
PRINCIPLE FUNCTION

Amplification of Single Ended Signals (Voltage)
Protection Functions for External Devices
Additional Adjustable Current/Voltage Source

TYPICAL APPLICATIONS

- Impedance Converter
- Adjustable Voltage Source
- · Voltage Regulator with Additional Functions
- Protection IC for Microcontroller (Frame ASIC Concept [1])
- Protected Current Source

analog microelectronics

Analog Microelectronics GmbH An der Fahrt 13, 55124 Mainz, Germany Internet: http://www.analogmicro.info Phone: +49 (0)6131/91 073 – 0 Fax: +49 (0)6131/91 073 – 30 E–mail: info@analogmicro.info October 2002

1/8 Rev. 1.1

AMPLIFIER AND PROTECTION IC

Figure 6: Application as voltage regulator and protection IC for controllers

AM461

TABLE OF CONTENTS

Features	3
Description	3
Block Diagram	3
Electrical Specifications	4
Block diagram and Pinout AM461	6
Principial Application Examples	7
Delivery	8
Additional Literature	8
TABLE OF FIGURES Table 1: Pinout AM461	6
Figure 1: Block diagram AM461	3
Figure 2: Block diagram AM461	6
Figure 3: Pinout AM461	6
Figure 4: Application as processor interface	7
Figure 5: Application as amplifiers IC and impedance converter	7

7

FEATURES

- Supply Voltage Range: 6...35V
- Wide Operating Temperature Range: -40°C...+85°C
- Voltage Reference: 5V
- Additional Voltage/Current Source
- Operational Amplifier Stage with Integrated Driver Output
- Adjustable Gain
- Adjustable Output Voltage Range e.g. 0...5/10V, others
- Reverse Polarity Protection
- Short Circuit Protection
- Output Current Limitation
- Low-Cost: Replaces a Multitude Number of Discrete Components

DESCRIPTION

The AM461 is a universal useable amplifier and protection IC with a multitude of additional functions. The IC contains of an externally adjustable operational amplifier for conditioning of single ended input signals. This amplifier has an integrated output driver stage with the ability to source up to 5mA without the need of any external transistor. In addition, a voltage reference for the supply of external components and another operational amplifier that can be used as current/voltage source or comparator is integrated.

Basic features of the IC are the wide range integrated of protection functions. The IC is protected against reverse polarity and has a build-in output current limitation. Using the amplifier IC AM461 it is possible to generate stable standard voltages ranges (e.g. 0-5/10V) in an easy and low-cost way.

BLOCK DIAGRAM

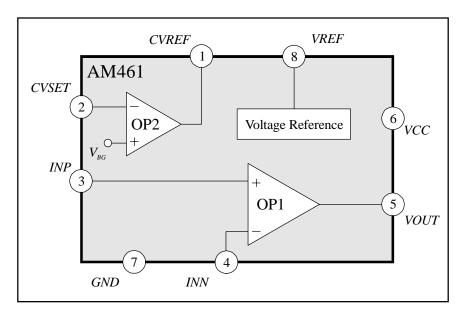


Figure 1: Block diagram AM461

ELECTRICAL SPECIFICATIONS

 $T_{amb} = 25$ °C, $V_{CC} = 24$ V, $I_{REF} = 1$ mA, $C_1 = 2.2\mu$ F (unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Voltage Range	V_{CC}		6		35	V	
Quiescent Current	I_{CC}	$T_{amb} = -40+85$ °C, $I_{REF} = 0$ mA			1.5	mA	
Temperature Specifications	Cemperature Specifications						
Operating	T_{amb}		-40		85	°C	
Storage	T_{st}		-55		125	°C	
Junction	T_J				150	°C	
Thermal Resistance	Θ_{ja}	DIL8 plastic package		110		°C/W	
	Θ_{ja}	SO8 plastic package		180		°C/W	
Voltage Reference							
Voltage	V_{REF}		4.75	5.00	5.25	V	
Current	I_{REF}		1.0		10.0	mA	
V_{REF} vs. Temperature	$\mathrm{d}V_{REF}/\mathrm{d}T$	$T_{amb} = -40+85$ °C		±90	±140	ppm/°C	
Line Regulation	$\mathrm{d}V_{REF}/\mathrm{d}V$	$V_{CC} = 6V35V$		30	80	ppm/V	
	$\mathrm{d}V_{REF}/\mathrm{d}V$	$V_{CC} = 6$ V35V, $I_{REF} \approx 5$ mA		60	150	ppm/V	
Load Regulation	$\mathrm{d}V_{REF}/\mathrm{d}I$			0.05	0.10	%/mA	
	$\mathrm{d}V_{REF}/\mathrm{d}I$	$I_{REF} \approx 5 \mathrm{mA}$		0.06	0.15	%/mA	
Current/Voltage Source OP2							
Internal Reference	V_{BG}		1.20	1.27	1.35	V	
V_{BG} vs. Temperature	$\mathrm{d}V_{BG}/\mathrm{d}T$	$T_{amb} = -40+85^{\circ}\text{C}$		±60	±140	ppm/°C	
Current Source: $I_{CV} = V_{BG}/R_{SET}$							
Adjustable Current Range	I_{CVREF}		0		10	mA	
Output Voltage	V_{CVREF}	$V_{CC} < 18V$	V_{BG}		$V_{CC}-4$	V	
	V_{CVREF}	$V_{CC} \ge 18V$	V_{BG}		13	V	
Voltage Source: $V_{CV} = V_{BG} (1 + R_4 / R_3)$							
Adjustable Voltage Range	V_{CVREF}	V _{CC} < 18V	0.4		$V_{CC}-4$	V	
	V_{CVREF}	$V_{CC} \ge 18 \text{V}$	0.4		13	V	
Output Current	I_{CVREF}	Source, $R_3 + R_4 \ge 100 \text{k}\Omega$			10	mA	
	I_{CVREF}	Sink			-100	μΑ	
Load Capacitance @ CVREF	C_{CVREF}	Source mode	0	1	10	nF	

AMPLIFIER AND PROTECTION IC

AM461

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Voltage Output Stage OP1						
Adjustable Gain	G_{OP1}		1			
Input Range	IR	$V_{CC} < 10 \text{V}$	0		V_{CC} – 5	V
	IR	$V_{CC} \ge 10 \text{V}$	0		5	V
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}			±0.5	±2	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±3	±7	μV/°C
Input Bias Current	I_B			5	12	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			3.5	10	pA/°C
Output Voltage Range	V_{OUT}	$V_{CC} < 18 \text{V}$	0		V_{CC} – 5	V
	V_{OUT}	$V_{CC} \ge 18V$	0		13	V
Output Current Limitation	I_{LIM}	$V_{OUT} \ge 10 \text{V}, R_1 + R_2 \ge 100 \text{k}\Omega$	5	7	10	mA
Output Current	I_{OUT}	Source	0		I_{LIM}	mA
Output Resistance	R_{OUT}	Source		0.5		Ω
Load Resistance	R_L		2	10	100	kΩ
Load Capacitance @ VOUT	C_L		0		500	nF
Protection Functions						
Protection against reverse polarity		Ground vs. V_{CC} vs. V_{OUT} , $R_1 \ge 20$ k Ω			35	V

Currents flowing into the IC are negative

BOUNDARY CONDITIONS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Sum Gain Resistors	$R_1 + R_2$		20	100	200	kΩ
Sum Reference Adjustment Resistors	$R_3 + R_4$		20	100	200	kΩ
Stabilisation Capacitance @ VREF	C_1		1.9	2.2	5.0	μF

BLOCK DIAGRAM AND PINOUT AM461

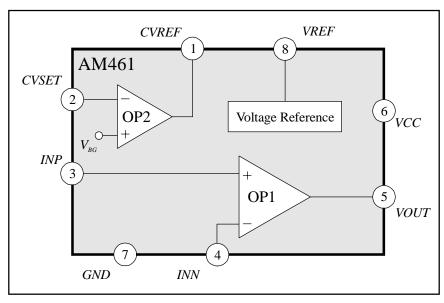


Figure 2: Block diagram AM461

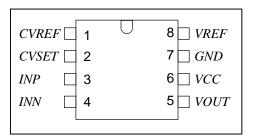


Figure 3: Pinout AM461

	PIN	NAME	DESIGNATION
ĺ	1	CVREF	Output OP2
	2	CVSET	Input OP2
	3	INP	Positive input OP1
	4	INN	Negative input OP1
	5	VOUT	Voltage output
	6	VCC	Supply voltage
	7	GND	IC ground
	8	VREF	Output voltage reference

Table1: Pinout AM461

PRINCIPLE APPLICATION EXAMPLES

• Application as processor interface

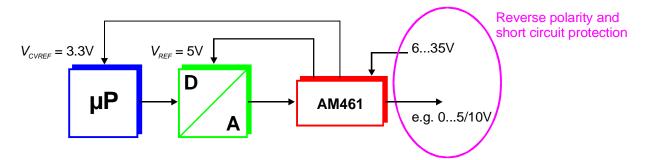


Figure 4: Application as processor interface

· Application as amplifier IC and impedance converter

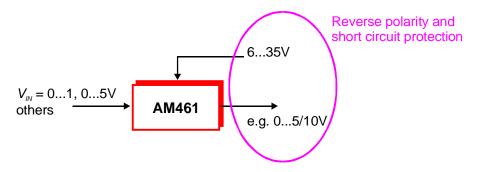


Figure 5: Application as amplifier IC and impedance converter

• Application as voltage regulator and protection IC for controllers

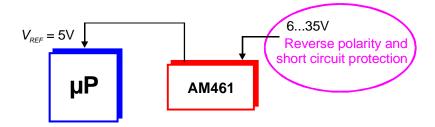


Figure 6: Application as voltage regulator and protection IC for controllers

AMPLIFIER AND PROTECTION IC

AM461

DELIVERY

The AM461 amplifier and protection IC is available in

• DIP08, SO08

ADDITIONAL LITERATURE

- [1] Concept of Frame ASICs: http://www.Frame-ASIC.com/
- [2] Analog Microelectronics' Homepage: http://www.analogmicro.info/

NOTES

The information provided herein is believed to be reliable; however, Analog Microelectronics assumes no responsibility for inaccuracies or omissions. Analog Microelectronics assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licences to any of the circuits described herein are implied or granted to any third party. Analog Microelectronics does not authorise or warrant any Analog Microelectronics product use in life support devices and/or systems.