DESCRIPTION

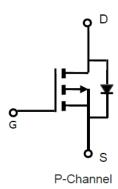
The AM4435 is the P-Channel logic enhancement mode power field effect transistor is produced using high cell density. Advanced trench technology to provide excellent R_{DS(ON)}.

These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other batter powered circuits where high-side switching.

The AM4435 is available in SOP8 Package

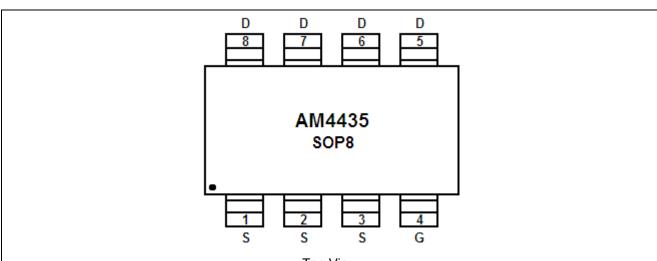
ORDERING INFORMATION

Package Type	Part Number		
SOP-8	M8	AM4435M8R	
30P-6	IVIO	AM4435M8VR	
Note	R: Tape & Reel		
Note	V: Green Package		
AiT provides all Pb free products			
Suffix " V " means Green Package			


FEATURES

- -30V/-8.0A, $R_{DS(ON)}=16m\Omega(typ)@V_{GS}=-10V$
- -30V/-5.0A, $R_{DS(ON)}=26m\Omega(typ)@V_{GS}=-4.5V$
- Super high density cell design for extremely low R_{DS(ON)}
- Exceptional on-resistance and maximum DC current capability
- Full RoHS compliance
- Available in SOP8 Package

APPLICATION


- Inverter
- Synchronous Buck
- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

P-CHANNEL MOSFET

REV1.0 - JUN 2010 RELEASED - -1

PIN DESCRIPTION

Top View

Pin #	Symbol	Function
1	S	Source
2	S	Source
3	S	Source
4	G	Gate
5	D	Drain
6	D	Drain
7	D	Drain
8	D	Drain

REV1.0 - JUN 2010 RELEASED - - 2

ABSOLUTE MAXIMUM RATINGS

$T_A = 25$ °C Unless otherwise specified

V _{DSS} , Drain-Source Voltage		-30'		
V _{GSS} , Gate-Source Voltage		±20V		
I _D , Continuous Drain Current (T _J =150°C) V _{GS} = -10V		-9A		
I _{DM} , Pulsed Drain Current		-30A		
Is, Continuous Source Current (Diode Conduction)		-2.3A		
T _J , Operation Junction Temperature		-55°C~150°C		
T _{STG} , Storage Temperature Range		-55°C~150°C		
P _D , Power Dissipation				
T _A =25°C		2.8W		
T _A =70°C		1.8W		

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL INFORMATION

Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance-Junction to Ambient	Reja			70	°C/W

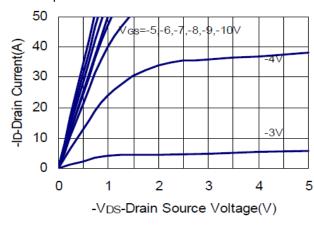
REV1.0 - JUN 2010 RELEASED - - 3 -

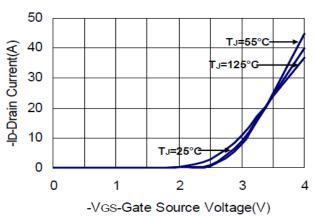
ELECTRICAL CHARACTERISTICS

T_A = 25°C Unless otherwise specified

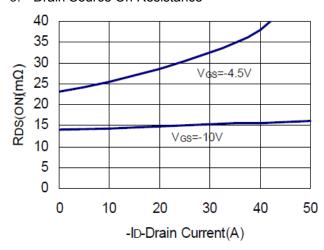
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Drain-Source Breakdown	$V_{(BR)DSS}$	V _{GS} =0V,I _D =-250µA	-30	_	-	V
Voltage						-
Gate Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1.0	-	-2.5	٧
Gate Leakage Current	Igss	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-24V,V _{GS} =0V	-	-	-1	
		V _{DS} =-24V,V _{GS} =0V			-	μΑ
		T _J =55°C	_	-	-5	
On-State Drain Current	I _{D(ON)}	V _{DS} ≦ -5V,V _{GS} ≦ -4.5V	-40	-	-	Α
Drain-source On-Resistance	R _{DS(ON)}	V _{GS} =-10V,I _D =-9.0A	-	16	21	21 34 mΩ
		V _{GS} =-4.5V, I _D =-5.0A	-	26	34	
Forward Transconductance	G _{fs}	V _{DS} =-15V,I _D =-9.0A	-	24	-	S
Source-Drain Doide		•				
Diode Forward Voltage	V _{SD}	I _S =-2.3A,V _{GS} =0V	-	-0.8	-1.2	V
Dynamic Parameters						
Total Gate Charge	Qg	45)/// 40)/	-	16	24	nC
Gate-Source Charge	Q _{GS}	V _{DS} =-15V,V _{GS} =-10V	=	2.3	-	
Gate-Drain Charge	Q _{GD}	I _D =-9.0A	-	4.5	-	
Input Capacitance	C _{iss}	151414 014	-	1650	-	
Output Capacitance	Coss	V _{DS} =-15V,V _{GS} =0V - f =1MHz	-	350	-	pF
Reverse Transfer Capacitance	Crss		-	235	-	
Turn-On Time	$t_{d(on)}$		-	16	30	
	Tr	$V_{DD} = -15V, R_L = 15\Omega$	-	17	30	nS
Turn-Off Time	t _{d(off)}	I _D =-1.0A,V _{GEN} =-10V	-	65	110	
	T _f	$-R_{G}=6\Omega$	_	35	80	

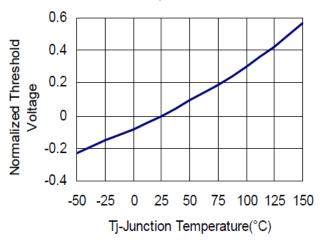
Note : Pulse test: pulse width \leq 300us, duty cycle \leq 2%

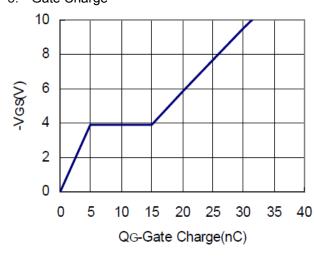

REV1.0 - JUN 2010 RELEASED - -4-

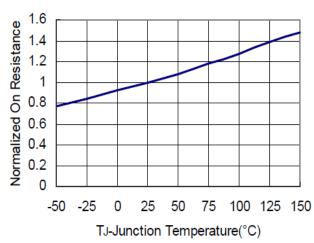

TYPICAL CHARACTERISTICS

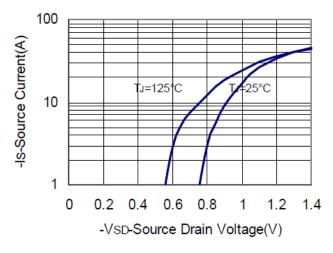
T_A=25°C Unless Specified

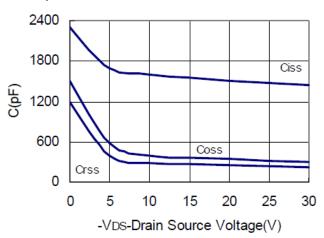

1. Output Characteristics

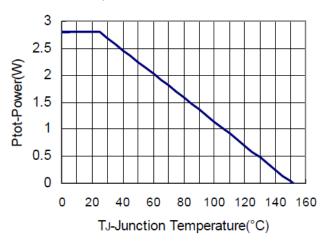

2. Transfer Characteristics

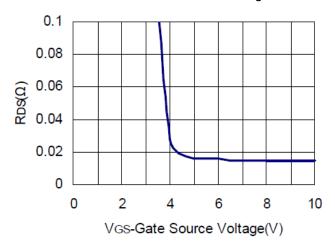


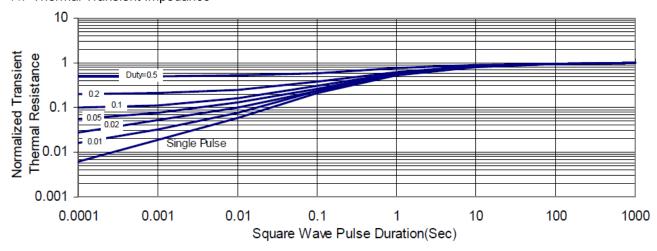

4. Gate Threshold Voltage


6. Drain Source On Resistance

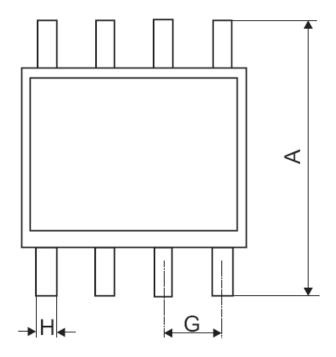

REV1.0 - JUN 2010 RELEASED - - 5 -

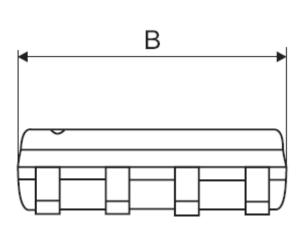

7. Source Drain Diode Forward

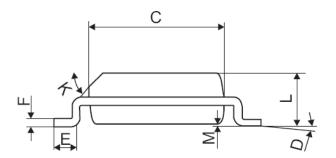

8. Capacitance


9. Power Dissipation

10. On Resistance VS Gate Source Voltage


11. Thermal Transient Impedance




REV1.0 - JUN 2010 RELEASED - - 6 -

PACKAGE INFORMATION

Dimension in SOP-8 (Unit: mm)

Symbol	Min	Max
Α	1.400	1.750
A1	0.100	0.250
A2	1.300	1.500
В	0.330	0.510
С	0.190	0.250
D	4.800	5.300
Е	3.700	4.100
е	-	-
Н	5.790	6.200
L	0.380	1.270
у	-	0.100
θ	0°	8°

REV1.0 - JUN 2010 RELEASED - - 7

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUN 2010 RELEASED - - 8 -