

Register to Memory Io 000000wW I mod reg r/m I ™ ™ b h
Memory to Register Io 000001 wW | mod reg r/m l 6* 6* b h
Immediate to Register/Memory |T() 0000s w] mod 0 0 0 r/m] immediate data 27 2/7* b h
Immediate to Accumulator (short form) immediate data 2 2

ADC=Add with Carry

Register to Register [0 00100dw I mod reg r/m 2 2
*1fCPL<IOPL **If CPL>IOPL

jault occurs; refer to clock counts for INT3 instruction.

***Clock count shown applies if /O Fermission allows I/0 to the port in Virtual 8086 Mode. If /O bit map
denies permission Exception 13

218

Am386 Microprocessors for Personal Computers

AMD n

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
A‘ze:” Protected Ad'?ier:lss Protected
Mode/ Virtual Mode/ Virtual

Instruction Format so‘{?u"t'u A:ndo'::s ao‘éisnmu:'de A:‘Ador::'
ADC = Add with Carry (continued)
Register to Memory h) 001000w | mod reg r/m I ™ ™ b h
Memory to Register [0 001001w | mod reg r/m l 6* 6" b h
Immediate to Register/Memory ‘1 00000s w] mod 01 0 r/m] immediate data 27 2 b h
Immediate to Accumulator (short form) immediate data 2 2
INC =increment
Register/Memory |1 1T11111w I mod 0 0 0 r/m] 2/6* 2/6* b h
Register (short form) 2 2
SUB =Subtract
Register from Register IO 01010dw | mod reg r/m i 2 2
Register from Memory IO 010100w I mod reg r/m] 7% 7% b h
Memory from Register h) 010101w I mod reg r/m i 6* 6* b h
Immediate from Register/Memory h 00000sw | mod 1 01 r/m I immediate data 2/7* 2/7** b h
Immediate from Accumulator (short form) immediate data 2 2
SBB =Subtract with Borrow
Register from Register ‘0 00110dw | mod reg r/ml 2 2
Register from Memory IO 001100w I mod reg r/m] 7™ 7 b h
Memory from Register |0 001101w | mod reg r/m] 6" 6* b h
Immediate from Register/Memory b 00000sw | mod 0 1 1 r/ml immediate data 27 27+ b h
Immediate from Accumulator (short form) immediate data 2 2
DEC=Decrement
Register/Memory |1 1T11111w | reg0 01 ©m 2/6 26 b h
Register (short form) 2 2
CMP =Compare
Register with Register h) 01110dw I mod reg /m l 2 2
Memory with Register IO 011100w | mod reg r/m] 5* 5* b h
Register with Memory LO 011101 w I mod reg m | 6* 6* b h
Immediate with Register/Memory |1 00000sw I mod 111 r/m] immediate data 2/5* 2/5* b h
Immediate with Accumulator (short form) immediate data 2 2
NEG =Change Sign |1 111011 w | mod 0 1 1 r/ml 2/6* 2/6* b h
AAA = ASCII Adjust for Add 4 4
*1f CPL<IOPL **If CPL>IOPL

Am386SX/SXL Microprocessor Data Sheet 219

n AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
Am. Protected | Address | Protected
Mode/ Virtual Mode/ Virtuai
" Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode |8086 Mode [Mode
AAS = ASCIl Adjust for Subtract 00111111 4 4
DAA =Decimal Adjust for Add 00100111 4 4
DAS =Decimal Adjust for Sub 00101111 4 4
MUL =Multiply (unsigned)
Accumulator with Register Memory I1 111011 w | mod 1 0 0 /m
Multiplier —Byte 12-17/15-20% | 2-17/15-20* b,d d,h
—Word 12-25/15-28* |2-25/16-28*| b, d d,h
—Doubleword 12-4117-46* |2-41/17-46*| b, d dh
IMUL =Integer Multiply (signed)
Accumulator with Register Memory 1111011w]|mod101 rm
Multiplier —Byte 12-17/15-20* | 2-17/15-20* d,h
-Word 12-25/15-28* | 2-25/15-28* d,h
—Doubleword 12-41/17-46" | 2-41/17-46* d,h
Register with Register/Memory 00001111[10101111] modreg
Multiplier —Byte 12-17/15-20* | 2-17/15-20* d,h
-Word 12-25/15-28* | 2-25/15-28* d,h
~Doubleword 12-41/17-46" | 2-41/17-46* d,h
Register/Memory with Immediate to Register 011010s 1 |modreg r/m I immediate data
—Word
13-26 3-26/14-27 d,h
~Doubleword 1342 h3-421645 d,h
DIV =Divide (unsigned)
Accumulator by Register/Memory 1111011w]|mod110 vm
DiMear —3y18. 1417 1417 b.e eh
22/25 2225 b, e eh
— Doubleword 38/43 38/43 b,e eh
IDIV =Integer Divide (signed)
Accumulator by Register/Memory 1111011w|mod 111 vm
Divisor :\%?d 1022 19/22 be eh
27/30 27/30 b,e e, h
Doubleword 43/48 43/48 be e,h
AAD=ASCII Adjust for Divide [t1010101]o0001010] 19 19
AAM=ASCIl Adjust for Multiply '1 1010100 Io 000101 ol 17 17
CBW =Convert Byte to Word 10011000 3 3
CWD=Convert Word to Double Word 10011001 2 2
LoGIC
Shift/Rotate Instruction
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
i 1101000w]mod TTT ©/m
Register/Memory by 1 I l | 37+ 37 h

*If CPL<IOPL **If CPL>IOPL

220 Am386 Microprocessors for Personal Computers

AMD n

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
acoal | Protected | pReal | proected
Mode/ Virtuai Mode/ Virtuai
" Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
LOGIC (continued)
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) -{(continued)
Register/Memory by CL I1 101001 w I mod TTT ©m | 37 37 b h
Register/Memory by Immediate Count l1 100000w | mod TTT ©m I (1) 37 37 b h
Through Carry (RCL and RCR)
Register/Memory by 1 l1 101000w I mod TTT r/m I 910* 9/10* b h
Register/Memory by CL l1 101001 w I mod TTT r/m I 9/10* 9/10* b h
Register/Memory by Immediate Count L1 100000w l mod TTT r/m] (1) 910* 9/10* b h
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHUSAL
101 SHR
SHLD = Shift Left Double 11 SAR
Register/Memory by Immediate lo 0001111 I 10100100 ‘ mod reg r/m I) 37+ 37
Register/Memory by CL IO 0001111 I 10100101 [mod reg r/m I 37 3/7*
SHRD = Shift Right Double
Register/Memory by Immediate Io 0001111 I 10101100 l mod reg /m I) 37 37
Register/Memory by CL lo 000111 1T1 0101101 I mod reg r/m I 37 37
AND=And
Register to Register Lo 01000d W—F]od reg /m] 2 2
Register to Memory LO 010000 w1 mod reg r/m I 7 7 b h
Memory to Register [oo10001w|modreg m| 6* 6* b h
Immediate to Register/Memory [1 000000wW [mod 100 ©m I immediate data 7 27** b h
Immediate to Accumulator (short form) 0010010 w | immediate data 2 2
TEST=And Function to Flags, No Result
Register/Memory and Register 11 0o00010wW I mod reg r/m l 2/5* 2/5* b h
Immediate Data and Register/Memory [1 11101 1w l mod 0 0 O r/ml immediate data 2/5* 2/5* b h
Immediate Data and Accumulator (shortform) |1 0 1 0 1 0 0 w | immediate data 2 2
OR=0Or
Register to Register IO ooo010d meod reg r/m I 2 2
Register to Memory Lo 0o00100w | mod reg r/m I ™ ™ b h
Memory to Register |0 000101w I mod reg m l 6* 6* b h
*IfCPL<IOPL **IfCPL>IOPL (1) Immediate 8-Bit Data
Am386SX/SXL Microprocessor Data Sheet 221

a AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
Instruction Format so‘ém'de A;’ndor;:‘ eogienmu:de Am:’
LOGIC (continued)
Immediate to Register/Memory |1 000000wW I mod 0 0 1 ©/m | immediate data 7 7 b h
Immediate to Accumulator (short form) immediate data 2 2
XOR =Exclusive Or
Register to Register [0 01100dw Lmod reg t/m I 2 2
Register to Memory ro 011000w I mod reg r/m] ™ ™ b h
Memory to Register Io 011001 wl mod reg /m I 6* 6* b h
Immediate to Register/Memory [1 000000wW I mod 1 1 0 r/ml immediate data 2/7* 2/7** b h
Immediate to Accumulator (short form) immediate data 2 2
NOT =Invert Register/Memory |1 111011w I mod 01 0 /m] 2/6** 2/6** b h
STRING MANIPULATION
Clock Count
CMPS = Compare Byte/Word Virual 8086 | 00 10t b h
INS = Input Byte/Word from DX Port I 20**+* ‘ 15 9*/29** b s/t,h,m
LODS = Load Byte/Word to ALUAX/EAX 5 5* b h
MOVE = Move Byte/Word 7 ™ b h
OUTS =Qutput Byte/Word to DX Port | 28*** 14 8*/28** b s/t,h,m
SCAS =Scan Byte/Word 7* 7 b h
STOS =Store Byte/Word from AUAX/EX & & b h
XLAT = Translate String 5* 5 h
REPEATED STRING MANIPULATION
Repeated by Count in CX or ECX
REPE CMPS =Compare String (Find non-match) F 1110011 J 1010011 wl 5+49n** 5+9n** b h
REPNE CMPS =Compare String (Find match) F 1110010 I 1010011 w| 5+9n** 5+9n** b h
REP INS = Input String |1 1110010 l 0110110 w| | e 13+6n* 7+6n* 6 sit,h,m
27+6n**
REP LODS=Load String [11110010]1010110w] seene | ssent b h
REP MOVS = Move String [1 111001 OJio 10010 wI 7+4n* 7+4n* b h
REP OUTS=Output String {t1110010]o110t 11w | - 12480 | 6450y b | sthm
26+5n**
REPE SCAS = Scan String (Find non-AUAX/EAX) [1 1110011101011 1w] seent | 580t | b h
REPNE SCAS = Scan String (Find AUAX/EAX) I1 1110010 l1 010111 wl 5+8n* 5+8n* b h
REP STOS = Store String [1 1110010 l1 010101 w| 5+5n* 5+5n* b h

*If CPL<IOPL **If CPL>IOPL

denies permission Exception 13 fault occurs; refer to clock counts for INT3 instruction.

***Clock count shown applies if /O permission allows I/O to the port in Virtual 8086 Mode. If /O bit map

222 Am386 Microprocessors for Personal Computers

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Real
Protected Protected
Adoress | virtuar | A0 | Virtual
- Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
BIT MANIPULATION
BSF =Scan Bit Forward |0 0001111 l1 0111100 I mod reg r/m I M| 10+3n* | 10+3n* b h
BSR=Scan Bit Reverse Io 0001111 I1 0111101 | modreg r/m I 10+3n* | 10+3n* b h
BT =Test Bit
Register/Memory, Immediate IO 0001111]1 0111010 I mod 1 0 0 /m I (1) 3/6* 3/6* b h
Register/Memory, Register |0 0001111 | 10100011 I mod reg /m I 3/12* 3/12* b h
BTC =Test Bit and Complement
Register/Memory, Immediate Fo 001111 | 10111010 I mod 111 /m I 1) 6/8* 6/8* b h
Register/Memory, Register Io 0001111 |1 0111011 I mod reg r/m—l 6/13* 6/13* b h
BTR=Test Bit and Reset
Register/Memory, Immediate lo 0001111 I1 011101 OI mod 110 r/m I(1) 6/8* 6/8* b h
Register/Memory, Register Io 0001111]1 0110011 | mod reg m I 6/13* 6/13* b h
BTS =Test Bit and Set
Register/Memory, Immediate [o 000111 1T1 011101 ol mod 1 0 1 m I m{ ems 6/8* b h
Register/Memory, Register [o 000111 1—l 1010101 1| modreg rlmJ 6/13* 6/13* b h
CONTROL TRANSFER
CALL=Call
Direct Within Segment 11101000 | full displacement 7+m* 9+m* b r
Register/Memory 7em*/ 9em*/ b hr
Indirect Within Segment |1 1111111 Imod 010 ©/m 10++m' 12++m' !
Direct Intersegment 10011010 | unsigned full offset, selector 17+m* | 42+m* b jkr
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 64+m hjkr
Via Call Gate to Different Privilege Level (No Parameters) 98+m h,jkr
Via Call Gate to Different Privilege Level (x Parameters) 106+ 8x+m h,jkr
From 80286 Task to 80286 TSS 285 hjkr
From 80286 Task to Am386SX/SXL CPU TSS 310 h,j,kr
From 80286 Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) 229 h,j kr
From Am386SX/SXL CPU Task to 80286 TSS 285 hjkr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS 302 hjkr
From Am386SX/SXL CPU Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) 309 hj,k,r
Indirect Intersegment 30+m 46+m b h,j, k,r
11111111 |mod 011 t/m
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 68+m hjkr
Via Call Gate to Different Privilege Level (No Parameters) 102+m hjkr
Via Call Gate to Different Privilege Level (x Parameters) 110+ 8x+m hjkr
From 80286 Task to 80286 TSS h ik r
From 80286 Task to Am386SX/SXL CPU TSS hjkr
From 80286 Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) ik r
From Am386SX/SXL CPU Task to 80286 TSS h,jk,r
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS 399 h,jkr
From Am386SX/SXL CPU Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) h,j k1
*lfCPLLIOPL **If CPL>IOPL (1) Immediate 8-bit data
Am386SX/SXL Microprocessor Data Sheet 223

u AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Real
Address Pr(!tecled Address Pr«ttemd
Mode/ Virtual Mode/ Virtual
: Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
CONTROL TRANSFER (continued)
JMP =Unconditional Jump
Short I 11101011 l 8-bit displacememl 7+m 7+m r
Direct within Segment 11010001 | full displacement 7+m 7+m r
Register/Memory 9+m/ 9+m/ b h,r
Indirect Within Segment I1 1111111 lmod 100 r/m] 14+m 14+m
Direct Intersegment 11101010 |unsigned full offset, selector 16+m 31+m jkr
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 53+m hikr
From 80286 Task to 80286 TSS hj kr
From 80286 Task to Am386SX/SXL CPU TSS hjkr
From 80286 Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) hj ks
From Am386SX/SXL CPU Task to 80286 TSS hijkr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS hj kr
From Am386SX/SXL CPU Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) 395 hijkr
17+m 31+m b h,j, kr
Indirect Intersegment 11111111]|mod101 v/m
Protected Mode Only (Indirect Intersegment) 49+m hjkr
Via Call Gate to Same Privilege Level hikr
From 80286 Task to 80286 TSS hj kr
From 80286 Task to Am386SX/SXL CPU TSS h ik r
From 80286 Task to Virtual 8086 Task (Am386SX/SXL CPU TSS) hj kr
From Am386SX/SXL CPU Task to 80286 TSS 328 hj k1
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS hikr
From Am386SX/SXL CPU Task to Virtual 8086 Task (Am386SX/SXL CPU TSS)
RET=Return from Call
12+m b g hr
Within Segment
11000011 12+m b g hr
Within Segment Adding Immediate to SP
[1 1000010] 16-bit displacement l 36+m b ahjkr
Intersegment
11001011 36+m b g, hikr
Intersegment Adding Immediate to SP | 1001010] pPyw— I
-bit displacement
Protected Mode Only (RET): to Different Privilege Level 72 h,j,k,r
Intersegment 72 h,j,kr
Intersegment Adding Immediate to SP
CONDITIONAL JUMPS (Note: Times are Jump “Taken or Not Taken”)
JO =Jump on Overflow
7+mor3|7+mor3 r
8-bit Displacement
7+mor3]7+mor3 r
Full Displacement l 01110000 l 8-bit displacement |
JNO = Jump on Not Overfiow l 0000111 1—r1 0000000 | full displacement
7+mor3f7+mor3 r
8-bit Displacement
7+mor3)7+mor3 r
Full Displacement | 0111000 1—|78-bn displacement |
[00001 111}10000001 I full displacement

*IfCPL<IOPL **If CPL>IOPL

224 Am386 Microprocessors for Personal Computers

AMD n

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes

wizes | ot | i | Peckd
Instruction Format ao‘ég'xda “:;'L” m‘;iomﬁ’:do Am’
CONDITIONAL JUMPS (continued)
JB/JNAE =Jump on Below/Not Above or Equal
8-bit Displacement Io 1110010 IB-bit displacement I 7+mor3 | 7+mor3 r
Full Displacement |0 0001111 l1 0000010 I full displacement 7+mor3 | 7+mor3 r
JNB/JAE = Jump on Not Below/Above or Equal
8-bit Displacement Io 1110011 I 8-bit disp!acement1 7+mor3 7+mor3 r
Full Displacement IO 000111 111 0000011 I full displacement 7+mor3 7+mor3 r
JENZ =Jump on Equal/Zero
8-bit Displacement lo 1110100]s-bix displacement I 7+mor3 | 7+mor3 r
Full Displacement Io 0001111 l 10000100 I full displacement 7+mor3 | 7+mor3 r
JNE/JNZ = Jump on Not Equal/Not Zero
8-bit Displacement 01110101 I 8-bit displacement] 7+mor3 7+mor3 r
Full Displacement Io 0001111 I 10000101 | full displacement 7+mor3 | 7+mor3 r
JBE/JNA =Jump on Below or Equal/Not Above
8-bit Displacement Io 1110110 Ia-bil displacement I 7+mor3 | 7+mor3 r
Full Displacement lo 0001111 [1 000011 ﬂ full displacement 7+mor3 | 7+mor3 r
JNBE/JA = Jump on Not Below or Equal/Above
8-bit Displacement |o 1110111 Is-bitdisplacemem] 7+mor3 7+mor3 r
Full Displacement Io 000111 1T1 0000111 l full displacement 7+mor3 | 7+mor3 r
JS =Jump on Sign
8-bit Displacement lo1 111000 I&bitdisplacemem I 7+mor3 | 7+mor3 r
Full Displacement |070 001111 |1 0001000 I full displacement 7+mor3 | 7+mor3 r
JNS =Jump on Not Sign
8-bit Displacement ro 1111001 |8—bit displacement I 7+mor3 | 7+mor3 r
Full Displacement |o 0001111 | 10001001 | full displacement 7+mor3 | 7+mor3 r
JP/JPE =Jump on Parity/Parity Even
8-bit Displacement IO 1111010 |B-bildisplacemem I 7+mor3 | 7+mor3 r
Full Displacement [0 000111 1F 0001010 I full displacement 7+mor3 | 7+mor3 T
JNP/JPO =Jump on Not Parity/Parity Odd
8-bit Displacement Io 1111011 Ia-bit displacement | 7+mor3 | 7+mor3 r
Full Displacement |0 0001111 I 100010 1ﬂ full displacement 7+mor3 } 7+mor3 r

Am386SX/SXL Microprocessor Data Sheet

Safi ~

225

u AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
Adhaes | Protected | e8| protocted
Mode/ Virtual Mode/ | Virtual
Instruction Format ao‘él!‘.a“?,'d., Ai’.‘;'::’ ao:its"v‘l':de “ﬁ&"i’
CONDITIONAL JUMPS (continued)
JL/UNGE =Jump on Less/Not Greater or Equal
8-bit Displacement |0 1111100 |8-bit displacement l 7+mor3 | 7+mor3 r
Full Displacement |0 0001111 | 10001100 I full displacement 7+mor3 | 7+mor3 r
JNL/JGE =Jump on Net Less/Greater or Equal
8-bit Displacement IO 1111101 IB-bildisplacemenl | 7+mor3 | 7+mor3 r
Full Displacement IO 0001111 I 10001101 I full displacement 7+mor3 7+mor3 r
JLE/UNG =Jump on Less or Equal/Not Greater
8-bit Displacement lo 1111110 |B-bitdisplacemem l 7+mor3 | 7+mor3 r
Full Displacement Io 0001111 I 10001110 I full displacement 7+mor3 | 7+mor3 r
JNLE/JG =Jump on Not Less or Equal/Greater
8-bit Displacement Io1 111111 |8»bildisplacemem | 7+mor3 | 7+mor3 r
Full Displacement Io 0001111] 10001111 I full displacement 7+mor3 | 7+mor3 r
JCXZ=Jump on CX Zero* I1 1100011 Ia-bit displacement I 9+mor5 | 9+mor5 r
JECXZ = Jump on ECX Zero |1 1100011 la-bit displacement | 9+mor5 g+mor5 r
LOOP =Loop CX Times |1 1100010 IB-bit displacement I 11+m 11+m r
LOOPZ/LOOPE =Loop with Zero/Equal I1 1100001 I 8-bit displacement—l 11+m 11+m r
LOOPNZ/LOOPNE =Loop while NotZero |1 110 00 0 0 | -bit displacement | 114m 11+m r
CONDITIONAL BYTE SET (Note: Times Are Register/Memory)
SETO=Set Byte on Overflow
To Register/Memory IO 0001111 I 10010000 | mod 0 0 0 r/m 4/5* 4/5* h
SETNO=Set Byte on Not Overflow
To Register/Memory |0 0001111 I1 0010001 I mod 00 0 /m 4/5* 4/5* h
SETB/SETNAE =Set Byte on Below/Not Above or Equal
To Register/Memory lO 0001111 | 10010010 I mod 0 0 0 r/m 4/5* 4/5* h
SETNB =Set Byte on Not Below/Above or Equal
To Register/Memory |0 0001111 | 10010011 | mod 00 0 r/m 4/5* 4/5* h
SETE/SETZ =Set Byte on Equal/Zero
To Register/Memory Io 0001111 | 10010100 I mod 0 0 0 ©m 4/5* 4/5* h
SETNE/SETNZ =Set Byte on Not Equal/Not Zero
To Register/Memory lO 0001111 |1 00610101 I mod 0 0 0 r/m 4/5* 4/5* h

* Address Size Prefix differentiates JCXZ from JECXZ

226 Am386 Microprocessors for Personal Computers

AMD :l

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
A:::” Protected Am” Protected
Mode/ Virtual Mode/ | Virtual
- Virtual Address Virtual | Address
Instruction Format 8086 Mode Mode 8086 Mode| Mode
.
CONDITIONAL BYTE SET (continued) !
SETBE/SETNA =Set Byte on Below or Equal/Not Above
To Register/Memory I00001111 |10010110Imod000 r/m I 4/5* 4/5* h
SETNBE/SETA =Set Byte on Not Below or Equal/Above
To Register/Memory |0 0001111 |1 0010111 l mod 0 0 0 ©m I 4/5* 4/5* h
SETS =Set Byte on Sign
To Register/Memory |0 0001111 | 10011000 I mod 0 0 0 /m I 4/5* 4/5* h
SETNS =Set Byte on Not Sign
To Register/Memory Io 0001111 |1 0011001 I mod 0 0 0 r/m l 4/5* 4/5* h
SETP/SETPE =Set Byte on Parity/Parity Even
To Register/Memory Io 0001111 |1 001101 oI mod 0 0 0 rm I 4/5* 4/5* h
SETNP/SETPO=Set Byte on Not Parity/Parity Odd
To Register/Memory |00001111 |10011011|m0d000 r/m | 4/5* 4/5* h
SETL/SETNGE =Set Byte on Less/Not Greater or Equal
To Register/Memory |00001111 |10011100|mod000 r/m I 4/5* 4/5* h
SETNL/SETGE =Set Byte on Not Less/Greater or Equal
To Register/Memory Ioooo1111|o11111o1|modooo /m | 4/5* 4/5* h
SETLE/SETNG =Set Byte on Less or Equal/Not Greater
To Register/Memory |o 0001111 |1 0011110 I mod 0 0 0 rm | 4/5* 4/5* h
SETNLE/SETG =Set Byte on Not Less or Equal/Greater
To Register/Memory |00001111 |10011111|m0d000 /m I 4/5* 4/5* h
ENTER =Enter Procedure |1 1001000 I 16-bit displacement, 8-bit level I
L=0 10 10 b h
L=1 14 14 b h
L1 17+8(n=1) | 17+8(n-1) b h
LEAVE = Leave Procedure
11001001 4 4 b h
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified
|11001101|'(ype 37 b
Type 3
11001100 33 b
INTO =Interrupt 4 if Overflow Flag Set _
IfOF =1
fOF =0 35 be
3 3 b, e

*IfCPL<IOPL ** If CPL>IOPL

Am386SX/SXL Microprocessor Data Sheet 227

:
!
i

a AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
" Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
INTERRUPT INSTRUCTIONS (continued)
INT = Interrupt:
Type Specified
Type 3
Bound =Interrupt 5 if Detected Value Out of Range |0 11000 10 | modreg r/m
If Out of Range 44 b, e,ghjkr
If In Range 10 10 b, e e,ghjkr
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate to Same Privilege Level
Via Interrupt or Trap Gate to Different Privilege Level 7 g k1
From 80286 Task to 80286 TSS via Task Gate m gk
From 80286 Task to Am386SX/SXL CPU TSS via Task Gate 438 g.jkr
From 80286 Task to Virtual 8086 Mode via Task Gate 465 g kr
From Am386SX/SXL CPU Task to 80286 TSS via Task Gate 382 g.)kr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS via Task Gate 440 g,k r
From Am386SX/SXL CPU Task to Virtual 8086 Mode via Task Gate 467 gk r
From Virtual 8086 Mode to 80286 TSS via Task Gate 384 g, kr
From Virtual 8086 Mode to Am386SX/SXL CPU TSS via Task Gate 445 gk
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 472 g hkr
275 g.jkr
INT: Type 3
Via Interrupt or Trap Gate to Same Privilege Level
Via Interrupt or Trap Gate to Different Privilege Level 71 g kr
From 80286 Task to 80286 TSS via Task Gate m g kr
From 80286 Task to Am386SX/SXL CPU TSS via Task Gate 382 g bk r
From 80286 Task to Virtual 8086 Mode via Task Gate 409 g.)kr
From Am386SX/SXL CPU Task to 80286 TSS via Task Gate 326 g.hkr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS via Task Gate 384 g.]. k1
From Am386SX/SXL CPU Task to Virtual 8086 Mode via Task Gate an g, kr
From Virtual 8086 Mode to 80286 TSS via Task Gate 328 g kr
From Virtual 8086 Mode to Am386SX/SXL CPU TSS via Task Gate 389 9.5k r
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 416 g.) K
223 g,k
INTO
Via Interrupt or Trap Gate to Same Privilege Level
Via Interrupt or Trap Gate to Ditferent Privilege Level 7 g.ikr
From 80286 Task to 80286 TSS via Task Gate m gk r
From 80286 Task to Am386SX/SXL CPU TSS via Task Gate 384 gk r
From 80286 Task to Virtual 8086 Mode via Task Gate an gl kr
From Am386SX/SXL CPU Task to 80286 TSS via Task Gate 328 g.jkr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS via Task Gate Am386DX gk r
From Am386SX/SXL CPU Task to Virtual 8086 Mode via Task Gate 413 gk
From Virtual 8086 Mode to 80286 TSS via Task Gate 329 g kr
From Virtual 8086 Mode to Am386SX/SXL CPU TSS via Task Gate 391 g,k
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 418 gk
223 g, kr
BOUND
Via Interrupt or Trap Gate to Same Privilege Level
Via interrupt or Trap Gate to Different Privilege Level 7 gk
From 80286 Task to 80286 TSS via Task Gate " gl kr
From 80286 Task to Am386SX/SXL CPU TSS via Task Gate 358 g.5kr
388 9. kr

228 Am386 Microprocessors for Personal Computers

AMD a

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
A::r:‘” Protected Ad%e:ss Protected
Mode/ Virtual Mode/ Virtual
- Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
INTERRUPT INSTRUCTIONS (continued)
BOUND (continued)
From 80286 Task to Virtual 8086 Mode via Task Gate 335 gk r
From Am386SX/SXL CPU Task to 80286 TSS via Task Gate 368 g kr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS via Task Gate 398 gk, r
From Am386SX/SXL CPU Task to Virtual 8086 Mode via Task Gate 347 gk, r
From Virtual 8086 Mode to 80286 TSS via Task Gate 368 gk
From Virtual 8086 Mode to Am386SX/SXL CPU TSS via Task Gate 398 g kr
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 223 a.jkr
INTERRUPT RETURN
IRET = Interrupt Return 24 ghikr
Protected Mode Only (IRET)
Via Interrupt or Trap Gate to Same Privilege Level (within Task) 42 ghjkr
Via Interrupt or Trap Gate to Different Privilege Level (within Task) 86 g,hjkr
From 80286 Task to 80286 TSS 285 hj, kr
From 80286 Task to Am386SX/SXL CPU TSS 318 hjkr
From 80286 Task to Virtual 8086 Task 267 hikr
From 80286 Task to Virtual 8086 Mode (within Task) 118 h.j.k.r
From Am386SX/SXL CPU Task to Virtual 8086 TSS 324 h,j, k,r
From Am386SX/SXL CPU Task to 80286 TSS 328 h,j, kr
From Am386SX/SXL CPU Task to Am386SX/SXL CPU TSS 377 hjkr
From Am386SX/SXL CPU Task to Virtual 8086 Mode (within Task) 113 hjkr
PROCESSOR CONTROL
MOV =Move To and From Control/Debug/Test Registers
CRO/CR2/CRB from Register |o 0001111 | 00100010 | 11 eee reg | 10/4/5 10/4/5 |
Register from CR3-CR0O I00001111|00100000|11eeereg I 5 6 |
DR3-DRO from Register l00001 111 |001 0001 1I1 1 eee reg | 22 22 |
DR7-DRS6 from Register [0 0001111 |o 0100011 | 11 eee reg I 16 16 !
Register from DR7-DR6 |oooo1111 |oo1oooo1|1 1 eee reg] 14 14 i
Register from DR3-DR0 |oooo1111 |oo1oooo1|1 1 eee reg | 22 22 |
TR7-TRe from Register [00001 111 |001 001 1o|1 1 eee reg | 12 12 |
Register from TR7-TRe |00001111 |oo1oo1oo|11 eee reg I 12 12 !
NOP =No Operation 10010000 3 3 |
WAIT = Wait until BUSY pin is negated 10011011 6 6 |
PROCESSOR EXTENSION INSTRUCTIONS
See 387SX
Processor Extension Escape I1 1011 TTT | mod LLL rm Data sheet
TTT and LLL bits are op-code information for coprocessor. for clock h
PREFIXBYTES counts
Address Size Prefix 01100111 0 o
Am386SX/SXL Microprocessor Data Sheet 229

n AMD

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
afead | p d| jfed | protected
Mode/ Virtual Mode/ Virtual
3 Virtual Address Virtual Address
Instruction Format 8086 Mode | Mode | 8086 Mode | Mode
PREFIX BYTES (continued)
LOCK = Bus Lock Prefix 11110000 0 0 m
Operand Size Prefix 01100110 0 0
Segment Override Prefix
cs 00101110 0 0
DS 00111110 0 0
ES 00100110 0 0
FS 01100100 0 0
GS 01100101 0 0
sS 00110110 0 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory Io 1100011 Imod reg r/m] N/A 20/21** a h
LAR=Load Access Rights
From Register/Memory Io 0001111 I 00000010 I mod reg r/il NA 15/16* a a.hj.p
LGDT = Load Global Descriptor
Table Register Ioooo1 11looooooo1|modo1o r/ﬂ 11* 11* b,c h,1
LIDT =Load Interrupt Descriptor
Table Register [00001 11 Iooooooo1|modo1 1 r/ﬂ 11* 11* b,c h, |
LLDT=Load Local Descriptor
Table Register to Register/Memory [o 0001111 I 00000000 I mod 01 0 ¥m I N/A 20/24* a g.hjl
LMSW = Load Machine Status Word
From Register/Memory Io 0001111 I 00000001 | mod 110 vm | 10/13 10/13* b,c h,|
LSL =Load Segment Limit
From Register/Memory |0 0001111 | 00000011 I mod reg r/m I
wa |z | o
9 NA | 256t a a.hip
LTR=Load Task Register
From Register/Memory Io 0001111 | 00000000 l mod 0 0 1 r/m] N/A 23/27* a g.h,il
SGDT = Store Global Descriptor
Table Register |00001 11|00000001Imod000r/m| 9* 9* b,c h
SIDT =Store Interrupt Descriptor
Table Register Ioooo1 11|ooooooo1|modoo1 r/m] 9* 9* b,c h

*IfCPL<IOPL **If CPL>IOPL

230

Am386 Microprocessors for Personal Computers

AMD a

Am386SX/SXL Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Real
Address | Protected | 444 0. | Protected
Mode/ Virtual Mode/ Virtual

Virtual Address Virtual Address

Instruction Format 8086 Mode | Mode | 8086 Mode | Mode

PROTECTION CONTROL (continued)

SLDT =Store Local Descriptor Table Register

STR=Store Task Register

VERR = Verify Read Access

*If CPL<IOPL **If CPL>IOPL

To Register/Memory IO 0001111 IO 0000000 I mod 0 0 0 r/m—l N/A 2/2* a h

SMSW = Store Machine Status Word lO 0001111 IO 0000001 I mod 1 0 0 /m | 22 2/2* b,c h, |

To Register/Memory [00001111Ioooooooolmodoo1 r/mI N/A 2t a h

Register/Memory |00001 111 IOOOOOOOOImod 100 r/m] N/A 10/11* a g.hijp

VERW = Verify Write Access |o 0001111 |o 0000000 I mod 1 01 r/m | NA 15/16* a g.h,j,p

Instruction Notes for Instruction Set Summary

Notes a through c apply to Real Address Mode only:

a.
b.

C.

This is a Protected Mode instruction. Attempted execution in Real Mode will result in Exception 6 (invalid op-code).

Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum CS, DS, ES, FS, or GS limit (FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an
operand reference is made that partially or fully extends beyond the maximum SS limit.

This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode:

d.

e.
f.
9-

The Am386SX/SXL CPU uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most significant bit
in the operand (multiplier).
Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock =if m < > 0, then max ([logz |m|}, 3) + b clocks;
=if m=0, then 3 +b clocks
In this formula, m is the multiplier, and
b =9 for register to register;
b =12 for memory to register;
b =10 for register with immediate to register;
b =11 for memory with immediate to register.
An exception may occur, depending on the value of the operand.
LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.
LOCK is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode only:

h.

2T 0337

r.

Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an
access rights violation. If a stack limit is violated, an Exception 12 occurs.

For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an Exception 13 fauit. The segment's
descriptor must indicate “present” or Exception 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not
present is detected, an Exception 12 occurs.

All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in
multiprocessor systems.

JM]P, e(;ALL, INT, RET, and IRET instructions referring to another code segment will cause an Exception 13, if an applicable privilege rule is
violated.

An Exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

. An Exception 13 fault occurs if CPL is greater than IOPL.

The IF bit of the flag register is not updatedif CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL =0.
The PE bit of the MSW (CRO0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero flag is cleared.

If the coprocessor’s memory operand violates a segment limit or segment access rights, an Exception 13 fault will occur before the ESC
instruction is executed. An Exception 12 fault will occur if the stack limit is violated by the operand's starting address.

The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an Exception 13 fault will occur.

s/t. The instruction will execute in s clocks if CPL < IOPL. If CPL > IOPL, the instruction will take t clock.

Am386SX/SXL Microprocessor Data Sheet 231

n AMD

Instruction Encoding
Overview

All instruction encodings are subsets of the general
instruction format shown in the Am386SX/SXL Instruc-
tion Set Clock Count Summary (pages 217 thru 231).
Instructions consist of one or two primary op-code
bytes, possibly an address specifier consisting of the
mod r/m byte and scaled index byte, a displacement if
required, and an immediate data field if required.

Within the primary op-code(s), smaller encoding fields
may be defined. These fields vary according to the class
of operation. The fields define such information as
direction of the operation, size of the displacements,
register encoding, or sign extension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following the
primary op-code byte(s). This byte (mod r/m) specifies
the address mode to be used. Certain encodings of the
mod r/m byte indicate a second addressing byte
(scale-index-base byte) follows the mod r/m byte to fully
specify the addressing mode.

Addressing modes can include a displacement
immediately following the mod r/m byte, or scaled index
byte. If a displacement is present, the possible sizes are
8, 16, or 32 bits.

If the instruction specifies an immediate operand, the
immediate operand follows any displacement bytes.
The immediate operand, if specified, is always the last
field of the instruction.

Figure 57 illustrates several of the fields that can appear
in aninstruction, such as the mod field and the r/m field,

but Figure 57 does not show all fields. Several smaller
fields also appear in certain instructions, sometimes
within the op-code bytes themselves. Table 22 is a
complete list of all fields appearing inthe Instruction Set.
Further ahead, following Table 22, are detailed tables
for each field.

32-Bit Extensions of the Instruction Set

With the Am386SX/SXL CPU, the 8086/80186/80286
Instruction Set is extended in two orthogonal directions:
32-bit forms of all 16-bit instructions are added to
support the 32-bit data types; and, 32-bit addressing
modes are made available for all instructions referenc-
ing memory. This orthogonal instruction set extension is
accomplished having a Default (D) bit in the code seg-
ment descriptor, and by having 2 prefixes to the
instruction set.

Whether the instruction defaults to operations of 16 bits
or 32 bits depends on the setting of the D bit in the code
segment descriptor, which gives the default length
(either 32 bits or 16 bits) for both operands and effective
addresses, when executing that code segment. In the
Real Address Mode or Virtual 8086 Mode, no code
segment descriptors are used, but a D value of 0 is
assumed internally by the Am386SX/SXL CPU when
operating in those modes (for 16-bit default sizes
compatible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective ad-
dress size. These prefixes may precede any op-code
bytes and affect only the instruction they precede. If
necessary, one or both of the prefixes may be placed

Table 22. Fields within Instructions

Field Name Description Number of Bits
w Specifies if data is byte or full size (full size is either 16 or 32 bits) 1
d Specifies direction of data operation 1
s Specifies if an immediate data field must be sign-extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (effective address can be a General Register) 2 for mod; 3 for r/m
ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, and ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, and GS 3
tttn For Conditional Instructions, specifies a condition asserted or a condition negated 4

Note: Table 21 shows encoding of individual instructions.

[TTTTTTTMTTTTTT1mod TTT /m]ss index base | d32|16| 8 | none datas2 | 16 | & | none

\7 0 7 9\7653201‘765320A J)
g Y Y Y) Y
op-code mod r/m s-i-b gi a?dress ; |mme;i|ate
(one or two bytes) [\ byte byte) ¢ 4!55 a;:%men ata
P ~ , 2, 1 bytes, (4, 2, 1 bytes,
(T represents an op-code bit) register and address or none) or none)
mode specifier 150228041

Figure 57. General Instruction Format

232 Am386 Microprocessors for Personal Computers

AMD n

before the op-code bytes. The presence of the Operand
Size Prefix and the Effective Address Prefix will toggle
the operand size or the effective address size,
respectively, to the value opposite from the Default
setting. For example, if the default operand size is for
32-bit data operations, then presence of the Operand
Size Prefix toggles the instruction to 16-bit data
operation. As another example, if the default effective
address size is 16 bits, presence of the Effective
Address Size prefix toggles the instruction to use
32-bit effective address computations.

These 32-bit extensions are available in all modes,
including the Real Address Mode and the Virtual 8086
Mode. In these modes the default is always 16 bits, so
prefixes are needed to specify 32-bit operands or
addresses. For instructions with more than one prefix,
the order of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit and
16-bit operands do not affect the contents of the
high-order of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immediately
ahead.

Encoding of Operand Length (w) Field

For any given instruction performing a data operation,
the instruction is executing as a 32-bit operation or a
16-bit operation. Within the constraints of the operation
size, the w field encodes the operand size as either one
byte or the full operation size, as shown in the table
below.

Operand Size Operand Size
During 16-Bit During 32-Bit
w Field Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

Encoding of reg Field When w Field is
Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Function of w Field

reg (when w =0) (whenw=1)
000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field

reg (when w = 0) (whenw = 1)
000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP

101 CH EBP
110 DH ESI

111 BH EDI

Encoding of the Segment Register (sreg) Field

The sreg field in certain instructions is a 2-bitfield, allow-
ing one of the four 80286 segment registers to be
specified. The sreg field in other instructions is a 3-bit
field, allowing the Am386SX/SXL CPU FS and GS
segment registers to be specified.

2-Bit sreg2 Field

Encoding of the General Register (reg) Field

The general register is specified by the reg field, which
may appear in the primary op-code bytes, or as the reg
field of the mod r/m byte, or as the r/m field of the mod

r/m byte.

Encoding of reg Field When w Field is not
Present in Instruction

2-Bit sreg2 Field Segment Register Selected

00 ES
01 Cs
10 SS
11 DS

3-Bit sreg3 Field

Register Selected | Register Selected _Ri X .
During 16-Bit During 32-Bit 3-Bit sreg3 Field Segment Register Selected
reg Field | Data Operations | Data Operations 000 ES
000 AX EAX 001 Cs
001 CX ECX 010 sSS
010 DX EDX
011 DS
011 BX EBX 100 FsS
100 SP ESP 101 es
101 BP EBP
101 S| ESI 110 do not use
101 DI EDI 111 do not use
Am386SX/SXL Microprocessor Data Sheet 233

n AMD

Encoding of Address Mode

Except for special instructions, such as PUSH or POP,
where the addressing mode is predetermined, the ad-
dressing mode for the current instruction is specified by
addressing bytes following the primary op-code. The
primary addressing byte is the mod r/m byte, and a sec-
ond byte of addressing information, the s-i-b (scale-in-
dex-base) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing
mode, the mod r/m byte has r/m = 100, and mod = 00,
01, or 10. When the s-i-b byte is present, the 32-bit ad-
dressing mode is a function of the mod, ss, index, and
base fields.

The primary addressihg byte, the mod r/m byte,
also contains three bits (shown as TTT in Figure 57)

sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as a
register field (reg).

When calculating an effective address, either 16-bit ad-
dressing or 32-bit addressing is used. 16-bit addressing
uses 16-bit address components to calculate the effec-
tive address, while 32-bit addressing uses 32-bit ad-
dress components to calculate the effective address.
When 16-bit addressing is used, the mod r/m byte is in-
terpreted as a 16-bit addressing mode specifier. When
32-bit addressing is used, the mod r/m byte is inter-
preted as a 32-bit addressing mode specifier.

Tables on the following pages define all encodings of all
16-bit addressing modes and 32-bit addressing modes.

Encoding of 16-Bit Address Mode with mod r/m Byte

mod r/m Effective Address
00 000 DS:[BX + Sl]

00 001 DS:[BX + DI

00 o010 SS:[BP + Si]

00 011 DS:[BP + DI]

00 100 DsS:[SI]

00 101 DS:[DI]

00 110 DS:d16

00 111 DS:[BX]

01 000 DS:[BX + Sl + d8]

01 oo DS:[BX + DI + d8]

01 010 SS:[BP + Sl + d8]

o1 o1 SS:[BP + DI + d8]

o1 100 DSS! + d8]

o1 101 DS:[DI + d8]

01 110 SS:[BP +d8]

o1 111 DS:BX +d8]

mod r/m Effective Address
10 000 DS:[BX + Sl + d16]
10 001 DS:{BX + DI + d16]
10 010 SS:[BP + Sl + d16]
10 011 SS:[BP +Sl+d16]

10 100 DS[SI + d16]

10 101 DS:[D! + d16]

10 110 SS:[BP +d16]

10 111 DS:[BX +d16]

11 000 Register—See Below
11 001 Register—See Below
11 010 Register—See Below
11 o1 Register—See Below
11 100 Register—See Below
11 101 Register—See Below
i1 110 Register—See Below
11 11 Register—See Below

Register Specified by r/m
During 16-Bit Data Operations
Function of w Field
mod r/m (when w =0) (when w =1)
11 000 AL AX
11 001 CL CX
11 010 DL DX
11 011 BL BX
11 100 AH SP
11 101 CH BP
11 110 DH S|
11 111 BH DI
Register Specified by r/m
During 32-Bit Data Operations
Function of w Field
mod r/m (when w = 0) (whenw = 1)
11 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

Am386 Microprocessors for Personal Computers

AMD n

Encoding of 32-Bit Address Mode with mod r/m Byte (no s-i-b byte present)

mod r/m Effective Address mod r/m Effective Address

00 000 DS:EAX] 10 000 DS:[EAX +d32]

00 001 DS:[ECX] 10 001 DS:ECX + d32]

00 o010 DS:[EDX] 10 o010 DS:EDX +d32]

00 oMl DS:[EBX] 10 o011 DSEBX +d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:d32 10 101 SS:[EBP +d32]

00 110 DS:[ESI] 10 110 DS{ESI + d32]

00 111 DS:[EDI] 10 111 DS:EDI + d32]

01 000 DS:EAX + d8] 11 000 Register—See Below
01 001 DS:ECX + d8] 11 001 Register—See Below
01 010 DS:EDX + d8] 11 010 Register—See Below
01 011 DS:EBX + d8] 11 o1l Register—See Below
01 100 s-i-b is present 11 100 Register—See Below
01 101 SS:[EBP + d8] 11 101 Register—See Below
01 110 DS:[ESI + d8] 11 110 Register—See Below
01 111 DS:[EDI + d8] 11 11 Register—See Below

Register Specified by reg or r/m
During 32-Bit Data Operations

Register Specified by reg or r/m
During 16-Bit Data Operations

Function of w Field

Function of w Field

mod r/m (when w = 0) (when w = 1) mod r/m (when w = 0) (whenw=1)
11 000 AL EAX 11 000 AL AX
11 001 CL ECX 11 001 CL CX
11 010 DL EDX 11 010 DL DX
11 011 BL EBX 11 011 BL BX
11 100 AH ESP 11 100 AH SP
11 101 CH EBP 11 101 CH BP
11 110 DH ESI 11 110 DH S|
111 BH EDI 1 111 BH DI

Am386SX/SXL Microprocessor Data Sheet 235

a AMD

Encoding of 32-Bit Address Mode (mod r/m byte and s-i-b byte present):

mod base Effective Address ss Scale Factor

00 000 DS:[EAX + (scaled index)] 00 x1

00 001 DS:[ECX + (scaled index)] o1 x2

00 010 DS:[EDX + (scaled index)] 10 x4

00 011 DS:[EBX + (scaled index)] 11 x8

00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ESI + (scaled index)] .

00 111 DS[EDI + (scaled index)] Index Index Register
000 EAX

01 000 DS:[EAX + (scaled index) + d8] 001 ECX

01 001 DS:[ECX + (scaled index) + d8] 010 EDX

01 010 DS:[EDX + (scaled index) + d8] o011 EBX

01 o011 DS:[EBX + (scaled index) + d8] 100 no index reg (see note)

01 100 SS:[ESP + (scaled index) + d8] 101 EBP

01 101 SS:[EBP + (scaled index) + d8] 110 ESI

01 110 DS:[ESI + (scaled index) + d8] 111 EDI

01 111 DS:[EDI + (scaled index) + d8] Note: When index field is 100, indicating no index register, then ss

e i, 0 o ol Sl

10 000 DS:[EAX + (scaled index) + d32]

10 001 DS:[ECX + (scaled index) + d32]

10 010 DS:[EDX + (scaled index) + d32]

10 011 DS:[EBX + (scaled index) + d32]

10 100 SS:[ESP + (scaled index) + d32]

10 101 SS:[EBP + (scaled index) + d32]

10 110 DS:[ESI + (scaled index) + d32]

10 111 DS:[EDI + (scaled index) + d32]

Note: Mod field in mod r/m byte; ss, index, and base fields in s-i-b byte.

236 Am386 Microprocessors for Personal Computers

AMD n

Encoding of Operation Direction (d) Field

In many two-operand instructions, the d field is present
to indicate which operand is considered the source and
which is the destination.

d Direction of Operation

Register/Memory < Register

0 | reg Field indicates Source Operand;

mod r/m or mod ss index base indicates Destination
Operand.

Register < Register/Memory

1 | reg Field indicates Destination Operand;

mod r/m or mod ss index base indicates Source
Operand.

Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immedi-
ate datafields. The s field has an effect only if the size of
the immediate data is 8 bits and is being placed in a
16-bit or 32-bit destination.

Mnemonic Condition tttn
o} Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO No Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Not Greater Than | 1110
NLE/G Not Less Than or Equal/Greater Than | 1111

Encoding of Control or Debug or Test Register (eee)
Field

For the loading and storing of the Control, Debug, and
Test registers.

16-Bit or 32-Bit Destination

Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and
set on condition), tttn is encoded with n indicating to
use the condition (n = 0), or its negation (n = 1), and
ttt giving the condition to test.

Effect on Effect on A)
s Immediate Data8 Immediate Data 16(32 When Interpreted as Control Register Field
0 | None None eee Code Reg Name
000 CRoO
1 | Sign-Extended Data8 to Fill | None 010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRoO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code

Reg Name

110
111

TRe
TR7

Do not use any other encoding

Am386SX/SXL Microprocessor Data Sheet

237

n AMD

PHYSICAL DIMENSIONS
For reference only. All dimensions measured in inches unless otherwise noted. BSC is an ANSI standard for Basic

Space Centering.

PQB 100 — Plastic Quad Flat Pack; Trimmed and Formed

(all measurements are in inches)

< 0.897
L 0.875 0.903 _
) 0.747 0.885 i
0.753
AAAAAARARARAAAAARARALALAS 7 N
50« »26 I
7 %?
0747
0.753
0875
0.885
0.897
0.903
PYTTVYTvYg)
i
Top View
0.130
—» e— 0.025 Basic 0.150
((f= e) N
0.60 0160
REF 0.020 0.180
0.040
Side View
Fi
7/16/92 SG

238

Am386 Microprocessors for Personal Computers

AMD u

PHYSICAL DIMENSIONS (continued)

PQB 100 — Plastic Quad Flat Pack with Molded Carrier Ring
(Inner device measured in inches; outer ring measured in millimeters)

B 45.87 _
o 46.13 45.50 -
Y 41.37 45.90 o
o 41.63 37.87 o
b 35.15 38.13 L
) 35.05 32.15 L
M 0897 3225 -
. 0-903 0744
b 0.752
T‘\ln ada e taa ba s n s a ey sa s taalataly ll/—]

45,50 | 37.87 {32.15 [0.744
45.90 |138.13132.25 | 0.752

45.87|41.37|35.15)0.897
46.13]41.63]35.25]0.903

N

E‘j’\

[—\.. NN IR RN RN NEN AR E NS A8 U8 N8 BN AW

TOP VIEW 025 NOM
.45 Typ
.65 Pitch —»f |e— "_‘i
—_— —
- Th
| : (>>llllIJ!llllJ!llllllllllllllllIHIIlllllllilllllllllllllll<<> Ig_oo 4.80
) Tl | N7 Fiso
esTyp JHOO0O0] —
—ﬂ—'—| SIDE VIEW
—
f——-- i
7/16/92 SG

Am386SX/SXL Microprocessor Data Sheet 239

u AMD

240 Am386 Microprocessors for Personal Computers

AMD u

Am386SX/SXL Microprocessor Data Sheet 241

a AMD

242 Am386 Microprocessors for Personal Computers

AMD a

Am386SX/SXL Microprocessor Data Sheet 243

Sales Offices
North American

ALABAMA (205) 882-9122
ARIZONA (602) 242-4400
CALIFORNIA,

Culver Cityccoeeuieeireiceie s (310) 645-1524

Newport Beach ... (714) 752-6262

Sacramento(Roseville) ... (916) 786-6700

San Diegoccociiiii e (619) 560-7030

San Jose....... (408) 452-0500

Woodland Hills (818) 992-4155
CANADA, Ontario,

Kanata........... (613) 592-0060

Willowdale ... (416) 222-7800
COLORADO ...(303) 741-2900
CONNECTICUT ..o (203) 264-7800
FLORIDA,

ClearWatercccceeeenenerene e (813) 530-9971

Ft. Lauderdale

....... (305) 776-2001

Orlando (Longwood)...
GEORGIA

...................................... (407) 862-9292

IDAHO

(404) 449-7920
(208) 377-0393

ILLINOIS,
Chicago (ltasca)
Naperville

(708) 773-4422
(708) 505-9517

MARYLAND

(301) 381-3790

MASSACHUSETTS

(617) 273-3970

MINNESOTA

NEW JERSEY,
Cherry Hill

(612) 938-0001
(609) 662-2900

Parsippany

(201) 299-0002

NEW YORK,
Brewster

(914) 279-8323

Rochester

(716) 425-8050

NORTH CAROLINA
Charlotte

(704) 875- 3091

Raleigh... (919) 878-8111
OHIO,

Columbus (Westerville)cccovvneeneenens (614) 891-6455

Dayton... (513) 439-0268
OREGON ... (503) 245-0080

PENNSYLVANIA
TEXAS,

(215) 398-8006

Austin (512) 346-7830
Dallas (214) 934-9099
Houston (713) 376-8084
International
BELGIUM, Antwerpen ...(03) 248 43 00
FAX(03) 248 46 42
FRANCE, Paris TEL .. (1) 49-75-10-10
FAX oo (1) 49-75-10-13
GERMANY,

Bad Homburg

...(06172)-24061
(06172)-23195

Miinchen TEL(089) 4114-0

HONG KONG,
Wanchai (852) 865-4335
ITALY, Milano........c.ccc.cuc. TEL (02) 3390541
[G (02) 38103458

JAPAN,

Atsugi LTEL (0462) 29-8460
(0462) 29-8458
Kanagawa (0462) 47-2911
..(0462) 47-1729
Tokyo (03) 3346-7550
(03) 3342-5196
Osaka (06) 243-3250
(06) 243-3253
KOREA, Seoul................. .(82) 2-784-0030
F (82) 2-784-8014

International (continued)
LATIN AMERICA,

Ft. Lauderdale TEL (305) 484-8600
FAX (oo (305) 485-9736
SINGAPORE TEL (65) 3481188
{275, GO (65) 3480161

SWEDEN,
Stockholm area TEL (08) 98 61 80
(Bromma) FAX o (08) 98 09 06
TAIWAN, Taipei TEL (886) 2-7153536
{275 G (886) 2-7122183

UNITED KINGDOM,
Manchester area

...(0925) 830380

(Warrington) FAX(0925) 830204
London area TEL ...(0483) 740440
(Woking) (7.5, QOO (0483) 756196
North American Representatives
CANADA
Burnaby, B.C. - DAVETEK MARKETING........... (604) 430-3680
Kanata, Ontario — VITEL ELECTRONICS(613) §92-0060

Mississauga, Ontario — VITEL ELECTRONICS .(416) 564-9720
Lachine, Quebec — VITEL ELECTRONICS......... (514) 636-5951
ILLINOIS

Skokie — INDUSTRIAL

REPRESENTATIVES,INCccccovernircrnc (708) 967-8430
INDIANA

Huntington — ELECTRONIC MARKETING

CONSULTANTS, INC......covreirririerreeircnene (317) 921-3450

Indianapolis —~ ELECTRONIC MARKETING

CONSULTANTS, INC....cocormirriirinererenreeeene (317) 921-3450
IOWA

LORENZ SALEScocoviiieeccrerereeeens (319) 377-4666
KANSAS

Merriam — LORENZ SALES

Wichita — LORENZ SALES
KENTUCKY

ELECTRONIC MARKETING

CONSULTANTS, INCoooveececemrrerereeee (317) 921-3452
MICHIGAN

Holland — COM-TEK SALES, INC

Brighton — COM-TEK SALES, INC....
MINNESOTA

(913) 469-1312
(316) 721-0500

(616) 335-8418
(318) 227-0007

Mel Foster Tech. Sales, Inc.ccoeevvceienenee (612) 941-9790
MISSOURI

LORENZ SALES ... (314) 997-4558
NEBRASKA

LORENZ SALES (402) 475-4660
NEW MEXICO

THORSON DESERT STATEScccevueunenne (505) 883-4343
NEW YORK

East Syracuse — NYCOM, INCcccccc... (315) 437-8343

Hauppauge - COMPONENT

CONSULTANTS, INC..........ccocvvvvvccrnnceee... (516) 273-5050
OHIO

Centerville - DOLFUSS ROOT & CO............. (513) 433-6776

Columbus ~ DOLFUSS ROOT & CO
Westlake - DOLFUSS ROOT & CO..
OREGON

.(614) 885-4844
..(216) 899-9370

ELECTRA TECHNICAL SALES, INC (503) 643-5074
PENNSYLVANIA

RUSSELL F. CLARK CO.,INC.cc.eeene. (412) 242-9500
PUERTO RICO

COMP REP ASSOC, INC ... (809) 746-6550
UTAH

Front Range Marketingccccccoouevvcnrerinnace. (801) 288-2500
WASHINGTON

ELECTRA TECHNICAL SALES.(206) 821-7442
WISCONSIN

Brookfield — INDUSTRIAL

REPRESENTATIVES,INC (414) 789-9393

Advahced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics.
The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to
the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any

circuits described herein. RECYCLED &
RECYCLABLE

Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA © 1992 Advanced Micro Devices, Inc.

Tel: (408) 732-2400 + TWX: 910-339-9280 « TELEX: 34-6306 » TOLL FREE: (800) 538-8450 11339C . 101592
APPLICATIONS HOTLINE & LITERATURE ORDERING + TOLL FREE: (800) 222-9323 -+ (408) 749-5703 Ban-35.5M-10/92-0 _ Printed in USA

P

ADVANCED

MICRO

DEVICES, INC.

901 Thompson Place
P.O. Box 3453
Sunnyvale

California 94088-3453
(408) 732-2400

(800) 538-8450
TWX: 910-339-9280
TELEX: 34-6306

CORPORATE

APPLICATIONS HOTLINE

USA (408) 749-5703

JAPAN 81-3-3346-7561

UK & EUROPE 44-(0)256-811101
TOLL FREE

USA (800) 222-9323

FRANCE 0590-8621

GERMANY 0130-813875

ITALY 1678-77224

PC PROCESSORS
LITERATURE ORDERING
USA (800) 292-9263
USA (512) 462-6882

RECYCLED &
RECYCLABLE

Printed in USA
Ban-35.5M-10/92-0
11339C

